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A Direct PCA-Based Approach for Real-Time
Description of Physiological Organ Deformations

Baudouin Denis de Senneville*, Abdallah El Hamidi, and Chrit Moonen

Abstract—Dynamic magnetic resonance (MR)-imaging can pro-
vide functional and positional information in real-time, which can
be conveniently used online to control a cancer therapy, e.g., using
high intensity focused ultrasound or radio therapy. However, a
precise real-time correction for motion is fundamental in abdom-
inal organs to ensure an optimal treatment dose associated with
a limited toxicity in nearby organs at risk. This paper proposes
a real-time direct principal component analysis (PCA)-based
technique which offers a robust approach for motion estimation of
abdominal organs and allows correcting motion related artifacts.
The PCA was used to detect spatio-temporal coherences of the
periodic organ motion in a learning step. During the interven-
tional procedure, physiological contributions were characterized
quantitatively using a small set of parameters. A coarse-to-fine
resolution scheme is proposed to improve the stability of the
algorithm and afford a predictable constant latency of 80 ms.
The technique was evaluated on 12 free-breathing volunteers and
provided an improved real-time description of motion related to
both breathing and cardiac cycles. A reduced learning step of
10 s was sufficient without any need for patient-specific control
parameters, rendering the method suitable for clinical use.

Index Terms—Motion analysis, real-time system.

I. INTRODUCTION

R ECENT developments in rapid magnetic resonance
imaging (MRI), associated with fast data processing

strategies, now allow acquiring functional and positional
information in real-time during an interventional procedure.
Dynamic MRI is thereby a promising candidate to assess an
online retroactive control of the therapy. For example, real-time
processing of MR-images, combined with a high intensity
focused ultrasound system (MR-HIFU) with rapid electronic
displacement of the focal point, can be used to achieve a
regional temperature control [1]. Similarly, the recent develop-
ment of integrated MRI linear accelerators (MR-LinAc), which
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are designed for simultaneous irradiation and MR-imaging [2],
shows great potential for online radiotherapy guidance.
Although these new techniques appear well suited for cancer

therapy in vital organs such as kidney and liver, physiological
displacements induced by breathing and/or cardiac activities re-
quire a precise real-time motion management to ensure the fol-
lowing.
1) A correction of motion-induced image artifacts (in par-

ticular, MR-susceptibility variations generate apparent
temperature perturbations in the case of MR-HIFU [3],
as well as geometric image distortions in the case of both
MR-HIFU and MR-LinAc [2]).

2) An accurate calculation of the accumulated dose (based
on MR-thermometry for thermal dose assessment with
MR-HIFU [1] or dose simulations with MR-LinAc [2]).

3) A reliable beam targeting of the pathological tissue [4].
To this end, several techniques are actively developed to as-

sessmotion informations in real-time:While surrogates of phys-
iological activities can be obtained by means of a respiratory
pressure belt [5] or a cardiac electrocardiogram (ECG) [6], dis-
placement measurements in the vicinity of the targeted region
can be provided by navigator echos [7] or ultrasonic [8] echos.
More recently, fast MR-acquisition protocols allow acquiring
dynamically 2-D images with a respectable spatial and temporal
resolution and a good contrast with a clear depiction of both tar-
geted and healthy regions. These images can be conveniently
used to estimate organ displacements during the therapy using
image registration algorithms.
For this purpose, the optical flow formulation of Horn &

Schunck, initially proposed in the context of motion estimation
in video sequence [9], was recently shown to be well adapted
for the real-time estimation of elastic organ deformations [4]

(1)

where is the image coordinates domain, and the dis-
placement vector components, the spatio-temporal partial
derivatives of the image pixel intensity, and a weighting fac-
tors designed to link both intensity variation [left part of (1)]
and motion field regularity [right part of (1)]. Combined with a
multi-resolution scheme and a fast GPU (Graphics Processing
Unit) implementation, (1) is able to assess abdominal organ dis-
placements with an update rate of 10 Hz for MR-images [10].
However, optical flow based algorithms rely on the assump-

tion of conservation of local intensity along the trajectory.
This can be unfavorable for the clinical applications described
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above since intensity variations may arise from changes of
MR-tissue properties during the intervention [11]. Moreover,
several strategies for correcting motion artifacts necessitate
the quantitative and real-time characterization of individual
physiological contributions such as breathing and cardiac
activities [3], [10]. Therefore, it has been proposed in [12]
to analyze the spatio-temporal coherence of the estimated
displacement using a principal component analysis (PCA), in
order to discard, during the intervention, in real-time, inco-
herent motion patterns as follows: A reduced parameterized
flow model, initially computed during a preparative learning
step covering several breathing cycles, is characterized using
a PCA, which provides an orthonormal basis depicting the
underlying characteristic patterns of the motion. We denote
by the spatial PCA compact, positive and self adjoint
operator, on , associated to the
optical flow during the learning step. The eigenvalues
of , which are non-negative, are sorted in decreasing order
and repeated a number of times equal to their multiplicity

. The technique seeks the motion
descriptor ( is the number of employed eigen-
vectors) which fulfills

(2)

where and are the horizontal and ver-
tical components of the eigenvector , respectively,
denotes the spatial transformation between the new incoming
image and a reference image, and are the pixel coordi-
nates. For this purpose, a minimization technique was proposed
in order to find the coefficients that produced a flow
field minimizing the matching error expressed as [12], [13]

(3)

where is the reference and the incoming image.
However, the function has no convexity properties and the

number of its local minima is dictated by the content of the im-
ages and . The latter may induce poor estimates of the coef-
ficients and hence the PCA sensitivity phenomena
(described in Appendix A) will arise if we try to consider sev-
eral eigenvectors in the basis computed in the learning step for a
good representation of the movement during the interventional
procedure. Another drawback rises from the fact that the com-
putation time depends on the image content: The latency of the
obtained information is thus unpredictable which limits the ap-
plication of the method, especially for feedback control strate-
gies [14].
The current paper aims at improving the real-time estimation

and quantitative characterization of physiological displace-
ments as follows: A direct PCA-based method is proposed,
which extends the original minimization method of (3) by
formulating the determination of the coefficients
with the optical flow metric of (1). A coarse-to-fine scheme is

proposed to improve the stability for organ displacements of
large amplitude. The proposed method was evaluated on 12
free-breathing volunteers and its efficiency was illustrated for
real-time MR-thermometry applications. It is shown that the
technique provides an improved description of motion related
to both breathing and cardiac activities, with a steady latency
of 80 ms, during a period of 2 min.

II. METHOD DESCRIPTION

A. Estimation of Organ Displacement During the Learning
Step
Each time a new incoming image was acquired during a

learning step of 10 s, an in-house developed, freely available,
software provided a 2-D motion estimate using the optical flow
metric of (1). The reader is referred to the Appendix B for a
discussion of the tool, the calibration of the input parameter
and the accuracy of the estimated motion. The proposed

PCA-based approach is provided as an add-on for the tool.

B. Real-Time Characterization of Physiological Organ
Deformations During the Interventional Procedure
Our proposed approach is to find, for each new incoming

image during the interventional procedure, a linear PCA-de-
composition which results in a motion field completing a spatial
regularity constraint. For this purpose, we suggest to minimize
the energy given by

(4)

where the functional is given by (1). By applying the Euler-
Lagrange equations on a pixel-by-pixel basis, one can derive the
two equations for each , as follows:

(5)

where denotes the Laplacian operator. We introduce the fol-
lowing notations for simplification:

At this point we have linear equations with
common unknowns . The latter can be found di-
rectly through the following overdetermined linear system:

... (6)

with
...

...

...
...

...

...
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C. Proposed Coarse-to-Fine Strategy

Since the Taylor approximation of the Horn & Schunck for-
mulation of (1) holds only for small displacements, we adapted
the warping theory proposed in [15] to the resolution of (4) as
follows: A multi-resolution scheme was performed which it-
erated the registration algorithm from a 8-fold downsampled
image step by step to the original image resolution. An itera-
tive refinement process was also implemented in order to up-
date within each resolution level: Default results obtained
for one single iteration were compared to those obtained for
a full convergence of the algorithm (the variation of be-
tween two successive iterations was compared to a maximal al-
lowed tolerance of in order to ensure the convergence). To
achieve a global motion regularisation [left part of (1)], we de-
composed the overall motion descriptor (noted ) as the sum of
the contribution within the currently processed resolution
and the global contribution already estimated from the lowest
resolution . The same decomposition was performed for the
calculation of the laplacian of the each overall motion compo-
nent (noted and ), so we have

(7)

The system of (6) was thus rewritten as follows:

... (8)

with

...

...

For each multi-resolution level, the coefficients
were computed using a least square approximation. The final
motion descriptor was equal to the vector obtained
at the original image resolution.

D. Separation of Physiological Displacement From Noise
Contributions

The eigenvectors associated with the largest eigenvalues
were conserved using the method proposed in [12]: The tem-
poral evolution of the PCA-based motion descriptor was ana-
lyzed during the learning step in the spectral domain to separate
physiological motions from the noise contribution. Typical pe-
riods of the respiratory and cardiac activities are in the range
of 3–6 s and 0.5–2 s, respectively, hence a threshold of 4 Hz
was employed to discard eigenvectors coding for noise contri-
butions. Possible values for were iteratively enumerated until
the time course of (i.e., the coefficient in the PCA-based
motion descriptor associated to the eigenvector ) depicts
frequencies above 4 Hz exceeding 20% of the main peak below
4 Hz.

E. Experimental Validation

1) MR Imaging Protocol: Dynamic MR-imaging was per-
formed on a Philips Achieva 1.5T (Philips Healthcare, Best, The
Netherlands) under real-time conditions. An imaging frame-rate
of 10 Hz was maintained on the abdomen of 12 healthy human
volunteers under free-breathing conditions. The method was
evaluated in 2-D and the effect of through plane motion was
reduced by setting the imaging plane direction parallel to the
principal axis of the organ displacement. The MR-protocol was
composed of a learning step of 10 s dedicated to the calculation
of the eigenvectors, followed by 2 min devoted to mimic an
interventional procedure. The MR-sequence was a single-shot
gradient recalled echo-planar with the following parameters:
one coronal slice, repetition time ms, echo time

ms, bandwidth in readout direction Hz,
flip angle , field of view mm
slice thickness mm, matrix , using a four
element phased array body coil. MR-images were processed
with a dual processor Intel 3.1 GHz Penryn (four cores) with 16
GB of RAM. Computational intensive calculations [i.e., image
down and upsampling, application of a spatial transformation,
filling of matrices in (8)] benefited from the
multi-threaded architecture.
2) Implementation of the Minimization Method: The pro-

posed direct method was compared to the existing minimiza-
tion technique in terms of computation time as well as pre-
cision and accuracy of the PCA representation. To clarify the
benefits on the final results, identical values for were em-
ployed for both the minimization and the direct methods (see
Section II-D). A Marquardt-Levenberg algorithm [16] was em-
ployed for the minimization of the functional . The iterative
process was stopped once the variation of between two
successive iterations reached a user-defined tolerance of .
A single resolution scheme was employed by default (a justifi-
cation for this choice is provided in Section III). The minimiza-
tion method was set in optimal conditions in order to prevent
the algorithm to get caught into local minima: 1) The reference
image was chosen in the middle of the respiratory cycle in
order to limit the actual amount of displacement to estimate; 2)
The motion estimation process was restricted to a manually de-
fined region of interest (ROI), which contains the full path of the
targeted organ; 3) The motion descriptor estimated for the pre-
viously acquired image was used as a preconditioning for the
new motion estimation; 4) A spatial Gaussian filter (kernel 3
3) was applied to the new incoming image . Note that tasks

disclosed in items #1 and #2 were also performed for the direct
method, although not required, in order to clarify the benefits on
the final results.
3) Assessment of the Quality of the Estimated Motion: For

each image acquired during the interventional procedure, mo-
tion field vectors were estimated offline using the optical flow
metric of (1) and taken as a reference for the evaluation of the
PCA representation.
To assess the quality of the estimated motion, the pixel-wise

endpoint error (EE) was computed as follows:

(9)
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where and are the estimated and the reference
motion estimates, respectively.
4) Illustration of the Benefit of the Direct PCA-Based Mo-

tion Descriptor for Real-Time MR-Thermometry: The MR-ac-
quisition protocol described in Section II-E1 is also compat-
ible with real-time proton resonance frequency (PRF) thermom-
etry: The PRF is measured by obtaining the phase of the
MR-signal obtained with a gradient recalled sequences, which is
directly proportional to the local magnetic field strength , to
the local proton resonance frequency, and thus to the local tem-
perature [17]. An estimate of temperature changes inside
the human body can be obtained by evaluating phase shifts be-
tween dynamically acquired phase images and a reference
nonheated data set as follows:

(10)

where is the gyromagnetic ratio ( MHz/Tesla), is
the temperature coefficient ( ppm/K). However, a reli-
able PRF-based temperature measurement on moving targets is
complicated since motion related phase variation between
and in (10) may cause strong thermometry artifacts which
can bias, and even mask the true temperature evolution. Sev-
eral strategies have been proposed in the past to correct on-
line these motion related errors on thermal maps and a simple
technique relies on the calculation of a motion descriptor as
follows: The overall phase variation can be approximated by
linear phase changes of the motion descriptor on
a pixel-by-pixel basis [18]. In the present study, we compare
thermal maps corrected using the minimization and the pro-
posed direct methods. The temperature stability was assessed
by computing the temporal temperature standard deviation on a
pixel-by-pixel basis over a user defined ROI encompassing the
kidney and the liver. A paired t-test was performed to assess
the significance between temperature stabilities obtained with
the direct and the minimization approaches (assuming a signif-
icance threshold ).
5) Robustness in the Case of Local Grey Level Intensity Vari-

ations: For the particular case of motion estimation based on
magnitude images during hyperthermia, tissue modifications in-
duced by the heating lead to a variation of the local and
relaxation time and thus to local grey level intensity modifica-
tions [17]. Consequently, the condition of energy conservation
in (1) is locally violated which may lead to incorrect motion es-
timates. To analyze the impact on the proposed direct method, a
signal decrease, undergoing a Gaussian spatial distribution, was
simulated during the complete interventional procedure in a re-
gion located around an artery. The Gaussian signal decrease had
a full-width at half-maximum of 15 15 mm (100% of signal
loss in the central pixel) to mimic the typical in-plane lesion size
achieved during the HIFU procedure reported in [19]. The re-
sulting bias was quantified by calculating the averaged EE over
time and over a region of 15 15 pixels (i.e., 30 30 mm with
the employed pixel size) centered on the heated area, between
motion estimates obtained without and with the simulated signal
decrease. The significance between the averaged EE obtained
with the Horn & Schunck algorithm [(1)], the minimization and
the proposed direct method was evaluated using an ANOVA

Fig. 1. Typical results obtained in the abdomen of a healthy volunteer (Vol-
unteer #3). Kidney and liver are delimited by the white dashed line in (a) and
indicated by arrows (1) and (2), respectively. Images (a)–(d) show a subsample
of eigenvectors obtained with the displacement fields estimated during the 10
s of learning step. For each pixel the amplitude of the displacement vector was
computed, and each map was individually normalized between 0 and 1 for an
easier visualization. Coefficients of the motion descriptor associated to eigen-
vectors #1 and #4 are displayed in (e) and (f), respectively. Their corresponding
representation in the spectral domain are reported in (g) and (h), respectively.

(analysis of variances) in the form of a F-test with a significance
threshold . If the test was found significant, additional
paired t-tests were applied to the data of all pairs of criteria. A
significance threshold of was used and corrected with
the Bonferroni method.

III. RESULTS
Fig. 1 shows an example on a healthy volunteer (referred

to as Volunteer #3) of the characterization of abdominal organ
deformations using the proposed direct PCA-based motion
descriptor. Fig. 1(a)–(d) reports the anatomical image of the
kidney and the liver in the reference position with superim-
posed a subset of eigenvectors estimated using the data set
obtained during the 10 s of learning step. The most impor-
tant contribution on the estimated motion is induced by the
breathing activity, which is thus mainly featured by the eigen-
vector #1: A global head-foot displacement with an amplitude
increased from the bottom of the kidney to the top of the liver
can be observed in Fig. 1(a). The associated coefficient
in the PCA motion descriptor depicts a periodical temporal
variation of 4–5 s [Fig. 1(e)], which results in a main peak in
the spectral domain localized around 0.2 Hz [Fig. 1(g)]. While
the eigenvector #2 encodes for more local deformations in
vicinity of the vertebral column and the quadratus lamborum
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Fig. 2. Typical findings of the efficiency of the PCA representation obtained
for different number of eigenvectors employed in the motion characterization
(Volunteer #1). Averaged EE over time and over both the kidney and the liver
is displayed using the minimization (left column) and the direct (right column)
method. Results are reported for 1 (first row), 2 (second row), 3 (third row), and
4 (fourth row) scales employed in the multi-resolution scheme.

muscle [Fig. 1(b)], the eigenvector #4 features the movement
induced by an arterial pulsations [Fig. 1(c)]. The coefficient in
the PCA motion descriptor associated with the latter depicts
a periodical temporal variation of 1 s [Fig. 1(f)], which results
in a primary peak in the spectral domain localized around 1 Hz
[Fig. 1(h)]. Eigenvectors associated with the lowest eigenvalues
encode for the noise of the motion estimation, as shown in
[Fig. 1(d)].
Fig. 2 shows the averaged EE obtained in Volunteer #1 for

an incremental number of eigenvectors employed in the mo-
tion characterization and a variable number of scales included

Fig. 3. Comparison of the averaged EE over time and over both the kidney
and the liver obtained using the minimization (black) and the proposed direct
method for each tested volunteer. Direct method was tested using a single it-
eration scheme within each resolution level (dark grey) and iterating until con-
vergence (light grey), as described in Section II-C. Number of eigenvectors
selected for the representation of physiological displacements is reported for
each patient above the grey bars.

in the multi-resolution scheme. While the usage of a multi-res-
olution scheme hampered the performance of the minimization
method [see the decline between Fig. 2(e) and (g)], the oppo-
site phenomenon was observed using the direct method [see
Fig. 2(b), (d), (f), and (h)]. For this reason, a single and a four
resolution scheme were employed for the remainder of the man-
uscript for the minimization and the direct approach, respec-
tively. Using the minimization method, the lowest averaged EE
(equal to 0.6 mm) was obtained for [Fig. 2(a)]. For

, each additional eigenvectors deteriorates the quality of
the PCA representation. In contrast, using the direct method, the
averaged EE was found to decrease consistently toward 0 each
time a new additional eigenvector is included in the PCA de-
composition [Fig. 2(h)]. Identical behaviours were observed for
images acquired during the learning step (black dashed line),
as well as for images acquired during the first 40 s (red line),
80 s (green line), and 120 s (blue line) of the interventional pro-
cedure. An additional error of only mm was introduced
in the PCA representation during the interventional procedure,
due to the fact that the deformation is expressed using eigen-
vectors optimized for images acquired during the learning step.
Fig. 3 confirms the superior efficiency of the proposed direct ap-
proach for all tested volunteers. Using the direct method, results
obtained for a single iteration scheme within each resolution
level were comparable to those obtained iterating until conver-
gence (5–10 iterations were typically necessary). This demon-
strates that, given a sufficient number of iterations in the direct
method, the above-mentioned comments remain valid. It is also
interesting to report that the superiority of the direct method was
observed whatever the number of eigenvectors employed in the
minimization method.
Fig. 4 details a real-time benchmarking of the proposed

method for the calculation of the PCA motion descriptor of
an image during the interventional procedure. The required
computation time logically increases with the number of
eigenvectors considered in the PCA representation for both the
minimization [Fig. 4(a)] and the direct [Fig. 4(b)] techniques.
However, only the proposed direct method provided reduced
and regular computation times for each image and each tested
patient. It must be noted that the computation time with the
minimization method was further increased in average by
60% when the motion descriptor computed for the previously
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Fig. 4. Boxplots of the computation time required to perform the estimation of
the PCA-based motion descriptor for one image: Each box plot relates the dis-
tribution of the computation time measured on each individual image over the 2
min of acquisition and all tested volunteers. Boxplots are reported for different
number of eigenvectors conserved in the PCA representation. Results with the
minimization method (a) are compared to those obtained with the proposed di-
rect method (b). Median is shown by the central mark, the first and the third
quartile are reported by the edges of the box, the whiskers extend to the most
extreme time points which are not considered as outliers, and outliers are indi-
vidually plotted in red.

Fig. 5. Illustration of the benefit of the direct PCA-based motion descriptor
for real-time MR-thermometry: Here, thermometry artifacts caused by suscep-
tibility variation with motion are compensated online. Temperature stability
is analyzed by computing the temporal temperature standard deviation on a
pixel-by-pixel basis over the 2 min of the intervention step. Obtained maps
are compared when the minimization (a) and the direct (b) PCA representa-
tions are employed for the description of abdominal displacements in volunteer
#1. Although a moderate improvement was observed using the proposed direct
method in the kidney [arrow (1)], a reduction of thermometry artifacts by up to
3 C could be obtained in liver, especially in the upper part [arrow (2)] which
is subjected to elastic deformations. Upper bound of the temperature precision
for 75% of the liver is reported for each tested volunteer in (c). Numbers above
the grey bars recall the number of employed eigenvectors .

acquired image was not used as preconditioning for the current
motion estimation. It is also interesting to report that less than
half a second was mandatory at the end of the learning step for
the calculation of the eigenvectors using the truncated SVD
method proposed in [20]. The interventional procedure could
thus be performed in direct succession to the learning step:
Since images were updated with a frequency of 10 Hz with the
employed MR-sequence, only five images had to be discarded
at the beginning of the interventional procedure to prevent a
latency of 0.5 s.
Fig. 5 illustrates the benefit of the direct PCA-based motion

descriptor for real-time MR-thermometry: Thermometry arti-
facts caused by susceptibility variation with motion are com-
pensated online (see Section II-E4). Typical results obtained on
Volunteer #1 are reported in Fig. 5(a) and (b): Compared to the
minimization method, the direct technique improved the correc-
tion of motion related errors on temperature maps for all tested

Fig. 6. Evaluation of the impact of a local grey level intensity variation, oc-
curing during the interventional procedure, in the estimatedmotion. (a) Anatom-
ical image obtained for volunteer #3 after the simulation of a strong signal de-
crease applied in the vicinity of an artery. Two inserts show the area of interest
before (upper-left) and after (down-right) the application of the signal decrease.
(b) Averaged EE over time and over a region of 15 15 pixels centered on the
simulated heated region, for each tested volunteer. The results obtained with the
proposed direct method are compared to those obtained with the minimization
method as well as the Horn & Schunck algorithm [(1)]. Numbers above the grey
bars recall the number of employed eigenvectors .

volunteers, as shown in Fig. 5(c): The paired t-test showed that
the direct approach performed significantly better than the mini-
mization approach in both the kidney and the liver

. Although a moderate averaged improvement of
the temperature standard deviation of 0.15 C was achieved in
the kidney, this value reached 0.4 C in the liver which is more
prone to elastic deformations.
Fig. 6 analyzes the impact of a simulated local grey level

intensity variation [see the inserts of Fig. 6(a)], occuring during
the interventional procedure. The resulting averaged EE is
reported for each method and each tested volunteer in Fig. 6(b).
The ANOVA showed a statistically significant difference in
all volunteers between the averaged EE obtained with the
three tested methods . It can be observed that the
poorest performer was constantly the optical flow metric of
(1). Additional paired t-tests showed that the direct approach
performed significantly better than the minimization approach

.

IV. DISCUSSION

Compared to the existing minimization technique, the pro-
posed direct approach brings the following advantages. First,
an inherent drawback of the minimization method rises from
the fact that the computation time is dictated by the image con-
tent. This hampered the possibility to use the method for real-
time monitoring applications, in which all calculations must
be done within the interval of time available between succes-
sive acquisitions (i.e., 100 ms in the presented results). The
latency of the obtained information is also an essential condi-
tion for feedback control strategies such as for example target
tracking or automatic temperature control [14]. Over the tested
volunteers, a maximal number of eight eigenvectors were se-
lected for the characterization of physiological organ deforma-
tions using the method detailed in Section II-D. An upper bound
of 30 ms on the computation time required for the calculation
of the PCA-based motion descriptor was thus constantly en-
sured using the proposed direct approach. In practice, the image
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acquisition duration and the required data transport time must
also be taken into account to compute the latency of the ob-
tained information. For the employed test platform, a latency
of 80 ms is achievable, composed by the sum of half of the
image acquisition duration ( ms), the required data trans-
port time ( ms) and the image processing time ( ms).
In particular, this latency is in accordance with the requirement
for real-time target tracking during an MR-guided thermal ab-
lation, for which an upper bound of 100 ms is mandatory as
shown in [7]. It is interesting to note that, for each image ac-
quired during the learning step, the calculation of various mo-
tion descriptors with a number of eigenvectors ranged from 1
to 8 could be achieved within the interval of time available be-
fore the next image update. Therefore, no additional time con-
summing processings were mandatory before the interventional
procedure to compute the optimal number of eigenvectors
using the method described in Section II-D.
Secondly, the minimization approach, which relies on an it-

erative process, imposes in practice several restrictions to sta-
bilize the convergence: Possible fold-over MR-artifacts as well
as mixtures of static/dynamic parts of the entire field-of-view
and/or complex motion patterns may lead to local minima. As a
consequence, the motion estimation process has to be restricted
to a ROI, manually set at the beginning of the intervention,
which contains the full path of the targeted organ. The pro-
posed direct approach gets rid of this requirement. In addition,
using the minimization method, motion descriptor estimated for
the previously acquired image had to be used as a precondi-
tioning for the new motion estimation. Any error in the esti-
mation process of one image could consequently have a poten-
tial impact on the motion descriptors calculated during the rest
of the intervention. This is not the case anymore with the pro-
posed direct method where all processings are done individually
for each image.
Finally, the minimization method seeks the opti-

mizing a mean square error criterion between the ref-
erence and the transformed incoming image. In other words, the
image matching is in this case similar to a “visual” assessment
of the quality of the registration. Using the direct approach, the
estimation process during the interventional procedure is con-
sistent with the model employed during the learning step, which
leads to an improved PCA representation (Fig. 2). This allows
improving in turn the correction of motion related errors on
functional images (Fig. 5) and brings an improved robustness
to possible grey level intensity variations not attributed to mo-
tion (Fig. 6).
The usage of a multi-resolution scheme had an opposite im-

pact on the performance for the minimization and for the direct
methods: Since basis flows at coarse scales are subsampled ver-
sions of the eigenvectors computed at the original scale, they
may deviate slightly from orthogonality and thus be inadequate
to solve the minimization problem of (3) [see Fig. 2(g)], as re-
ported by Black et al. in [13]. This drawback is reduced using
the direct approach since, in this case, the spatial motion reg-
ularization constraint prevents such numerical instabilities [see
Fig. 2(h)]. The usage of the multi-resolution scheme was vital
for the direct method in order to address the fact that the Taylor

approximation of the Horn & Schunck formulation of (1) holds
only for small displacements. Using a single resolution scheme,
the direct method could not cope with the maximum amplitude
of the observed organ displacements [see Fig. 2(a)], which were
substantially bigger than the pixel size (10 mm 4.5 and 11mm
4.5 were observed in the kidney and the liver, respectively).
It is interesting to note that such a real-time characterization

of physiological motion contributions opens great perspectives
for the correlation of the motion descriptor with external sensors
[5], [6], [21]: The efficiency of the estimated organ deforma-
tion may be assessed by evaluating the coherence of the PCA
descriptors with those independent motion informations. That
way, the interventional procedure may immediately be stopped
once incoherent patterns are identified in order to ensure the se-
curity of the patient.
It must be pointed out that several shortcomings persist for

both minimization and direct methods. First, the evaluation was
conducted on healthy subjects and the potential extension must
still be assessed for patients whose physiological activities are
likely to be less periodic and reproducible. It must be under-
lined that the proposed correction is not entirely constrained
to positions present in the collection, as it can also interpolate
intermediate positions. However, the observation of a signifi-
cant deviation of the learned motion pattern may lead to a com-
plete re-calibration when the change is not reversible. More-
over, the proposed technique is clearly limited in case of new
observed positions during the interventional process, for which
the learned motion pattern is insufficient. A combination of the
method with a correction adapted for spontaneous motion (such
as that described in [18]) should thus be investigated in future
work. Secondly, the effect of through plane motion is a serious
limiting factor: Although the motion trajectory of the kidney
and the lower part of the liver can be approximated in first order
by a linear shift, the true trajectory in the upper part of the
liver is a curve in 3-D space. A dynamic 3-D imaging would
be optimal but the MR-acquisition is currently not fast enough
to achieve the temporal resolution required to avoid intra-scan
motion. Two strategies may be investigated: 1) additional infor-
mation in the third dimension, such as navigator echoes, may be
used in combination with adaptive slice tracking as proposed in
[7], [21]; 2) 3-D trajectories may be estimated from 2-D MRI
using one or several volumetric scans obtained before the inter-
vention, as shown in [22]–[24].

V. CONCLUSION

This paper proposes a real-time PCA-based method which
provides an efficient quantitative description of physiolog-
ical organ deformations, with an improved steady latency,
during a period of 2 min. The effectiveness of the method was
demonstrated for real-time MR-thermometry application: An
improved correction of motion related artifacts was obtained
with an increased robustness to local grey level intensity vari-
ations not attributed to motion. For this purpose, a reduced
learning step of 10 s was mandatory and no patient-specific
control parameters needed to be set, which renders the method
suitable for clinical use.
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APPENDIX A
PCA ANALYSIS AND BASIS SENSITIVITY

In this Appendix, we will denote by (resp. ) the spatial
PCA compact associated to the optical flow obtained during the
learning step of images and the interven-
tional step , respectively. Similarly, we de-
note by (resp. the orthonormal basis
of the operator (resp. ). The error estimates of the PCA
representation during the learning and the interventional

steps can be computed using

with and as .
However, in our context, we would like to expand the use the

learning step basis to the interventional procedure.
The error of the PCA representation during the interventional
procedure can be expressed as follows:

(11)

In this case, we still have an error decrease with respect to the
number of terms ( as ), but the estimate

does not hold true and consequently the convergence speed of
the approximation (11) is lost. On the other hand, the sensitivity
of the PCA basis , due to the clustering of the cor-
responding eigenvalues, can lead to bad estimates of the coeffi-
cients in the following expansion:

(12)

More precisely, the authors showed recently in [25] the fol-
lowing result: For every , it holds

(13)
and

(14)

where (resp. ) is the closest eigenvalue among all eigen-
values which are smaller (resp. larger) than . Note that this
result is very classical when the eigenvalue is simple and we
can refer the interested reader to [26], [27]. The general case
of multiple eigenvalues is studied in [25], [28]. The estimate

of (14) is optimal in the sense that equality holds true in gen-
eral situations. Moreover, when the eigenvalues and
cluster, the eigenvector is very sensitive and its use in
the approximation of requires an acute computation of
the corresponding coefficient.
In the current paper, it is shown that local minima in the min-

imization method employed in [12], [13] will induce bad esti-
mates of the coefficients and hence sensitivity phe-
nomena, described by (14), will arise if we try to consider sev-
eral eigenvectors in the basis , for a good repre-
sentation of the movement.

APPENDIX B
ESTIMATION OF ORGAN DISPLACEMENT USING OPTICAL-FLOW

The RealTITracker toolbox1 provided 2-D motion estimates
using the optical flow metric of (1). A multi-resolution scheme
was employed. To ensure the convergence of the algorithm,
the averaged variation of the estimated motion amplitude was
compared to a maximal allowed tolerance of pixels. The
reader is referred to [29] for a complete analysis of the impact
of the value on the outcome of the optical flow metric: While
an increased value intrinsically improves the robustness
against low SNR values, it also limits the estimation of elastic
deformations. A compromise must consequently be found. In
[29], the accuracy of the motion estimates was assessed ex vivo
using gold standard displacements provided by external sen-
sors, and in vivo using gold standard landmark points manually
positioned and tracked by a staff scientist. For the employed
implementation and the used MR-acquisition sequence, it was
shown that any value in the range of 0.3 and 0.5 for provided
tracking performances within the gold standard precision for

of 10–15. A fixed value of 0.4 was consequently em-
ployed in the current paper.
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