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Abstract—System designs in single photon emission tomog-
raphy (SPECT) can be evaluated based on the fundamental
trade-off between bias and variance that can be achieved in the
reconstruction of emission tomograms. This trade off can be
derived analytically using the Cramer-Rao type bounds, which
imply the calculation and the inversion of the Fisher information
matrix (FIM). The inverse of the FIM expresses the uncertainty
associated to the tomogram, enabling the comparison of system
designs. However, computing, storing and inverting the FIM is not
practical with 3-D imaging systems. In order to tackle the problem
of the computational load in calculating the inverse of the FIM,
a method based on the calculation of the local impulse response
and the variance, in a single point, from a single row of the FIM,
has been previously proposed for system design. However this
approximation (circulant approximation) does not capture the
global interdependence between the variables in shift-variant sys-
tems such as SPECT, and cannot account e.g., for data truncation
or missing data. Our new formulation relies on subsampling the
FIM. The FIM is calculated over a subset of voxels arranged in a
grid that covers the whole volume. Every element of the FIM at
the grid points is calculated exactly, accounting for the acquisition
geometry and for the object. This new formulation reduces the
computational complexity in estimating the uncertainty, but
nevertheless accounts for the global interdependence between
the variables, enabling the exploration of design spaces hindered
by the circulant approximation. The graphics processing unit
accelerated implementation of the algorithm reduces further the
computation times, making the algorithm a good candidate for
real-time optimization of adaptive imaging systems. This paper
describes the subsampled FIM formulation and implementation
details. The advantages and limitations of the new approximation
are explored, in comparison with the circulant approximation, in
the context of design optimization of a parallel-hole collimator
SPECT system and of an adaptive imaging system (similar to the
commercially available D-SPECT).

Index Terms—D-SPECT, emission tomography, Fisher informa-
tion, reconstruction image quality, system design.
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I. INTRODUCTION

O PTIMIZATION of the system design in single photon
emission tomography (SPECT) is a difficult problem due

to the computational complexity and to the challenges in the
mathematical formulation. In recent years there has been an in-
creasing interest in optimizing system designs prospectively, by
computer simulation, at low computational cost. Such optimiza-
tion problems include the choice of a particular type of detector
and collimator and tuning of their parameters, as well as the
choice of the number of cameras and their position. While such
class of design optimization problemsmay be referred to as hard
optimization, the development of adaptive SPECT systems has
introduced a second class of soft optimization problems, where
the parameters of the imaging system may be modified during
acquisition, in order to image certain desired properties of the
underlying object and to adapt to the imaging conditions.
In the probabilistic framework, a reconstruction algorithm

provides an estimate of the radioactivity distribution. Such es-
timation is uncertain, due to the limited amount of information
that the scan may acquire. Characterization of the uncertainty
associated with the measurement of activity enables the com-
parison of system designs.
A SPECT imaging system can be evaluated based on its per-

formance for a specific imaging task, such as in lesion detection
[29]–[34]. Task specific system optimization strategies have
been defined and explored by Barrett et al. [28]. In these studies
the image quality assessment is based on the performance of
human and numerical observers in classification, such as the
detection of a certain class of tumors. However, optimization
criteria that are not dependent on specific classification tasks
are advisable in order to design systems that perform well in a
number of possibly unforeseen tasks.
SPECT systems may also be evaluated based on the fun-

damental trade-off between bias and variance that can be
achieved in the reconstruction of emission tomograms [20],
[1], [2], [4]. Such tradeoffs may be derived analytically using
the Cramer-Rao type bounds [9], [18], [19] which imply the
calculation and the inversion of the Fisher information matrix
(FIM). In the following we employ the FIM formalism to char-
acterize the uncertainty in the reconstruction. Unfortunately,
computing, storing and inverting the FIM is not feasible for the
typical matrix size of 3-D imaging systems.
In order to tackle the problem of the computational load in

inverting the FIM, an approximation has been previously pro-
posed. Qi et al. [5] argued that if we are only interested in cal-
culating the properties of an estimator in a single voxel , it is
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acceptable to ignore the nonstationarity of the FIM. The com-
putations are done for voxel , and therefore only the th row
of the FIM needs to be calculated. This local approximation of
the FIM, is obtained by replacing all rows of the FIM with the
shifted version of its th row and then by inverting this shift-in-
variant matrix in order to estimate the variance in each voxel
. Consequently, the FIM simply reduces to a circulant matrix
and this approximation is referred to as the circulant approxi-
mation. Using the circulant approximation, in order to estimate
the variance in the whole imaging volume, calculations must be
therefore be performed for each voxel independently.
However, since the tomographic imaging system measures

the integral along lines that traverse the entire imaging volume,
the estimate of the activity in a given voxel and its uncertainty
are related to the estimate and to the uncertainty in every other
location. Since, however, in a SPECT system with parallel hole
(PH) collimators, the counts in the detector bins, are the expres-
sions of the integral of the emitted photons originating from a
conical volume (and not simply from a line), the interdepen-
dence between the voxels becomes even more complex. The
full FIM accounts for such complex interdependence between
all the voxels in the imaging volume of shift-variant systems
such as SPECT; whereas the aforementioned circulant approxi-
mation makes use of a single row of the FIM and does not cap-
ture such interaction (see Section V).
In this paper, we introduce a novel algorithm for efficient es-

timation of the uncertainty in the reconstruction, based on the
FIM formalism. Our new formulation relies on subsampling the
FIM. The FIM is calculated over a subset of voxels arranged in
a grid that covers the whole volume. Every element of the FIM
at the grid points is calculated exactly, accounting for the ac-
quisition geometry and for the object, without further approx-
imation. This new formulation, presented in Section II-C, re-
duces the computational complexity in inverting the FIM but
nevertheless accounts for the global interdependence between
the variables.
The aim of this paper is to describe the new approximation

and to explore its use for the optimization of SPECT systems;
emphasizing how it enables us to explore the design of highly
shift variant systems (as a result of distance dependent resolu-
tion, data truncation or adaptive data sampling). Such systems
include the standard rotating camera with parallel hole colli-
mator and an adaptive system for cardiac imaging, similar to
the commercially available D-SPECT.
This article is organized as follows. Section II-A describes the

measurement model and the reconstruction model. Section II-B
presents a deterministic method for the estimation of the un-
certainty in the reconstruction based on the FIM formalism.
Section II-C introduces the new methodology for approximate
and efficient calculation of the FIM. Section II-D describes in
detail the efficient implementation of the algorithm for the cal-
culation of the FIM. Section II-E introduces a figure of merit
for the estimation of the image quality (based on the funda-
mental trade-off between bias and variance) and its application
to system design. Section II-F summarizes the reference statis-
tical method for the calculation of the uncertainty. The statis-
tical method involves the reconstruction of a large number of
noise realizations of the same projection data set and is therefore

very time consuming. Section III describes several simulation
studies, with the purpose of illustrating our novel methodology.
We show how our new algorithm applies to the optimization of a
parallel hole collimator for SPECT and how it can be employed
to evaluate the reconstructed image quality in the case of trun-
cated projection data and for different acquisition protocols for
the D-SPECT system. In order to illustrate the reliability of our
approximation, all the results presented in this paper are com-
pared with the reference statistical method andwith the circulant
approximation method. Moreover, we evaluate the effect of the
choice of the subsampling scheme for the optimization of the
parameters of the aforementioned imaging systems. The results
are presented in Section IV and discussion of the usefulness and
limitations of the algorithm are presented in Section V.

II. METHODS

A. Measurement Model and Reconstruction Model

The 3-D continuous function expressing the rate of emis-
sion of -radiation is discretized using a voxel basis, where

denotes the vector of emission rates, un-
derlying the projection measurements . Let
and denote the in-plane coordinates, represents the axial

coordinates of the discretized volume, denote the
number of voxels along each direction and

denotes the total number of voxels. The probability to ob-
serve measurements when the emission rate is , is expressed
by the conditional probability distribution function . In
emission tomography, the projection measurements , when
is known, can be described as the realization of independent
random Poisson processes, whose expected outcomes are given
by the following discrete linear model:

(1)

(2)

the matrix is the systemmatrix whose elements
represent the probability that photons emitted from voxel are
detected in detector unit . The system matrix models the prop-
agation and detection of unscattered photons, encompassing the
depth-dependent response of the collimator, the position-depen-
dent geometric efficiency, the scanning pattern of the detectors,
and attenuation through the propagating medium. In this model,
we do not take into account the contribution of scattered pho-
tons, though the system matrix may, in principle, encompass
scatter events.
An estimator is a rule for calculating an estimate of the un-

known variable (the radio-pharmaceutical density ) given the
observations (the photon counts ).
In the case of emission tomography, where the conditional

probability distribution associated with photon counting is
Poisson distributed with expectation

(3)
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the maximum a posteriori (MAP) estimate consists in selecting
the value of the unknown variable that maximizes the following
cost function:

(4)

where the log likelihood function , is given by

(5)

In this paper, we restrict the discussion to the quadratic penalty
function , where is the Hessian of the
space-invariant penalty used for regularization and is the reg-
ularization parameter.

B. Estimation of the Uncertainty in the Reconstruction: The
Fisher Information Matrix

In this section, we summarize the deterministic approach for
the estimation of the uncertainty in the reconstruction. Closed
form analytical expressions of the statistical properties (such as
mean and variance) of the MAP estimator defined in the pre-
vious section are unavailable. The absence of an explicit ana-
lytical expression makes it difficult to study the noise properties
of the estimator , except through numerical simulations (see
Section II-F).
A SPECT systemmay be evaluated based on the fundamental

bias variance trade-off of the estimator and one would like to be
able to easily study the estimator characteristics over a range
of system parameters. In such cases, numerical simulations can
be prohibitively expensive and therefore it is useful to have ap-
proximate expressions of the covariance of the MAP estimator.
The distribution of the MAP estimates is approximated by a

Normal distribution, parameterized by the covariance matrix .
Under such approximation, Fessler has derived the expression
of for the log-likelihood function of the Poisson model [11].
Using the first-order Taylor series approximation of (4) around
the MAP estimate and then applying the chain rule, we can
derive the covariance matrix of the MAP estimator to be

(6)

where is the FIM of the likelihood. Differentiating the loga-
rithm of the Poisson imaging model (3) [8]

(7)

where the variance of the th measurement has been substi-
tuted with the noiseless projection data .

C. Efficient Calculation of the Fisher Information Matrix: A
Subsampled Version of the FIM

In the previous section, we have described how the FIM can
be employed to characterize the uncertainty of the reconstruc-
tion. Unfortunately, computing the FIM inverse is intractable

since we are dealing with a large matrix of size
.

A computationally efficient approximation in calculating the
inverse of the FIM has been previously proposed for the design
of space-variant penalties that yield to space-invariant impulse
response functions [15], [16], [5]. Qi et al. [5] argued that if it is
reasonable to assume that the FIM varies slowly with position
and if one is interested in calculating the effects of a quadratic
prior in terms of bias and variance in a voxel , then it is accept-
able to ignore the shift-variance of the FIM. The computations
are done for voxel and therefore only the th row of the FIM
needs to be calculated. This local approximation of the FIM is
obtained by replacing all rows of the FIM with the shifted ver-
sion of its th row and then by inverting this shift-invariant ma-
trix in order to estimate the variance in each voxel . This ap-
proximation is referred to as the circulant approximation, since
it simply reduces the FIM to a circulant matrix. This makes the
computations in (6) tractable as a circulant matrix can be di-
agonalized using a discrete Fourier transform (DFT). It is then
possible to rewrite the formulas of the covariance for a voxel
in Fourier domain as [15]

(8)

where denotes element-by-element multiplication and the di-
vision is an element-by-element division; is the unit basis
vector for the voxel . The function takes the DFT of its
argument and produces a diagonal matrix whose diagonal
entries are the reciprocal of the noiseless projection data .
The complex exponentials, represented by the term ,
incorporate the appropriate shifts so that the covariance func-
tion is “centered” at location . From (8) we can see how the
approximated estimate of for a single voxel position “can
be computed with a projection, a backprojection and a few fast
Fourier transforms” [20]. The aforementioned method is well
suited for the calculation of the uncertainty for systems whose
response can be approximated as shift-invariant; or in the case
one wants to estimate the local effects that a penalty function
has on bias and variance. However this method does not ac-
count for the global interdependence between the estimates in
all the voxels and therefore can not incorporate the effects of
long-range correlations (e.g., evaluation of the effects of data
truncation or missing data).
In this paper, we propose a different approach for calculating

the inverse of the FIM. This formulation reduces the compu-
tational complexity in inverting the FIM but nevertheless ac-
counts for the global interdependence between the variables.
The FIM is calculated over a subset of the voxel indexes

arranged in a grid that covers the whole volume. We
define a subsampled version of the FIM calculated over a subset
of the full set of parameters

(9)

This is equivalent to saying that, in the estimation of the co-
variance, we are accounting for the interdependence between a
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Fig. 1. Example of grids for the estimation of the uncertainty. (a) Grid ac-
counts for the correlation between every point in the imaging volume (full FIM).
(b) Grid accounts for the correlation between 1/8 of the voxels in the imaging
volume (subsampled FIM). (c) Central plane of the grid displayed in (a). (d)
Central plane of the grid displayed in (b).

subset of voxels only, assuming that, for the remaining
voxels , the MAP estimate is equal to the true value
of .
The approximate analytical calculation of the covariance is

simply obtained by substituting the FIM with its subsampled
(9) version in the definition of the covariance matrix presented
in (6)

(10)

The number of elements in the full FIM equals , whereas the
number of elements of the subsampled FIM equals ; there-
fore reducing the computational burden in inverting the subsam-
pled FIM.
The Hessian of the quadratic penalty is not dependent on
and therefore can be precalculated. Analogously to , the

subsampled version of the quadratic penalty is obtained by
selecting the elements of the matrix that correspond to the
points in the grid.
Two examples of grids are pictured in Fig. 1, for a small

imaging volume of 6 6 6 voxels. In Fig. 1(a), the grid
accounts for the interdependence between every point in the
imaging volume, in Fig. 1(b), the grid accounts for the inter-
dependence between 1/8 of the voxels in the imaging volume.
This model allows the user to design the grid and therefore to
define the degree of approximation in the calculation of the
FIM. In Section V, visual representations of the FIM and of the
covariance matrix are presented for the full FIM, the subsam-
pled FIM, and the circulant approximation. A discussion on
how the missing FIM entries between the grid points affect the
accuracy of the results is also presented in Section V.

D. GPU Accelerated Implementation

Every element of the FIM at the grid points is calculated ex-
actly, accounting for the acquisition geometry and the object
without further approximation. If the grid has nodes, the
FIM is of size and symmetrical, so filling the matrix
requires the computation of elements.
Naive computation of the FIM requires one projection for the
denominator of (9) and sums of products (SOPS) for each
of the elements of the half FIM. The
proposed algorithm is inspired by the rotation-based algorithm
proposed by Zeng and Gullberg [6]. The collimator-detector re-
sponse is captured by a depth dependent point spread function
(PSF). Information being additive over the detector bins, the
FIM element is the sum of contributions from the
camera positions indexed with . The algorithm
is based on interpolation of the activity and of the FIM grid on
a regular grid aligned with each camera. By reinterpolating the
activity and the FIM grid on a regular grid, the PSF can be ap-
plied more efficiently in the frequency domain as all points that
are at a given distance lie on the same plane. The PSF is nonzero
within a box (see Fig. 2). The algorithm for the evaluation of
the elements of the FIM consists of the following steps.
1) Compute projection of for each camera position.
2) Compute FIM elements for each camera position.

a) Re-sample the FIM grid positions on the voxel grid
parallel to the camera by tri-linear interpolation.

b) For each pair of points in the FIM grid.
i) Compute coordinates of the box , on the
camera plane, where the two PSFs in-
tersect (if they intersect).

ii) If and intersect, update the FIM element
by integrating (9) over the intersection box .

The algorithm is implemented in the CUDA programming lan-
guage for parallel execution on graphics processing unit (GPU).
Tri-linear resampling is performed in hardware by the texture
fetch unit of the GPU at the cost of a single memory access. Co-
alesced memory access is achieved by partitioning the memory
transfers in blocks. The convolutions are calculated with the
2-D-FFT and IFFT routines included in the NVidia CUFFT
library. A tailor made GPU kernel computes the projection (sum
of planes) with high device occupancy and maximizes memory
coalescing. A second kernel computes the integral in each inter-
section box (2-b-ii): each GPU thread computes the integral (for
the current camera position), for a pair of points in the grid, so
that the integrals formultiple pairs are evaluated concurrently on
the multi-processors of the GPU. Each thread decides if the two
PSFs intersect, then it loads from the global memory of the GPU
device the sections of the PSFs that intersect and the projection
data in the area of intersection (see Fig. 2). Finally, the thread
computes the integral (2-b-ii) in the intersection box. After
completion of the partial FIM for a single camera, the process is
repeated for another camera, accumulating the elements of the
FIM, as, according to (9), information is additive. Computation
times are reported in Table I. TheGPU-accelerated algorithm for
the computation of the FIM has been integrated in the Niftyrec
reconstruction software toolbox [21] and has MATLAB and
Python interfaces which enable real time scripting interaction
and full flexibility in the definition of the grid.
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Fig. 2. Rotation-based algorithm for fast computation of the FIM: 3-D schematic representation. Algorithm: 1) for each Gamma camera (grey plane) position, the
activity is resampled on a regular grid parallel to the camera plane and projected; 2) the grid points (yellow spheres) for the FIM are reinterpolated on the same
parallel grid; 3) for each pair of points in the FIM grid, the FIM element is updated with the information relative to the current camera, which only depends on the
region of the projection (black square) where the two PSFs (red square) and (blue square) intersect.

TABLE I
COMPUTATION TIMES FOR THE CALCULATION OF THE FIM AND ITS INVERSE

E. Image Quality Quantification for System Design

In this paragraph, we introduce a figure of merit for SPECT
system design based on the trade-off between the bias and the
variance that can be achieved in the reconstruction of emission
tomograms.
Under the assumption that the system matrix in (2) is non-

singular and imposing in (4), the maximum likelihood es-
timator is asymptotically efficient and asymptotically unbiased.
One approach to system design, for the unbiased estimator, is
to choose the parameters of the imaging system that would pro-
duce the least error (minimum variance) in the asymptotic case.
This simply involves the inversion of the FIM, to obtain the co-
variance of the estimator, and is referred to as the Cramer-Rao
bound.
However, such approach is problematic because, in practice,

the full rank property of the system matrix (nonsingularity) is
quite difficult to verify. This problem is addressed by including
the regularization penalty of (4) that leads to a strictly convex
cost function and makes in (6) invertible. However
bias is unavoidable for penalized estimators, so the unbiased
Cramer-Rao bound is not applicable.
The approach that is widely used in emission imaging is to

define a local measure of the bias and to consider the trade-off
between bias and variance for the optimization of the system.
The MAP estimator is nonlinear in the projection data and the
properties of the estimator are object dependent. Therefore, we
study the bias properties of the estimator locally using the linear
local impulse response (LLIR) for the th voxel [10] (which in
the following is referred to as Bias gradient as in [9])

(11)

This can be approximated using the implicit function theorem,
the Taylor expansion, and the chain rule as in [11]

(12)

In [9], a particular type of MAP estimator including an
appropriate space-variant quadratic smoothing prior has been
shown to achieve the uniform Cramer Rao bound (UCRB)
[9]. However, the space-invariant prior further contributes to
space-variance in the bias gradient [15]. Therefore, including
and designing an appropriate space-variant penalty function
lacks practical justification for the optimization of the design
of the imaging system.
To enable comparison between different systems at equal bias

gradient, we rely on an adaptation of (10) and (12) where a
postsmooth filter is added to the equations

(13)

(14)

The penalty function with a small regularization parameter
is included with the only purpose of making the cost function
strictly convex. Therefore, the bias property of the estimator is
mainly determined by the filter function . In order to compare
different systems, we first define a target bias gradient func-
tion as an isotropic Gaussian [described by its full-width
at half-maximum ( )]. Consequently, for every system,
an anisotropic postsmooth filter is designed, so that the bias
gradient in (14) matches the target isotropic Gaussian func-
tion . Designing a specific postsmooth filter for every system
under investigation, the noise properties of the estimator can be
compared at equal spatially uniform bias gradient. The method-
ology applied for the design of the postsmooth filter is presented
in Appendix A. For more details on how this method compares
with UCRB methods, see [18].
We can now reduce (13) and (14) to a scalar measure by

taking into account only the variance and the contrast recovery
coefficient (CRC) for the voxel , whichwe define as
and (the CRC can be seen as an alternative to the



FUIN et al.: EFFICIENT DETERMINATION OF THE UNCERTAINTY FOR THE OPTIMIZATION OF SPECT SYSTEM DESIGN 623

FWHM as a measure of bias [5]). Thanks to the fixed resolution
after postsmoothing, the CRC should be more or less constant;
the only parameter to optimize then is the variance. In the rest
of this paper, however, we consider the contrast-to-noise ratio
(CNR) in voxel as figure of merit for image quality

(15)

F. The Statistical Method for the Calculation of the
Uncertainty in the Reconstruction

The following reference method was adopted to calculate the
uncertainty of the estimation. We can characterize the statistical
error in the estimation as the variance of , computed over
a very long series of independent experiments, where the ex-
pected measurement values are kept fixed, while the noise is
sampled from the Poisson distribution. If we consider the hypo-
thetical case where we perform an infinite sequence of experi-
ments, iterating to convergence the algorithm used to maximize
theMAP objective function, we obtain estimates that are asymp-
totically normally distributed. In Section IV we show how, as
the number of noise realizations increase, the covariance closely
resembles the approximated calculation obtained from (10).

III. EXPERIMENTS

In the following, we explore the use of the approximate an-
alytical method described in Section II-C for the optimization
of the design of SPECT systems. The results obtained with the
approximate analytical method are compared with the circulant
approximation and with the reference method based on the re-
construction of multiple noise realizations Section II-F. Before
this analytical approximation can be applied routinely to eval-
uate and optimize a SPECT system design, we perform four sets
of experiments in order to validate our approximated calculation
of covariance (10) and bias gradient (12) in comparison with
reference method based on the reconstruction of multiple noise
realizations (Section II-F).
For the reference method, a series of independent noise

realizations were computed using a pseudo-random Poisson
noise generator (of the IRT toolbox [40]), based on the rejection
sampling algorithm described in [41, p. 293]. The noisy data
sets were reconstructed using an accelerated GPU implemen-
tation of the One Step Late algorithm for MAP estimation,
implemented as part of the NiftyRec toolbox [21]. 10 000
iterations were performed. A smoothing prior with a small
weight was included in the cost function. The value
of the regularization parameter was chosen after trial and error,
as a minimum value that guarantees convergence within 10 000
iterations, as we can see in Figs. 3–5 where the log-likelihood
is plotted as a function of the number of iterations. The calcu-
lation of the variance is based on 10 240 noise realizations. The
number of noise instances is a multiple of 1024 (10 times) as
NiftyRec can process concurrently up to 1024 reconstructions
in order to make efficient use of the GPU. Ten repetitions
were chosen in order to obtain satisfactory images of variance.
Though often variance is calculated with much smaller sample
size and number of iterations, we found that such large numbers
are necessary to obtain a good estimate of the variance.

Fig. 3. Log-likelihood curves as a function of number of iterations. Dif-
ferent curves represent the log-likelihood for different collimator apertures:

mm to mm (from dark gray to light gray
). All the curves are scaled with respect to their maximum value.

Fig. 4. Log-likelihood curves as a function of number of iterations. Different
curves represent the log-likelihood for different levels of truncation. Truncation
is caused by a limited detector size. FOV diameter varies from to

(from dark gray to light gray ). All the curves are scaled with
respect to their maximum value.

Fig. 5. Log-likelihood curves as a function of number of iterations. Dif-
ferent curves represent the log-likelihood for different scanning patterns of a
pD-SPECT system. Scanning pattern is defined by its time ratio which varies
ranging from , to (from dark gray to light gray ). All the
curves are scaled with respect to their maximum value.

For the analytical method, the subsampled version of the FIM
has been calculated over three different grids of

and points equally distributed over
the slice intersecting the point [or region of interest (ROI)]
of interest and the two neighboring slices. We have observed
that including more than three slices did not change the results
of our experiments in case of full, subsampled, or circulant
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Fig. 6. (a) Position of pD-SPECT detectors. (b) Angular movement of a single
pD-SPECT detector. Angular span of the FOV: . Angular span of the
ROI: .

FIM, since the dependence across slices vanishes quickly
with distance along the axis of rotation. Therefore, we have
decided to use three slices, in the experiments that follow, for
computational convenience. It should be noticed that grid is
fully sampled over the three slices of interest and therefore, in
the following, the FIM with grid will be referred to as the
full FIM. The variance images in Fig. 7(b)–(d), Fig. 8(b)–(d),
Fig. 9(b)–(d), Fig. 12 (second, third columns), are obtained by
reordering the diagonal of the covariance matrix calculated
as in (10). For the full FIM , the diagonal of is simply re-
shaped to a 3-D matrix, whereas for grids and every point
of the diagonal of is allocated to the respective points of
the grid in the imaging volume. A trilinear interpolation is then
performed in order to facilitate the visual comparison between
the variance images obtained with the different grid models.
It should be noticed that a direct interpolation on can not
be performed. Variance images obtained with the circulant
approximation are also presented for comparison. Every pixel
of the images in Fig. 7(e), Fig. 8(e), Fig. 9(e), Fig. 12 (fourth
column), is calculated according to (8). A more closely spaced
grid gives a more precise estimation of the variance but at the
cost of increased computational complexity of the estimation.
The computation time needed to calculate the FIMs and their
inverse are presented in Table I.
We performed four different sets of experiments with dif-

ferent software phantoms and different system models. In
Section III-A1, the calculation of the variance obtained from
the approximated analytical method (10) is validated for a real-
istic phantom. In Section III-A2, we employ the approximated
calculation of the covariance (10) and bias gradient (12) for
the optimization of the collimator aperture. A key challenge
in SPECT system design is the achievement of a reasonable
trade-off between resolution and detection efficiency. In order
to prove the reliability of the proposed approximation, we show
that different subsamples of the FIM yield the same optimal
collimator aperture. In Section III-A3, in order to emphasize
the benefits of the proposed approximation of the FIM with
respect to the circular approximation, we investigate how it
can be employed to calculate the reconstructed image quality
in the case of region-of-interest reconstruction from truncated
projection data. In Section III-B1, we employ the proposed
novel algorithm for the optimization of the camera trajectory

in an adaptive SPECT system. This experiment is also meant
to highlight the performance of the new method when used for
optimization of systems with a highly shift-variant response,
in comparison with other methods for the calculation of the
uncertainty, such as the circulant approximation. In the first
three experiments (Sections III-A1 –III-A3) we simulate the re-
sponse of a standard SPECT system, whereas in Section III-B1
we simulate the response of an adaptive system similar to the
commercially available D-SPECT system [12]. A description
of the two different systems is presented in the following.

A. Circular Camera Trajectory: The SPECT System

The SPECT system is based on a detector system of size
236.16 mm 236.16 mm. The detector rotates over 360 at
a regular angular step of 2 around the center of the imaging
volume. The imaging volume dimensions are 96 96 12
cubic voxels of 2.4 mm. Photon counts are binned on a grid
of 96 96 pixels of 2.46 mm and the detector is placed at a
distance of 133 mm from the center. We consider a parallel
hole collimator consisting of a 2-D array of square holes with
septa thickness mm, hole diameter , and length .
The diameter and the length of the hole are left unknown since
they define the collimator aperture. The collimator aperture is
characterized by the point spread function (PSF). The PSF for
the parallel hole collimator is here described with the analytical
depth-dependent model described by Anger [27]. This model
expresses the FWHM of the Gaussian at location as

(16)

where is the distance between and the de-
tector plane, and is the total linear attenua-
tion coefficient of the collimator material ( cm for
lead at a photon energy of 140 keV). This formula was modified
from that presented by Anger [27], by considering that the colli-
mator septa length, , should be reduced on both ends by approx-
imately due to penetration effects [36]. We use the acronym
FWHM (without argument ) to denote the collimator
aperture that corresponds to the center of the image space. The
detector efficiency of a collimator system is closely related
to the collimator aperture and can be defined as the fraction of
photons, emitted by a point source in the volume, that are de-
tected in the detector bins if there is no attenuation. For the PH
collimator with square holes, is estimated as

(17)

The geometric efficiency is then proportional to the FWHM of
the PSF and is assumed to be independent of position. In this
study we assume that the detectors have a perfect absorption
efficiency and a perfect intrinsic detector resolution.
1) NCAT Phantom: The first experiment is performed simply

to validate the analytical method with a realistic phantom. The
phantom used for this experiment was a heart phantom (NCAT)
[35]. The activity within the phantom was kBq/cm in
the left and right ventricle myocardium, kBq/cm in
the left and right ventricle chamber, kBq/cm in the
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Fig. 7. SPECT: variance images for the NCAT phantom obtained with a standard SPECT system. (a) Reference method (variance image obtained from the recon-
struction of 10240 noisy projection data sets). (b) Full Fisher Information-based method with grid . (c) Subsampled Fisher Information based method with grid
. (d) Subsampled Fisher Information based method with grid . (e) Variance image obtained with the “Circulant Approximation” method. (f) Variance profiles

at the center of the heart: reference method (black line— ), grid (blue line— ), grid (red line— ), grid (green line— ), circulant (cyan line— ).

Fig. 8. SPECT: variance images of a uniform sphere obtained with a standard SPECT system. (a) Reference method (variance image obtained from the recon-
struction of 10240 noisy projection data sets). (b) Full Fisher Information-based method with grid . (c) Subsampled Fisher Information based method with grid
. (d) Subsampled Fisher Information based method with grid . (e) Variance image obtained with the “Circulant Approximation” method. (f) Variance profiles

at the center of the heart: reference method (black line— ), grid (blue line— ), grid (red line— ), grid (green line— ), circulant (cyan line— ).

Fig. 9. SPECT interior tomography: variance images for a uniform sphere phantom obtained with truncated projection data with FOV diameter . (a)
Reference method (variance image obtained from the reconstruction of 10240 noisy projection data sets). (b) Full Fisher Information-based method with grid .
(c) Subsampled Fisher Information based method with grid . (d) Subsampled Fisher Information based method with grid . (e) Variance image obtained with
the “Circulant Approximation” method. (f) Variance profiles at the center of the heart: reference method (black line— ), grid (blue line— ), grid (red
line— ), grid (green line— ), circulant (cyan line— ).

lungs and kBq/cm in the background. The collimator
hole diameter is mm, collimator hole length mm,
and collimator aperture has mm.
2) Optimal Collimator Aperture: The second experiment is

performed to derive the relation between the optimal collimator
aperture and the target resolution . The phantom
used was a uniform sphere positioned at the center of the image
space, with diameter mm. The activity in the sphere
was set to kBq/cm and in the background it was set to

kBq/cm . During the experiment the collimator aper-
ture varies from mm to mm.
The target resolutions are set to and 16 mm.
The CNR for the central point of the sphere is calculated as
in (15).
3) Truncated Projection Data: In this experiment we inves-

tigate the effect on image variance for region-of-interest recon-
struction from truncated projection data. Truncation is caused
by a limited detector size. Only a certain number of detector
bins are used to measure data. Note that the field-of-view
(FOV) in this truncation situation forms a cylinder whose ra-

dius depends on the level of truncation. The phantom was a
uniform sphere positioned in the center of the image space,
with diameter mm. The uniform background was a
cylinder positioned in the center of the image space, with radius
106.3mm and height 29.5mm. The activity in the sphere was set
to kBq/cm and to kBq/cm in the background.
The size and the position of the sphere has been chosen in order
to have the sphere always in the FOV, whereas the activity in the
background is gradually more and more outside the FOV with
increasing truncation level. During the experiment, the FOV di-
ameter varies from to (from 236.2 mm to
39.4 mm). We calculate the variance for a plane intersecting the
central point in the sphere and the CNR for a voxel positioned
in the center of the sphere.

B. Effect of the Acquisition Trajectory on the Uncertainty of
the Measurement: The Adaptive SPECT

The trajectory of the gamma camera has a profound effect on
the overall uncertainty of the measurement and on how the un-
certainty is distributed throughout the imaging volume. Moving
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Fig. 10. SPECT: CNRs for different collimator apertures (from
mm to mm), obtained with the reference method (black

line— ), with the method based on the Fisher Information with grid (blue
line— ), with grid (red line— ), grid (green line— ) and with the
circulant approximation method (cyan line— ). Optimal collimator apertures
are calculated for target resolutions mm (a), 14 mm (b), and 16
mm (c).

Fig. 11. SPECT interior tomography: CNR for different levels of truncation
for a voxel in the center of the sphere. FOV diameter (from left to right)

. Black line —CNRobtainedwith the referencemethod. Blue line
—CNR obtained with full FIM method with grid . Red line —CNR

obtained with subsampled FIM method with grid . Green line —CNR
obtained with subsampled FIM method with grid . Cyan line —CNR ob-
tained from the circulant approximation method.

the camera along a circular trajectory at constant speed around
the center of the imaging volume produces, intuitively, optimum
retrieval of the information when the object is (roughly) uniform

and the PSF ideally not depth-dependent. Changing the trajec-
tory, just like for any other parameter of the acquisition system,
the interdependence of the information changes [26]. We con-
sider an adaptive SPECT system similar to the D-SPECT [12],
as an example of a system in which the camera trajectory can
be modified in response to the characteristics of the underlying
activity distribution. In the following we refer to this adaptive
SPECT system as the pseudo D-SPECT (pD-SPECT).
1) Comparison of Different Acquisition Protocols for An

Adaptive SPECT System: The main aim of this set of ex-
periments is to compare different acquisition protocols for
the D-SPECT system and to investigate the influence of the
presence of activity outside the ROI in the optimization.
The commercial D-SPECT camera system is based on nine

collimated detector columns arranged in a curved configuration
in order to conform to the shape of the left side of the patient
chest [Fig. 6(a)]. Each detector column is then placed at a dif-
ferent distance from the center of the imaging volume (Table II).
The software phantom was a uniform sphere positioned at a
mean distance from the detectors of 205 mm. The sphere was
then positioned in the half of the FOV closest to the detectors,
where there is complete tomographic sampling. The uniform
background was a cylinder positioned in the center of the image
space, with radius 106.3 mm and height 29.5 mm. The activity
in the sphere was set to kBq/cm and the background the
activity was set to three different levels kBq/cm

kBq/cm and kBq/cm . The image
volume dimensions are 96 96 12 cubic voxels of 2.46 mm.
Each of the nine detector blocks is composed of 16 96 in-

dividual pixels with a size of 2.46 mm in both dimensions, re-
sulting in a total detector surface of 39.36 mm 236.16 mm.
The design of the pD-SPECT differs from the commercially
available D-SPECT in both the design of its collimators and the
specifications of the acquisition protocol. Each detector block
is equipped with a PH collimator with hole diameter
mm and collimator length mm. The FWHMs which de-
pend on the distance of every detector from the center of the
FOV, are presented in Table II. During acquisition, each of the
nine individual detectors rotates independently around its own
central axis in order to cover the whole FOV. The adaptive dy-
namic sequence consists of two options:

a) Open Sweep Acquisition: Each detector block rotates
110 in order to cover the whole FOV, performing 60 regular
angular steps. In order to obtain a more complete tomographic
sampling, the complete set of detectors is translated by 9 and
the open sweep acquisition is performed for a second time.

b) Region of Interest Acquisition: After a preliminary
sweep mode scan, the operator defines a ROI contour. The
sequence of acquisition is adapted in order to minimize the
uncertainty in the ROI. The search of optimum scanning
sequences is constrained by the following algorithm: each
detector head covers the full angular span of ,
performing 60 angular steps [Fig. 6(b)]:

(18)
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Fig. 12. pD-SPECT: variance images of a uniform sphere ( kBq/cm ) and uniform background ( kBq/cm ) with scanning pattern time ratio
(top row) and (bottom row). First column—reference method (variance image obtained from the reconstruction of 10240 noisy projection

data sets). Second column—Fisher Information-based method with grid (full FIM). Third column—Fisher Information based method with grid . Fourth
column—Variance image obtained with the circulant approximation method. Fifth column—Image profiles over a diagonal intersecting the center of the sphere:
reference method (black line— ), grid (blue line— ), grid (red line— ), circulant approximation method (cyan line— ).

TABLE II
PD-SPECT SYSTEM PARAMETERS

where is the total scanning time, is the constant
scanning time for every angular step, and are the angles
subtended by the rays intersecting the center of the detector and
tangent to the ROI contour. The complete set of detectors is then
translated by 9 ; a new set of 60 angular steps is defined and the
region centric acquisition is performed a second time. The only
parameter defined in order to describe the scanning pattern is
the time ratio that each detector spends acquiring data from
the ROI rather than from the surrounding region. We perform,
for each of the three different backgrounds in the object, a set of
experiments in which the scanning pattern varies ranging from

, to (where is the time ratio for the
open sweep modality). The CNRs are calculated for the central
point of the sphere at a constant target resolution
mm.

IV. RESULTS

1) NCAT Phantom: The calculated variance images for the
NCAT phantom are shown in Fig. 7. Fig. 7(a) shows the vari-
ance image obtained from the reconstruction of 10 240 noisy
projection data sets. Fig. 7(b)–(d) shows the corresponding im-
ages calculated with the full FIM for grid and
with the subsampled Fisher Information for grid and

, respectively. Fig. 7(e) shows the variance image cal-
culated with the circulant approximation of the FIM. Fig. 7(f)
shows the horizontal profiles. From these images we can see
how both the method based on the subsampled FIM and the
method based on the circulant approximation of the FIM ap-
proximately predict the variance of the MAP estimator, pre-
senting minor, but obvious, differences with respect to the vari-
ance obtained with the reference method. The variance image

obtained from the reconstruction of multiple noise realizations
is rather noisy, due to the finite number of repeated experiments
(10 240). The variance images predicted with the FIM method,
generally speaking, are smooth because neighboring voxels are
affected by similar levels of noise. However, a sparser grid gives
a more approximated estimation, as we can see in Fig. 7(e). In
fact, a fundamental limitation of the subsampled FIM approach
is that fine detail is being lost as the grid becomes more sparse.
The way the algorithm has been designed permits the degree of
approximation in the estimation to be defined by the user. There-
fore, a trade-off between computational complexity and relia-
bility of the estimation of the covariance matrix arises. We no-
ticed that, for such a complex phantom, performing the calcula-
tion with a grid points or less, would lead to incorrect
results. The minimum number of grid points necessary to obtain
a reliable estimation of the covariance depends on the character-
istics of the system under investigation (for a discussion on the
selection of the number of grid points, see Section V). Both the
method based on the subsampled FIM and the method based on
the circulant approximation of the FIM are somewhat less accu-
rate near the edge of the finite support used in image reconstruc-
tion, for unknown reasons. This effect (which has been reported
also in another study [37]) can lead to a discrepancy exceeding
10% and it is more noticeable, in case of low level of activity,
in the off-center voxels of the phantom [25].
2) Optimal Collimator Aperture: Calculated variance im-

ages for a uniform sphere phantom at a collimator aperture
mm are displayed in Fig. 8. The variance

image obtained from the reconstruction of 10 240 noisy data
sets, from the full FIM method, from the subsampled FIM
method with different grids and from the circulant approxima-
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tion of the FIM method are again in good agreement, as we can
see from the horizontal profiles in Fig. 8(f). These results show
that the off-center voxels have a lower variance than the central
voxels of the phantom. This well-known observation [22] is
explained by the fact that, with a SPECT system, some of the
planes through off-center voxels have less intersection area
with the phantom and are less multiplexed with neighboring
voxels than planes through the central voxels.
Fig. 10 shows the optimal collimator aperture for the central

point of the sphere obtained with the reference method, with
the full FIM (grid ), with the subsampled FIM method for
grid and grid and with the method based on the circu-
lant approximation. The optimal apertures are plotted for the
three different target resolutions , 14, and 16 mm. From
the three plots, we can see how we obtain the same maximum
CNR (so in turn, minimum variance) with the reference method,
with the full FIM, with the two different subsamples of the FIM
and with the circulant approximation method. We can see also
how the optimal aperture varies almost linearly in relation with
the target resolution imposed in the reconstruction. Similar re-
sults were presented in another study [4] which claims that the
FWHM of the parallel hole collimator aperture that yields the
minimum variance, equals the spatial resolution divided by .
3) Truncated Projection Data: Fig. 9 shows variance images

from truncated projection data with a FOV diameter .
The variance image obtained from multiple noisy data sets and
the variance images obtained from the full FIM and the subsam-
pled FIM method with different grids are in good agreement.
For the voxels outside the FOV, the variance increases consid-
erably in respect to the nontruncated case. Outside the FOV, in
fact, we do not have full sampling, since we acquire data from
that region only at certain angular positions of the camera. The
variance image obtained with the circulant approximation of the
FIM method is displayed in Fig. 9(e). From this image, we can
notice an increase in variance in the voxels outside the FOV
with respect to the nontruncated case. However, the aforemen-
tioned effect is less accentuated with respect to the increase in
variance estimated with the full FIM method and with the sub-
sampled FIMmethod in the same region. The horizontal profiles
are shown in Fig. 9(f).
In Fig. 11 the CNR for a voxel in the center of the sphere is

plotted for different FOV diameters . The cal-
culation of the CNR is obtained with the reference method (re-
construction of 1024 noisy data sets), with the novel approach
for the approximation of the FIM (with grid of
(full FIM), points) and, for comparison,
with the circulant approximation. Even if (ROI) reconstruction
from truncated projections data can lead to nearly unbiased re-
construction in a well-sampled ROI (as demonstrated in [38],
[39]), we noticed that a decrease in FOV size leads to an in-
crease in variance (decrease in CNR), not only outside the FOV
but also inside it. For this specific experiment we observe a de-
crease in CNR, for a voxel in the center of the sphere, of 8%
compared to the nontruncated case, using the reference method
based on multiple noise realizations for the calculation of the
variance. An important observation is that we see no effect due
to truncation with the circulant approximation of the FIM (as
stated in [4]) whereas with the sumbsampled FIM, since we ac-

count for the interdependence between the voxels, we see a de-
creased CNR (increased variance) with increased level of trun-
cation. This is an important feature of the method that we have
introduced, because it enables the optimization of systems for
interior imaging, which is not possible with existing methods.
4) Comparison of Different Acquisition Protocols for an

Adaptive SPECT System: Fig. 12 shows the calculated variance
for a slice intersecting the center of the sphere for time ratio

and 0.85 (from top to bottom) and background set
at kBq/cm . The first column shows the results ob-
tained for the reference method for multiple noise realizations.
The results obtained with the analytical method based on the
inversion of the FIM are shown in the second column for the
full FIM characterized by a grid of points and
in the third column for a subsampled FIM characterized by a
grid of points. Moreover the results obtained with
the circulant approximation of the FIM method are shown
in the fourth column. The profiles of the image taken from a
diagonal line intersecting the center of the sphere are shown in
the fifth column of Fig. 12. From the images obtained with the
reference method and with the full and subsampled FIM, we
see how with increasing time ratio , the variance increases in
the region outside the ROI whereas the variance in the uniform
sphere decreases. This intuitive effect on the uncertainty in
the measurements is due to the fact that, with an open sweep
acquisition, the entire FOV is scanned uniformly, whereas
with increasing time ratio more time is spent on the ROI at
the expense of acquiring less information on the surrounding
region. Though the information that is ultimately acquired
about the ROI also depends on the information that is acquired
in the surrounding region, the net effect of increasing is to
increase the overall information about the activity in the ROI.
Once again, for this set of experiments, using the circulant
approximation of the FIM method, the aforementioned effect of
increasing variance outside the ROI with increasing time ratio
is less accentuated with respect to the increase in variance

obtained from the full FIM method and also with respect to
the increase in variance obtained from the subsampled FIM
method, since the circulant method does not account for effects
of long-distance correlations.
The plots in Fig. 13 show the variation of CNR in the cen-

tral voxel of the sphere for different acquisition protocols whose
time ratio varies ranging from to . Three ex-
periments were performed for different values of the activity in
the background kBq/cm [Fig. 13(a)],
kBq/cm [Fig. 13(b)] and kBq/cm [Fig. 13(c)].
From these plots it can be seen that the optimal scanning pat-
tern is sensitive to the level of activity in the background. If
the activity in the background is high with respect to the ac-
tivity in the ROI, an acquisition that more uniformly scans the
whole FOV may be preferable. This effect is captured by the
subsampled Fisher Information based method with grid and
grid , whereas it is not captured by the circulant approxima-
tion of the FIM method. The circulant approximation method
only accounts for the increased sensitivity in the ROI with in-
creased time ratio ; whereas it does not account for the ef-
fects of long-distance correlations due to a nonuniform scanning
pattern.
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Fig. 13. pD-SPECT: CNRs for different scanning patterns, obtained with the
reference method (black line— ), with the Subsampled Fisher Information
based method with grid (blue line— ), with the Subsampled Fisher
Information based method with grid (red line— ) and with the circulant
approximation method (cyan line— ). The time ratio ranges from
to . The optimal time ratios are calculated for different level of
background kBq/cm ((A)—top figure), kBq/cm
((B)—central figure) and kBq/cm ((C)—bottom figure). The
target resolution remains the same for all the experiments.

It should be noted that the performance of the pD-SPECT
system with high level of background changes abruptly (by ap-
proximately 50%) when the acquisition parameter changes from

to [Fig. 13(c)], while the performance of the
SPECT system, with comparable level of background, changes
more uniformly across the range of the truncation parameter
(Fig. 11). The pD-SPECT system parameterized with
and the truncated single-camera SPECT system are both pre-
senting a data truncation problem. However, the two systems
differ substantially in that the SPECT camera rotates by 360
around the center of the imaging volume, acquiring information
from all directions, while the nine cameras of the pD-SPECT
system are essentially static for , acquiring information
from only nine directions. The performance of the D-SPECT
system increases abruptly as one moves away from due
to the increased angular sampling.

V. DISCUSSION

In Section II-A a cost function for the MAP Estimator
has been defined. The absence of a closed analytical formu-
lation that expresses explicitly in terms of makes it diffi-
cult to study the properties (e.g., mean and covariance) of the
MAP estimator defined in Section II-A. For this reason, in
order to compare system designs, one has to compute expen-
sive simulations of thousands of reconstructions, as described
in Section II-F. The computational complexity of such simula-
tions hinders the online optimization of the parameters of adap-
tive imaging systems. Alternatively, an approximate estimate of
the covariance may be obtained via the FIM, as expressed in (6).
In order to tackle the problem of the computational load in

calculating and inverting the FIM, it has been proposed to ap-
proximate it with a circulant matrix (see Section II-C). The use
of the circulant approximation has been explored for the purpose
of measuring the image quality in [9], [10], [5], [15] and for the
purpose of system design optimization in [20], [4]. The compu-
tational complexity of the reference method, involving the re-
construction to convergence of thousands of noise realizations,
has precluded a systematic evaluation of the effect and the lim-
itations of the circulant approximation. For a systematic char-
acterization of the effect of the circulant approximation on the
estimates of the covariance matrix, one would have to consider
not only a single phantom, but a class of objects. The problem
is further complicated by the choice of the regularization pa-
rameter . In this paper, we have described a criterion for the
choice of and a purpose-made GPU accelerated reconstruc-
tion software that processes multiple reconstructions in parallel
(see Section III), enabling the estimation of the reference vari-
ance in a reasonably short time (see Table I). The circulant FIM
is generally considered to yield a good approximation of the co-
variance matrix for nearly shift-invariant systems, however 3-D
SPECT systems are inherently shift-variant, even in case of an
ideal uniform object in the FOV. Comparison of the variance
(the diagonal of the covariance matrix) obtained from the cir-
culant approximation, with the full FIM and with the reference
statistical method, has highlighted certain pitfalls of the circu-
lant approximation. The first contribution of this paper consists
in having highlighted these effects, described in Section IV. The
second and main contribution of this paper is the introduction
of a new approximation which relies on a subsampled version
of the FIM and that addresses the shortcomings of the circulant
approximation (Section II-C).
In the following, the link between the shift-variance of the

system and the different approximations of the FIM is illus-
trated with two examples. Figs. 14 and 16 show the full FIM
[Fig. 14(a) and (d) and Fig. 16(a) and (d)] the subsampled FIM
with grid [Fig. 14(b) and (e) and Fig. 16(b) and (e)]
and the circulant Fisher matrix [Fig. 14(c) and (f) and
Fig. 16(c) and (f)] for the two experiments described respec-
tively in Sections III-A2 and III-A3. The number of elements
in the full FIM and in the circulant FIM equals , whereas
the number of elements of the subsampled FIM (with grid )
equals ; therefore highly reducing the computational
burden in inverting the subsampled FIM. Since the FIM is a
very large matrix and therefore difficult to display, we show the
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Fig. 14. Fisher Information Matrix for the experiment in Section III-A2. Comparison between full FIM, subsampled FIM and Circulant FIM. (a) Full FIM, grid
points. (b) Subsampled FIM, grid points. (c) Block Circulant with Corculant Blocks FIM for a voxel of interest in the center of the

FOV only. (d) Xoom-in part of A displaying multiple (4 4) blocks. (e) Zoom-in part of B displaying multiple (4 4) blocks. (f) Zoom-in part of (c) displaying
multiple (4 4) blocks.

FIMs for the 2-D case. Thus, the full FIM has points
and the subsampled FIM has points. It should be
noticed that solving (8), for a voxel of interest , is equivalent
to the inversion of a column of the FIM as if the full FIM were
a block circulant matrix with circulant blocks (for the 2-D
case), which we refer to as . This is equivalent to creating
a new matrix by extracting the th column from the full FIM,

, and then obtaining from this vector the remaining
columns of by an appropriate circulant shift in 2-D so that the
peak of becomes centered at the voxel corresponding to each
column index. Therefore, we display, in Fig. 14(c) and (f) and
Fig. 16(c) and (f), the circulant Fisher matrix for the calculation
of the variance of a voxel of interest in the center of the FOV;
whereas we display in Fig. 14(a) and (d) and Fig. 16(a) and (d)
the FIM for all the points in the FOV and in Fig. 14(b) and (e)
and Fig. 16(b) and (e) the FIM for the points of grid .
As already described in Section II-D, all elements of the

subsampled FIM at the grid points are calculated exactly,
accounting for the acquisition geometry and for the object. We
can see, in fact, how in the subsampled FIM we account for
the system response and for the object dependency, whereas
with the circulant approximation method we make the assump-
tion that the FIM (and therefore the system response) is shift
invariant.
However, what is ultimately of interest is the inverse of

the FIM (the covariance matrix). Figs. 15 and 17 show the
covariance matrix calculated from the full FIM [Fig. 15(a)
and Fig. 17(a)], the covariance matrix calculated from the sub-
sampled FIM with grid [Fig. 15(d) and Fig. 17(d)] and the
covariance matrix calculated using the circulant approximation

method [Fig. 15(b) and Fig. 17(b)] for the two experiments
described respectively in Section III-A2 and III-A3. Fig. 15(b)
and Fig. 17(b) display the covariance matrix obtained by
row-by-row inversion of the circulant FIM for the 2-D system,
where each column of the matrix is evaluated separately using
(8). The resulting covariance matrix is spatially variant (non-
circulant) but clearly does not show the same structure as the
full FIM inverse in Fig. 15(a) and Fig. 17(a). We can therefore
deduce that the circulant FIM can not incorporate the effects
of shift-variance, since it does not account for the effects of
data truncation or missing data. A direct visual comparison
between the inverse of the full FIM and the inverse of the
subsampled FIM is arduous, because of the different size of the
two matrices. Hence, we show, in Fig. 15(c) and Fig. 17(c), two
matrices which are obtained selecting the voxels at the locations
of the inverse of the full FIM that correspond to locations of
the elements of grid and then rebinning the selected voxels
in a smaller matrix of size . Clearly, the inverse of the
subsampled FIM will not be exact at the grid points because of
the missing off-diagonal FIM entries between the grid points,
however the matrices in Fig. 15(c), Fig. 17(c), and Fig. 15(d),
Fig. 17(d) exhibit the same structure. This encompasses the
capability of the method to incorporate nonstationary system
models and effects of long-range correlations.
The subsampled FIM trades off computational complexity

and accuracy of the estimation, enabling the adaptation of the
accuracy of the estimation based on the available computational
resources. When sufficient resources are available, the GPU-ac-
celerated software described in Section II-D can compute the
covariance matrix exactly on a grid . One important advan-
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Fig. 15. Inverse of the FIM (covariance matrix) for the experiment in Section III-A2. Comparison between the covariance matrix obtained from the full FIM, the
subsampled FIM and obtained by row-by-row inversion of the circulant FIM, where each column of the matrix is evaluated separately using (8). (a) Inverse of the
Full FIM, grid points. (b) Covariance matrix obtained by row-by-row inversion of the circulant FIM. (c) Covariance matrix obtained by selecting the
voxels at the locations of the full FIM that corresponds to locations of the elements of the grid for the subsampled FIM. (d) Inverse of the subsampled FIM, grid

points.

tage of the scalable subsampled FIM approximation is that the
algorithm provides an estimate of the full covariance matrix,
though subsampled, accounting for the global interdependence
between the variables of the tomogram. This enables the use of
global metrics for system design optimization. In other fields of
imaging, where the lesser dimensionality of the parameter space
enables the storage and inversion of the full FIM, a wide range
of global optimality criteria has been explored, such as D-opti-
mality [42] and I-optimality [43]. In the future, a global figure
of merit which accounts for the off-diagonal entries of the FIM
will be investigated.
Evaluation of the effect of subsampling, however, is compli-

cated by the trade-off that arises. It is not possible to define an
absolute criterion for the choice of the subsampling scheme. The
contributions to the FIM at a given camera position, for a given
pair of grid points, arise only from overlap in the projected PSF
from those points (as shown graphically in Fig. 2). The implica-
tion is that the grid points must be close enough to ensure there

is overlap between the projected PSFs. This condition depends
on many factors, including: the image volume size, the voxel
size, the size of the PSF, the camera trajectory etc. This condi-
tion refers to accuracy of the FIM entry for those two points, but
does not apply to accuracy of its inverse, which will suffer from
missing points even if the “overlapping PSF” condition is met.
Therefore, a general criterion to define a relationship between
the subsampling and the reliability of the variance estimation,
can not be provided. This criterion depends in fact on the prop-
erties of the specific system.
The subsampled FIM formulation and the software tool de-

scribed in this paper may be employed for the optimization of a
range of design parameters of emission imaging systems. How-
ever, only three guidelines can be given, so far, for the choice
of the subsampling scheme. The first is trivially to adopt the
most dense grid for the available computational resources. The
second is to restrict the grid volume to a specific region of the
FOV, in case we know in advance that activity is present only in
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Fig. 16. Fisher Information Matrix for the experiment in Section III-A3. Comparison between full FIM, subsampled FIM and circulant FIM. (a) Full FIM, grid
points. (b) Subsampled FIM, grid points. (c) Block Circulant with Corculant Blocks FIM for a voxel of interest in the center of the FOV

only. (d) Zoom-in part of (a) displaying multiple (4 4) blocks. (e) Zoom-in part of (b) displaying multiple (4 4) blocks. (f) Zoom-in part of (c) displaying
multiple (4 4) blocks.

TABLE III
VALIDATION OF THE SUBSAMPLED FIM IN COMPARISON WITH THE REFERENCE STATISTICAL METHOD

that region of interest. The third refers to adaptive imaging sys-
tems, where the system adapts during acquisition, in response to
the projection data, and therefore where the computational re-
sources are limited by the real-time requirements. For a specific
adaptive imaging system and for the specific parameter we want
to modify during acquisition, a sufficient condition of optimality
needs to be defined. This condition accounts for the trade-off be-
tween accuracy of the estimate and computational complexity.
Once a sufficient condition of optimality is defined, the subsam-
pling model should be chosen prospectively by comparing the
estimates of the optimum scanning parameters for different sub-
sampling models, with the parameters obtained from the refer-
ence method.
In Section IV, we prove that the new methodology well

predicts how a variation in the system parametrization affects
the reconstructed image quality. A validation for the subsam-

pled Fisher Information-based variance calculation method is
presented in the following. For every experiment presented in
Section III, the variance obtained with the reference statistical
method is plotted with respect to the variance predicted with the
Fisher information-based method, for grid points,
grid points, grid points, grid
points, and grid points. A least square fitting is
performed through the data. The regression coefficients, the
intercepts of the line, the correlation coefficients and the stan-
dard error of the estimate for every experiment are presented
in Table III. The sufficient conditions we suggest to obtain a
reliable estimate, are that the correlation coefficient between the
variance obtained with the reference statistical method and the
variance obtained with the subsampled FIM ranges from 0.9 to
1. Also we suggest that the standard error of the estimate should
not exceed 0.001. Grid points, grid



FUIN et al.: EFFICIENT DETERMINATION OF THE UNCERTAINTY FOR THE OPTIMIZATION OF SPECT SYSTEM DESIGN 633

Fig. 17. Inverse of the FIM (covariance matrix) for the experiment in Section III-A2. Comparison between the covariance matrix obtained from the full FIM, the
subsampled FIM and obtained by row-by-row inversion of the circulant FIM, where each column of the matrix is evaluated separately using (8). (a) Inverse of
the Full FIM, grid points. (b) Covariance matrix obtained by row-by-row inversion of the circulant FIM. (c) Covariance matrix obtained selecting the
voxels at the locations of the full FIM that corresponds to locations of the elements of the grid for the subsampled FIM. (d) Inverse of the subsampled FIM, grid

points.

points, and grid points satisfy the sufficient con-
dition we suggest for a reliable estimate of the variance. All
validation points for the experiment in Section III-A1 for those
three grid models are shown in Fig. 18, which plots the standard
deviation calculated with the reference method with respect
to the standard deviation predicted with the subsampled FIM
method. The solid line was fitted to minimize the least squares
distance between these points.
The first assumption we make in (7), in order to calculate the

FIM, is that the reconstruction is locally linear, meaning that
the mean of the noisy reconstruction can be well estimated by
the reconstruction of noiseless data. This in turn means that to
calculate the FIM we need to know the activity distribution in
advance. Fessler and Rogers in [10] argued that even for real
noisy measurements we can predict the variance simply by re-
placing with in (7). However, this approximation may be
problematic and eventually cause convergence problems when
the scanning parameters are updated iteratively. The optimiza-
tion of adaptive systems is still an open problem and needs fur-
ther investigation.

The calculation of the uncertainty based on the Fisher Infor-
mation is restricted to problems where is a continuous param-
eter in , thus, strictly speaking, its results are not comparable
with methods where nonnegativity constraints are imposed on
. However nonnegativity constraints are active relatively infre-
quently, so the Fisher Information method can predict the prop-
erties of an estimator for most pixels in a phantom. An approach
to tackle this problem has been presented by Li et al. [25].
In themethodology presented in this paper, a quadratic penalty

functionwith a smallweight has been includedwith the only pur-
pose of enforcing the estimator to have a unique solution and
therefore to guarantee the regularized FIM to be in-
vertible.However, since in practicewe subsample thematrix, the
Hessian of the prior reduces to a diagonal matrix accounting
for the regularization effects only between the voxels in the grid.
The use of the circulant approximation of the FIM has been pro-
posed in order to evaluate the local effects of a penalty function
on the bias and variance for the shift-invariant system [15].
The experiments presented in this paper account for a uniform

attenuation map. If the attenuation map or model for randoms
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Fig. 18. Validation of the Fisher information-based standard deviation calcu-
lation method for different grids. The standard deviation obtained with 10 240
repeated simulations is plotted with respect to the standard deviation predicted
with the Fisher information-based method. (a) Grid . (b) Grid . (c) Grid
(from top to bottom). Spatial information is given by the color of the dots.

The light gray dots represent voxels which are more distant from the rotation
axis (off-center voxels); whereas the dark gray dots represent voxels which are
closer to the rotation axis (central voxels). Color bar with the respective distance
from the rotation axis (in mm) is displayed for every plot.

and scatter are available, they can be included in the calculation
of the FIM to study their effect on image quality, although this
is beyond the scope of this paper.

VI. CONCLUSION

In this paper, we introduce a novel algorithm for the optimiza-
tion of the system design in emission tomography. Themain aim
of this new approach is to introduce a less dramatic approxima-
tion of the FIM, that still takes into account the global inter-
dependence between the variables. We have applied the method
for the estimation of the optimal parameters of a SPECT system,
in comparison with the circulant approximation and in com-
parison with the reference statistical method based on the re-
construction of multiple noise instances. In particular, the novel

method has been applied for the choice of a collimator and the
tuning of its parameters, and for the choice of the scanning pa-
rameters of an adaptive SPECT system.
We have pointed out the shortcomings of the circulant ap-

proximation for a range of optimization problems where the
system response is markedly shift-variant. In fact, the subsam-
pled FIM method has shown to enable the exploration of design
spaces previously precluded by the use of the circulant approx-
imation, such as the evaluation of effects of data truncation in
interior tomographic imaging.
The recent development of adaptive SPECT systems has in-

troduced a class of optimization problems where the parameters
of the imaging system may be modified in order to image cer-
tain desired properties of the underlying object and in order to
adapt, during acquisition, in response to the projection data. The
D-SPECT is an example of such a system, where the acquisition
protocol (in terms of the trajectory of the cameras) can be mod-
ified depending on the data acquired during the scan. In order
to adapt the response of the system during acquisition, a set of
different design parameters have to be compared in real time.
Thanks to the novel approximation of the FIM and thanks to an
efficient GPU implementation, our novel algorithm for the esti-
mation of the uncertainty, drastically reduces the computational
complexity and therefore is a good candidate method for such
optimization problems. However, evaluation of the trade-off be-
tween computational complexity and accuracy of the estimates
for the optimum parameters is an open problem and needs to be
evaluated case by case.
The method can be applied to a variety of systems and de-

sign parameters in emission computed tomography. The code
is available online (URL: http://niftyrec.scienceontheweb.net)
and is open source, in order to foster further development and
the evaluation of the algorithm for varying imaging conditions
and subsampling schemes.

APPENDIX A
DESIGN OF THE POSTSMOOTH FILTER

A desirable approach to system design optimization is to
choose the set of parameters of the imaging system that would
lead to the minimum variance in the estimation. However, two
different systems parametrizations can be compared by looking
at the covariance in the estimation, only if the two systems
present the same bias gradient properties.
Standard space-invariant penalties (4) yield to nonuniform

bias gradient properties in the reconstructed volume even for
space-invariant systems [16]. In order to address this problem
a postsmooth filter has been included in (14) and (13). In these
equations, a penalty function with a small regularization param-
eter is added with the only purpose of making the cost function
strictly convex and therefore the FIM invertible. Thus, the bias
gradient properties of the estimator are determined mainly by
the filter function . The method presented in (14) and (13) cor-
responds to iterating the algorithm used to maximize the MAP
objective function (4) to convergence and then convolving the
solution with an anisotropic filter in order to impose a fixed
target bias gradient . This leads to uniform bias gradient prop-
erties in the reconstructed volume.
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Relying on this method a postsmooth filter has to be specif-
ically designed for every system under investigation. A method
for the design of this filter is introduced in the following.
Firstly, for every system , the bias gradient function

(which is described by its ) is calculated as in (11)
or (12). An isotropic Gaussian target function is defined so
that (which implies that postsmoothing
is always needed to achieve the target bias gradient). The
postsmoothing filter is finally defined taking into account
the deviation between the bias gradient and the target
isotropic Gaussian

(19)

where and are the Fourier transforms of and
is the index of the elements in the Fourier domain

and denotes the real part of a complex number. Applying
the filter to the bias gradient in (12) ensure that the final bias
gradient in (14) equals . The only parameter to opti-
mize then, is the variance with calculated as in
(13).
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