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A Deformable Constraint Transport Network for
Optimal Aortic Segmentation from CT Images

Weiyuan Lin, Zhifan Gao, Hui Liu, Heye Zhang

Abstract— Aortic segmentation from computed tomogra-
phy (CT) is crucial for facilitating aortic intervention, as it
enables clinicians to visualize aortic anatomy for diagnosis
and measurement. However, aortic segmentation faces the
challenge of variable geometry in space, as the geometric
diversity of different diseases and the geometric transfor-
mations that occur between raw and measured images.
Existing constraint-based methods can potentially solve
the challenge, but they are hindered by two key issues:
inaccurate definition of properties and inappropriate topol-
ogy of transformation in space. In this paper, we propose
a deformable constraint transport network (DCTN). The
DCTN adaptively extracts aortic features to define intra-
image constrained properties and guides topological im-
plementation in space to constrain inter-image geometric
transformation between raw and curved planar reformation
(CPR) images. The DCTN contains a deformable attention
extractor, a geometry-aware decoder and an optimal trans-
port guider. The extractor generates variable patches that
preserve semantic integrity and long-range dependency in
long-sequence images. The decoder enhances the percep-
tion of geometric texture and semantic features, particu-
larly for low-intensity aortic coarctation and false lumen,
which removes background interference. The guider ex-
plores the geometric discrepancies between raw and CPR
images, constructs probability distributions of discrepan-
cies, and matches them with inter-image transformation to
guide geometric topology in space. Experimental studies
on 267 aortic subjects and four public datasets show the
superiority of our DCTN over 23 methods. The results
demonstrate DCTN’s advantages in aortic segmentation
for different types of aortic disease, for different aortic
segments, and in the measurement of clinical indexes.

Index Terms— Computed Tomography, Aortic Segmenta-
tion, Geometric Constraint, Optimal Transport, Transformer
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Fig. 1. (a) Aortic segmentation from CT images is important for aortic
intervention; (b) Challenges of variable geometry: CPR transformation,
small stenosis, diverse morphology, irregular lesions; (c) Our solution:
deformable attention extractor, hierarchical geometry-aware decoder
and optimal transport guider are included in segmentation.

ORTIC segmentation from computed tomography (CT)

images is crucial for carrying out aortic intervention.
Aortic intervention is a common treatment for aortic disease.
On average, more than 27,000 patients undergo aortic interven-
tion each year according to the Centers for Disease Control and
Prevention [1]. Aortic intervention requires anatomical infor-
mation of the aorta [1], [2], such as morphological visualiza-
tion and measurement. CT is an important imaging technique
that provides anatomical information [3]. Aortic segmentation
from CT images visualizes the whole morphological structure
of the aorta. Clinicians can then better diagnose lesions, such
as coarctation and dissection [4], [S]. Clinicians can also better
anchor the stent-graft in the uninvolved aortic wall above and
below the lesion [1]. Clinical guidelines recommend morpho-
logical indexes and measurement methods [2], [3]. For that,
clinicians require volume indexes to assess curative efficacy
[6]. The size of stent-grafts should match the index of lesions,
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such as maximum and minimum diameters [7]. The anterior-
posterior diameter should be measured in the longitudinal
view, with the diameter perpendicular to the longitudinal axis
of the aorta [8]. However, raw axial view of CT images does
not meet such requirements. Curved planar reformation (CPR)
of the axial view source data can create aortic images in a
plane perpendicular to the longitudinal axis [8], [9], as shown
in Fig. 1(a). Clinicians rely on CPR for aortic measurements.
CPR requires clinicians to manually select an anatomical
landmark of the aorta and the viewpoint of its center point.
They have to repeatedly adjust the angle of viewpoint until
it is perpendicular. There are ten key anatomical landmarks
of the aorta, and clinicians need to repeat such operations
several times. Hence, aortic segmentation of raw and CPR
images in the CT workstation is time-consuming [10]. The
result of segmentation needs manual correction. The subjective
corrections between observers is inaccurate.

However, aortic segmentation confronts the challenge of
variable geometry in space, as shown in Fig.1(b), including
intra-image and inter-image challenges. The intra-image chal-
lenge refers to geometric relationship between the variable
aortic morphology and its spatial position in the long CT
sequence of images. The aorta spans from the thorax to
the abdomen, resulting in a long CT sequence with many
images. Aortic recognizability and morphological regularity
gradually decrease in long-sequence images. For example,
the lumen is large in the ascending aorta, but it is small in
the descending aorta. The ascending aorta is shaped like an
ellipse in the axial view, but the aortic arch is irregular. This
phenomenon occurs due to the interaction between the anatom-
ical structure and imaging technology. Aortic disease increase
the difficulty of segmentation, including low-contrast regions
and morphological abnormalities. For example, coarctation
of the aorta (CoA) is the low-contrast stenosis in the aortic
isthmus on CT images [11]. Type B aortic dissection (AD)
has irregular beak signs and a small true lumen compressed
by the false lumen (due to tear in the inner wall causing blood-
filled channel in the media) [12]. The inter-image challenge
refers to geometric relationship between raw and CPR images.
This geometric relationship is the geometric transformation
produced by different viewing angles. Deep learning (DL) can
fit a nonlinear relationship to segment two images. However,
DL is hard to learn their geometric transformation due to its
“black box” nature. The geometric relationship of images stays
independent. DL segmentation is not always based on relevant
clinical operation by clinicians, which restricts the diffusion
process in the medical domain. DL segmentation should match
the high level clinical knowledge to improve its credibility.

The research on geometric constraint has the potential to
solve the aforementioned challenges. Geometric constraint
defines the properties of target objects relative to other objects
[13], including shape, orientation, distance, and perpendicular-
ity, to establish the relationship among different geometries.
Constrained properties increase the sensitivity of the model
to aortic morphology. Despite these advantages, the exist-
ing geometry-constrained methods ignore two crucial issues
for aortic segmentation. Different types of aortic diseases,
complex anatomy and diverse morphology are averse to the

definition of representative properties (geometric features).
Inaccurate definitions weaken the constraint on the intra-image
aorta. The geometric transformation between raw and CPR
images needs Inter-image constraint, which is a spatial topol-
ogy representing the relationship between different geometries
in space. Topology requires that the initial and target object
are homeomorphic to preserve the invariance of the geometric
properties. The invariance is beneficial to the robustness of
constraints in space. Aortic segmentation requires accurate
geometric features and suitable spatial topology.

In this paper, we have developed the Deformable Con-
straint Transport Network (DCTN) for aortic segmentation,
as shown in Fig. 1(c). As illustrated in the figure, the DCTN
comprises of the extractor, decoder, and guider. DCTN adap-
tively extracts aortic features to define constrained properties.
The DCTN guides the topology in space to constrain the
aortic variable geometry. For feature extraction, we design
an extractor consisting of deformable self-attention modules.
The extractor generates patches of variable sizes and variable
positions to adaptively capture the diverse morphology. The
variable patches preserve the aortic semantic integrity. The
self-attention mechanism of the extractor is beneficial to cap-
ture the long-range dependency in long-sequence CT images.
Semantic integrity and long-range dependency contribute to
the robustness of constraints. The decoder combines local and
global features at different scales, which enhances foreground
texture information and suppresses low-contrast background
information. For topological implementation, we design a
geometry-constrained optimal transport (OT) to match CPR
images with raw images. The OT explores the graph structure
of two images, compares geometric structure, and constructs
probability distributions to describe the geometric difference.
The guider learns the distance discrepancy of probability
distributions to map the geometric transformation between
two images. The guider models spatial geometric relationship,
which adaptively guides the topology of constraints in space.
Finally, DCTN is sensitive to the variable aortic morphology,
as DCTN imposes strong constraints on the aortic contour.

Our main contributions are summarized as follows:

1. We develop a clinical tool for aortic segmentation and
quantitative measurement from long-sequence CT images to
improve the work efficiency of the aortic intervention.

2. DCTN adaptively extracts geometric features and accu-
rately guides spatial topology between raw and CPR images.
It constrains the intra-image and inter-image aortic geometry
to address the challenge of variable geometry in space.

3. Experiments on the in-house and public CT dataset show
that our DCTN outperforms 23 state-of-the-art methods.

This study advances our work presentation in MICCAI2022
[14]: (1) While our MICCAI paper focuses on segmenting
the aorta in only one view (the raw view), our current paper
goes a step further by simultaneously segmenting the aorta
in two views: the axis image of the raw view and the CPR
image of the short-axis view. (2) Our current paper focuses
on addressing the challenge of geometric transformation and
presents the solution. The guider establishes the spatial topol-
ogy between the two image to constrain the morphological
affine relationship. Besides, our current paper further considers
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the challenge of semantic confusion and spatial continuity.
The decoder removes background interference and refines
the foreground feature in low-contrast regions. The extractor
further captures the features of adjacent slices to maintain the
local spatial continuity in long CT sequences. (3) We add more
than 30% cases of aortic subjects on in-house dataset. We
also add four public datasets for validation. We discuss our
advantages in deciphering different types of aortic diseases
and different aortic segments, and measuring clinical indexes.

[l. RELATED WORKS
A. Segmentation Methods Based on Deep Learning

DL methods employ neural networks to automatically ex-
tract feature from images with minimal manual intervention.
DL have always been widely applied in the segmentation of
medical images for many years [15]. For example, Lei designs
SGU-Net, an ultralight shape-guided network for the seg-
mentation of abdominal medical images [16]. Xing proposes
an end-to-end diff-Unet [17], which integrates the denoising
diffusion model into a U-shaped architecture for medical volu-
metric segmentation. Over the past few years, researchers have
developed convolution neural networks (CNN)-based meth-
ods for aortic segmentation from CT images [18]-[20]. For
example, cascaded and coarse-to-fine segmentation methods
combine multiple stages to jointly enhance the aortic features,
but they rely on the cooperation between stages, thereby
resulting in error accumulation. The number of excellent works
is increasing. Xiong makes significant progress by applying
adversarial learning to enhance CT features in non-enhanced
CT images [21]. Feiger proposes a novel variant network,
SU-net, to solve some of the limitations of Unet [19]. 3D
U-Net, which retains spatial contextual information between
slices [22]-[24], improves spatial continuity. However, 3D
models require a large memory for long-sequence images [25].
The multi-stage straightening methods simplify the shape of
aortic dissection [26], although the back-restoring process is
computational expensive, especially for the curved aortic arch.
Multi-task methods can simultaneously accomplish various
clinical requirements [27], [28], including the aortic segmen-
tation and quantification. Nevertheless, effective coordination
of the implicit relationship between tasks is crucial for better
results. Researchers have also combined CNN with traditional
rule-based methods to improve segmentation performance. For
example, multi-scale wavelet analysis was introduced into
network to detect aorta through the density distribution within
the aortic boundary. However, most CNN-based frameworks
only consider the correlation between short-range pixels [29].

B. Segmentation Methods Based on Constraints

Constraint-based methods are an effective approaches for
segmentation. These methods artificially set up certain condi-
tions, such as curvature, shape, and orientation, to guide the
segmentation process. One popular constraint-based method is
the hypothetical prior algorithm which artificially generates a
shape-based prior knowledge for segmentation. For example,
the aortic segmentation can utilizes a circular shape as a
prior knowledge via deformable Hough [30]. Semi-automatic

interactive segmentation methods involve manual intervention
to help the model identify regions that may be difficult to
distinguish automatically. During training, the model gets
corrected and constraints based on new sampling points and
reference contours provided by the user [31]. Nonetheless,
the hypothetical prior algorithm may not be suitable for
complex shapes and cannot effectively segment structures with
complex curves, planes, or variation in shapes. On the other
hand, Graph-cut constraint method is another viable method
that introduces discriminative features and random forests to
generate probability maps of self-similarity descriptor [32].
The maps can adaptively smooth the constraints. The above
methods are pixel-based local methods, which might lead to
false-positive results due to a lack of spatial continuity. In
other words, they might fail to catch subtle variations in
shape or curvature that occur across multiple pixels. Global
models based on curves and meshes are preferred over pixel-
based local models in several cases as they offer better spatial
continuity and accuracy. These models use discrete meshes
or curves to provide a global constraint on the segmentation
process. The morphology-guided method is an example of the
global constraint. Zhao employs the centerline of the aorta as
a morphological guide and proposes novel CRN regression
to constrain the boundary distance [33], [34]. Another such
approach is mesh-based method. Cascaded network predicts
2D curves among adjacent cross-sectional images, and then
integrates them into a 3D mesh [35]. The network regularizes
the mesh to ensure the continuity of the curve. However, 2D
curves may lose spatial information between slices, making
them less effective in cases with large curvatures. Similarly,
graph network, an approach to establish graphic constraints
between mesh and pixels [36], deforms the nodes of the mesh
through a stepwise regression strategy. Overall, global models
utilize curves or meshes as constraints, allowing for greater
adaptability in complex cases.

1. METHODOLOGY
A. Problem Formulation

Our method is aimed to learn the feature representation of
the aorta and constrain the topology between axis image in raw
view and CPR image in short-axis view. Raw axis image and
its ground truth (GT) are defined as x and y. The CPR image
and its GT are defined as z’ and 3’. Our method (DCTN)
needs to solve the problem as follows:

F :miniiL IJ{ (F;;Q5) (x; 3;’.) (y; ’.)
DCTN a M e =1 VR ] ir L5 ) \Yin Y
B (1)

where x and y are raw axis image and its ground truth; '’
and 3’ are CPR image and its ground truth; M is the number
of training samples; .J is the number of constraint levels and
set to 3; L is the loss function; R is the abbreviation of
the compound function; €2 is the set of model parameters
to be learned. The Eqgs.(1) is a holistic problem, which can
be viewed as a combination of three problem, namely the
segmentation problem of raw axis images (F}), segmentation
problem of curved planar reformation (CPR) images (F»), and
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morphological transformation constraint problem between raw
axis image and CPR image (F3).

For I} and F3, our aim is to find optimal mapping f; maps
2 to y and fo maps 2’ to ¢/, as follows:

mapping flzx%y : fQ:x'&)y’
| M

min - D Li(fiws ) ya) + La(fa(ah; 1)), 4i) @)
i=1

where M is the number of training samples, L > is the loss
function, and 2 is the set of model parameters to be learned.

For F3, our aim is to find optimal mapping f3 to constrain
geometric transformation 7' between raw axis image and CPR
image, which can be expressed as the optimal transmission
problem to seek a optimal plan 7 between raw axis space X
and CPR space X' [13], [37], as follow:

min {P(F) + a/ |V fs|2dx + ﬂ/ |fs — T|2dﬂc}
r w
:min// Ly (,y;2",y) dr (@, y)dm (', y')
XxX'
where w is a connected open set with boundary, 7" is true

constrained rules, o and 3 are positive coefficients, and P(I")
is the compact spatial information based on the centerline I'.

3)

B. Deformable Attention Extractor

The aorta comprised of different CT slices in a long se-
quence exhibits a variable geometry in space. The transformers
are suitable for capturing the long-range context information.
The previous developed transformers divide the image into
non-overlapping fixed patches [38]. However, the fixed patches
destroy the geometric integrity of the aorta, because a complete
structure may be divided into different patches. It is difficult
for the fixed patches to capture aortic morphology and handle
the geometric variations in space. We improve the deformable
attention extractor to extract intra-image complete features and
inter-slice spatial correlation [39], as shown in Fig. 2(a) .

Given an input axis image x € RH>*W*C it is divided
into a finite number of fixed rectangle patches. The coordinate
points of vertex on each patch and its rectangle size are defined
as p = (pz,py) and s x s. From the left-top corner to the
right-bottom corner of the image, the coordinates points of
all patches can be expressed as {(0,0), ..., (H-1,W-1)}. We
normalize them to the range [(-1,-1),..., (+1,+1)]. In order to
obtain deformable patch, we add an offset Ap = (04, 0,) and
a scale As = (s, s,), which allow the patch to move around
the original center and change the patch size. To obtain the
parameter matrix (Ap, As), the input x and all patches are fed
into the dense dilated block M pp p for prediction. The Mppp
module that includes a dense block and a dilated block, enlarge
the receptive field of the image and make dense predictions
for all patches. Offsets and scales are predicted as follows:

Ap: ’wp~MDDB(£L"Wq),AS = wS~MDDB(£L'-Wq)+b 4)

where w,, and w, are learned weights, W is the weight matrix
of query tokens ¢, and b is a bias to prevents the size of new
patch from being less than 0. The coordinate and size of the

new patch are updated to p’ = p+Ap = (p,, p;) and s’ = (s+
Sz) X (s + s,). However, the new patches with different sizes
are not conducive to batches of input in the training. To solve
this problem, we employ bilinear interpolation to resample the
deformable regions [40]. Assuming the deformable attention
module (DAM) extracts feature at (p},p},), the corresponding
feature is as follows:

F@; (0,0)) = > By Py er @) - gy ] (5)

qz,qy

with B(py,py; 4zs 4y) = B0y 42) B(P)y, 4y)

(6)
=max(0, 1 — |p, — gu[) max(0,1 — |p,, — qy[)

where B is the bilinear interpolation function, and z[gy, gy]
indexes all the locations on z. Since B(pz, py; ¢z, qy) is non-
zero only at four integral locations near (p;, p,), it can be com-
puted with few weighted average. Besides, in order to capture
correlation between adjacent slices, we develop the inter-slice
correlation module (ICM). ICM extracts the features of N/2
slices before and after the current image x, and then calculate
the correlation between the current image and them. Here we
take N = 8. Each slice is a patch and downsampled 4 times.
All slices as patches are converted into tokens to calculate the
local spatial correlation. We define multi-head self-attention
(MSA) as MSA(q, k,v)modute = softmaz(qk™ /v/dim) - v
in the module. Hence, the final output fg of the extractor is:

feE=FFN(MSA(q,k,v)pam ® MSA(qg, k,v)icm) (7)
where FFN is Feed Forward Network.

C. Geometry-Constrained OT Guider

The curved planar reformation (CPR) reorganizes pixel data
of raw axis image to create aortic images perpendicular to
the longitudinal axis. The geometry-constrained OT guider is
designed to learn the morphological transformation between
raw axis image and curved planar reformation (CPR) image.

The CPR images hardly change the inherent amount of CT
data (mass conservation), as it is obtained from the surface
reconstruction of raw axis image. There exists a transforma-
tion between the two images. It can be expressed as 2’ =
T (z;C;Q), where T represents the morphological transforma-
tion; €2 is the learned model parameter; C' is the reconstructed
matrix about location of the center points, tangential vector of
the center points, and distance of the center points to skeleton,
respectively. The guider is aimed to constrain the topology
between the raw axis images and the CPR images.

The optimal transport (OT) is a great way to solve problems
about constraints for convex geometry and learn geometric
affine transformations. OT can distinguish geometric discrep-
ancies in space and construct probability distributions of their
discrepancies, even when there are non-overlapping supports.
OT aims to seek a optimal plan 7 to constrain the transforma-
tions 7" and map the measure p in raw space X onto another
measure v in CPR space X', during which the law of mass
conservation needs to be satisfied (the transformation is based
on the centerline). Let ¢ : X x X’ be a cost function where
¢(X, X') measures the cost of transporting from point z; € X
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to point z; € X’. The problem is to transport yx to v whilst
minimizing the cost ¢ [41], as follows:

/ oz, xf)dm(x;, x))
XxX'

where II is the convex set of all probability measures. The
model measure the probability distribution between approxi-
mate geometric domains (spaces). The formula can be simpli-
fied to Wasserstein distance dyy by Kantorovich Duality [42]:

T = dy = min / () du(z:) + / Ple)du(z) ©)
(o) J x X/

To calculate the dyy, We use graph convolutions to explore
the discrepancy of graphic structure between the raw and
the CPR image. CPR reconstructs the vessel along center
points, which gets short-axis images perpendicular to the
centerline. We calculate the aortic skeleton from the mask
by skeletonization algorithm, then extract the longest path of
the skeleton, and set it as the centerline of the whole aorta.
The reconstructed image matrix can be represented as C' =
{Cnm = 1,2,....1},Cpy = (Lin, Um,dm), Where r is the
number of center points; and [,,, v,, and d,, are respectively
location, tangential vector, and distance to skeleton of rth
center point. The graph convolution extracts the characteristic
information of each adjacent center point, which effectively
analyzes the relationship between two kinds of imaging data
and non-linearly models the relationship between the internal
elements in sequence. Graph convolution is defined as [43]:

@) = o (D=5 AD~HOWO) (10)

®)

min
m €M (p,v)

where G and GU*Y are the feature of input and output,

respectively. o is activation function. A = A+ 1 is the

r-r-r—-——~>""~>"~>~>"~¥>~>""™™"~T~T T T T T T T T T T T |
|
(a)Extractor | © Demse Block) Pos-Embed
Deformable | =
).
J v H

osition
- nbeddin
fdiAxis

Attention Module |

Inter-Slice |
Correlation |
Module |

DilationConv 7] DilationConv |
+BN+Relu +BN+Relu |
rate=2 rate=4 _ fh

Graph Conv

Graph Conv

Location (1)
Vector (v)
Distance (d)

fa_cer

{ Graph Caan [Graph Conv J

[ Graph Cunv} [Graph Conv J

Graph Conv

ConV+BN
+ReLu

Graph Conv

The network details of the DCTN, including the deformable attention extractor (Extractor), the hierarchical geometry-aware decoder

adjacent matrix of CPR with position embedding. [ is the
identity matrix. D is the degree matrix of A. The output
is the weighted sum of the features at C'. We utilize graph
convolution to capture the node relationship of raw image and
CPR image, i.e. ¢(x;) and 1 (z}). Geometric information is
combined with images for position embedding. All the features
are input into the OT guider, as shown in Fig. 2(c). The error
of the output continuously optimizes parameters through the
back propagation of the loss function:

M T
. L1 1 7(i,m) 1(i,m)
Lguider = arg min 7 ; ;mz::l IC" 5" — Clay Il (1D

where C’ is matrix C' with the minimum Wasserstein distance
and C' = C | d™(G(x),G(2")); ||C’|| is the Frobenius
norm of matrix C’; C” Slég) and C'%") are the predicted and
real labels of mth point in ith sample, respectively; M is
the number of samples. The guider learns the inter-image
geometric transformation to realize the variation reasoning
of the topology on the aorta. The topology develops the
aortic structure with similarity and homogeneity in space,
while the non-aortic region has greater anisotropy. The guider
imposes strong constraints on the aortic contour via marginal
probability, and corrects the semantic features.

D. Hierarchical Geometry-Aware Decoder

The hierarchical geometry-aware decoder (HGAD) aims to
solve the semantic confusion of the low-contrast foreground
regions. The low-contrast foreground regions are common
in the cases of CoA and AD (false lumen). Low-contrast
foreground regions are often similar to the background, so
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aortic segmentation suffers from false positive and false
negative predictions. Our HGAD perceives the foreground
and background, then removes these false predictions and
background interference, and finally refines the feature maps.

The framework of the HGAD is shown in Fig. 2(b). First,
HGAD upsamples the higher-level foreground prediction yy,.
Then HGAD multiplies y;, by the current-level features fg
of the deformable attention extractor. Finally, HGAD gener-
ates the foreground-attentive features f,. Similarly, HGAD
multiplies the reverse version of y,, by fr to generate the
background-attentive features fj. The two types of features
are fed into the geometry distraction (GD) block in parallel
to detect the foreground false-positive distractions f, and the
background false-negative distractions f; [44], respectively.
The GD block contains three parallel branches for contextual
semantic exploration. Each branch includes a convolution and
two dilated convolution with a dilation rate of 2 and 4. The
outputs of the first and second branches are respectively fed to
the second and third branches via skip connections. All outputs
of the three branches are finally concatenated and fused. This
process is expressed as the following formula:

fa=GD((fe ®yna)), fy =GD((fe ® (1 —yna))) (12)

The parallel multi-scale structure allows HGAD to analyze
features and perceive interference at different scales. Multiple
dilated convolution operations obtain large ranges of receptive
fields to adapt to scale variations and explore distracting fea-
tures in the foreground and background. The skip connections
cascade different branches to enhance the depth of exploration
and improve the strength of perception. In total, the structure
of the GD block are beneficial to perceive contexts in a
wide range of receptive field, which is used for contextual
distraction reasoning and interference detection.

HGAD needs to remove the interference after interference
detection. HGAD utilizes element-wise subtraction to sup-
presses background interference (false-positive predictions),
and then utilizes element-wise addition of the upsampled
high-level features f; to enhance foreground feature (false-
negative predictions). The refined output feature f; of HGAD
is expressed as the following formula:

fa = ConV (B f, + ConV(Up(fn) — B2f3))

where ConV represents the convolution, batch normalization
and ReLU function, Up is the upsample operation, and [
and [3o are the learnable scale parameters to achieve the sup-
pression and enhancement. HGAD does not directly supervise
interference, as the appearance of interference is a dynamic
process in the imaging setting. Therefore, we incorporate
ground truth of background and foreground as a supervision
constraint. This constraint helps the GD block to learn diverse
representation of interference, and help HGAD to remove
interference and refine features in an implicit manner.

13)

IV. EXPERIMENTAL STUDIES
A. Dataset

This study conducted a retrospective search for aortic
patients referred for CT from October 2016 to June 2022

in the Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences). A total of 267 patients were
enrolled, including 73 normal aorta, 74 CoA, and 120 AD.
Our work was exempted from formal ethical approval by the
Medical Research Ethics Committees of the hospital.

Aortic examinations were performed with 64-slice (Amer-
ica, GE LightSpeed VCT) and 256-slice (America, Philips
Brilliance iCT) wide CT scanner. An average of 100ml of con-
trast agents (China, iopamidol 370, BRACCO) was injected
into the antecubital vein, followed by 30ml of saline solution.
The bolus tracking technique (BolusPro, Philips Healthcare)
was simultaneously used for scanning. The scanning ranged
from the thoracic inlet to the beginning of the bilateral femoral
artery. The volume size of images in our dataset is 512 X
512 x S(300 < S < 800). The CT imaging parameters are as
follows:(1) Siemens: tube voltage is 70 kV; slice increment is
0.50mm; slice thickness is 0.75mm; (2) 256-slice Philips: tube
voltage is 120 kV; slice increment is 0.75mm; slice thickness
is 1.5mm; (3) 256-slice Philips: tube voltage is 120 kV; slice
increment is 1mm; slice thickness is 1mm.

All imaging data were recorded in the picture archiving
and communication system (PACS). The aortic images were
processed by the radiologists with 6-year experience in CT
imaging. We implement quality control to ensure the quality of
annotations. First, a radiologist (annotator) manually annotates
the images as ground truth (GT) in a voxel-wise manner. The
average annotation time is approximately 4 seconds per image
(20 minutes per case). Then, another radiologist (checker)
reviews the work for inaccuracies. Finally, if the checker
confirms any incorrect annotations in an image, it is sent back
to the annotator for re-annotation. All images have passed
the quality verification. We also measured the aorta along
centerline. All monitored diameters are the outer diameter, and
the results are the average of two measurements.

B. Implementation Details

Our framework is implemented based on PyTorch 1.7. All
data are trained and tested on two NVIDIA RTX A6000 GPUs
with 48GB memory. We count the window level and window
width of the aorta in the dataset and readjusted window
settings of 500 Hounsfield units (HU) for window width and
850 HU for window level. The images are rescaled to a size
of 256 x 256 x 512 to reduce the pressure of calculation and
memory. The pixel intensities are normalized to [0, 1]. We do
not use data augmentation techniques on the dataset. During
the training, we employ the Adam optimizer to minimize the
loss function, with a batch of 16 images per step. The initial
learning rate is 0.01. It gradually decay in a step-wise manner
to 0.1 times of the previous every 10 epochs. The momentum is
0.9 and the weight decay is 0.005 in a total of 200 epochs. we
apply an early stopping strategy with a patience of 10 epochs.
It is a common approach to set a large epoch in this strategy,
as the model needs enough epochs to complete training [45].
If the validation loss error does not improve for 10 consecutive
epochs, the training process will be halted [25]. This strategy
allows us to terminate the training early. We use the stratified
ten-fold cross-validation respecting independent subjects with
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Representative performances of aortic segmentation in our DCTN and other state-of-the-art seven methods. Types of the aorta studied

include the normal aorta, coarctation of the aorta (CoA), and aortic dissection (AD).

eight folds as the training set, one fold as the validation set,
and one fold as the testing set. Besides, we perform the grid
search for the hyperparameter optimality of our method. Based
on the optimal hyperparameters, we obtain performance on the
testing set as the final experimental results. Our code can be
available at https://github.com/HICL-SYSU/DCTN.git.

C. Evaluation Metric

To quantitatively evaluate the performance, we employ
metrics as follows: dice similarity score (DSC), Hausdorff dis-
tance (HD), precision (Pre), recall, root mean square distance
(RMSE) and average symmetric surface distance (ASSD) [46].

D. Comparison of DCTN with the State-of-the-Art Aortic
Segmentation Methods

To demonstrate the superiority of our DCTN, we have
compared it with the existing methods of aortic segmenta-
tion, including Xiong [21], Sieren [27], Li [24], Feiger [19],
Wobben [23], Song [34], Hahn [28], Abdolmanafi [47], Chen
[26], Lyu [48], Zhao [36] , Deng [32], Yu [49], Cheng [50],
and Cao [22]. We visualize the segmentation results of DCTN
and other top seven comparison methods in Fig. 3. The
results clearly show that DCTN can better segment the aorta,
including small and irregular vessels. In the case of coarctation
of the aorta (CoA), small vessels with low contrast values are
non-significant, but DCTN still learns non-significant features.
In the case of aortic dissection (AD), the aortic arch and
descending aorta are irregular and complex, but DCTN still
captures their anatomy. The segmentation is highly similar to
the GT, which proves the potential of our DCTN.

The upper half of Table I records the quantitative results of
these above mentioned methods for objective evaluation. The

results show that our DCTN gets the largest DSC of 0.949 on
the testing set. The DCTN outperforms other methods by more
than 1.50% DSC. The DCTN also gets the smallest RMSD and
HD, which are 3.51 mm and 3.45 mm, respectively. To better
analyze the aortic segmentation performance, the whole aorta
is divided into ascending aorta, aortic arch and descending
aorta according to the anatomy in the clinical guidelines [2],
[8]. The DSC of the ascending aorta is 0.951, outperforming
other methods by over 1.93%. The average DSC of the aortic
arch is 0.941, outperforming other methods by over 0.86%.
The DSC of the descending aorta is 0.950, also outperforming
other methods by over 1.28%. Overall, our DCTN has more
advantages in aortic segmentation, especially for the variable
morphology and complex structure. It is worth mentioning that
our model performances better than others when faced with
irregular aortic arch and low-contrast descending aorta.

We verify the model performances of DCTN and other
methods in different types of aortic diseases. The quantitative
results are recorded in the upper half of Table II. The DCTN
achieves the best performance in all evaluation metrics, includ-
ing DCS, and ASSD. The DSC of the normal aorta is 0.952,
outperforming other methods by more than 0.63%. The DSC
of CoA is 0.944. The segmentation performance is slightly less
than of the normal aorta. The reason is that the intensity of the
contrast agent in the stenosis is too low. However, DCTN still
shows excellent effectiveness on low-contrast stenosis. The
DSC of our model outperform other methods by more than
1.83%, with the ASSD less than 2.17%. The DSC and ASSD
of AD are 0.936 and 3.22; the segmentation performance is
greatly improved by more than 0.97% and 3.31% compared
with the other methods. For the true and false lumen in the
case of AD, the dice coefficients are 0.938 and 0.930, with
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TABLE |
COMPARISON OF OUR MODEL WITH OTHER METHODS FOR AORTIC SEGMENTATION, ACCORDING TO ANATOMY.THE UPPER PART IS THE SOTA
AORTIC SEGMENTATION METHODS. THE MIDDLE IS THE MEDICAL SEGMENTATION MODEL. THE LOWER PART IS THE COMPUTER VISION
SEGMENTATION BENCHMARKS

Segments Whole Aorta Ascending aorta Aortic arch Descending aorta
Methods | DSCT~ RMSD | HD] | DSCY1 RMSD| HD| | DSC{f RMSD] HDJ| [ DSCT RMSD] HDTJ]"
Xiong [21] 0.925 3.71 3.66 0.930 3.70 3.61 0.914 3.83 3.71 0.926 3.74 3.64
Sieren [27] 0.913 3.84 3.72 0.915 3.83 3.72 0.915 3.83 3.71 0.910 3.84 3.73
Li [24] 0.935 3.64 3.56 0.931 3.67 3.58 0.933 3.66 3.60 0.938 3.62 3.54
Zhao [33] 0.914 3.86 371 0.919 3.82 3.73 0.906 4.11 4.03 0.918 3.85 371
Feiger [19] 0.918 3.82 3.69 0.924 3.76 3.64 0.906 4.02 3.96 0.920 3.79 3.68
Wobben [23] 0.931 3.67 3.59 0.933 3.68 3.61 0.928 3.72 3.63 0.933 3.64 3.55
Song [34] 0.927 3.72 3.62 0.932 3.68 3.59 0.926 3.74 3.61 0.925 3.76 3.62
Hahn [28] 0.906 4.02 3.96 0.912 3.84 3.72 0.898 4.13 4.08 0.914 3.83 3.70
Abdolmanafi [47] 0.917 3.88 371 0.920 3.84 3.69 0.907 4.01 3.89 0.920 3.82 3.70
Chen [26] 0.921 3.78 3.67 0.923 3.77 3.63 0.913 3.83 3.75 0.919 3.81 3.69
Lyu [48] 0.918 3.83 3.68 0.922 3.80 3.67 0.906 4.04 3.95 0.920 3.81 3.67
Zhao [36] 0.927 3.77 3.65 0.931 3.67 3.60 0.914 3.84 3.72 0.928 3.74 3.60
Deng [32] 0.911 3.85 3.76 0.907 4.04 3.97 0.912 3.85 3.75 0.916 3.81 3.71
Yu [49] 0.904 4.05 3.97 0.917 3.83 3.69 0.897 4.12 4.08 0.904 4.04 3.95
Cheng [50] 0.897 4.14 4.10 0.903 4.06 3.98 0.901 4.07 4.00 0.893 4.18 4.15
Cao [22] 0.895 4.17 4.13 0.896 4.13 4.12 0.895 4.15 4.12 0.894 4.17 4.16
Unet [51] 0.893 4.18 4.15 0.910 3.85 3.74 0.886 433 4.28 0.905 4.02 3.93
TransUnet [52] 0.920 3.77 3.69 0.926 3.78 3.62 0.914 3.87 3.68 0.917 3.79 3.68
PSPNet [53] 0.896 4.15 4.11 0.903 4.05 3.95 0.892 421 4.20 0.902 4.05 3.97
SegNet [54] 0.888 4.33 4.29 0.892 423 421 0.885 434 429 0.887 435 4.30
ViT [55] 0.902 4.09 4.02 0.904 4.02 3.92 0.891 4.19 4.17 0.903 4.06 3.91
SwinTrans [56] 0.918 3.81 3.74 0.911 3.82 3.75 0.916 3.82 3.67 0.923 3.76 3.70
SegFormer [57] 0.913 3.84 3.81 0.908 4.06 3.96 0.910 3.84 3.74 0.926 3.75 3.59
Ours 0.949 3.51 345 0.951 3.47 3.34 0.941 3.61 3.53 0.950 3.48 3.39
TABLE Il

COMPARISON OF OUR MODEL WITH OTHER METHODS FOR AORTIC SEGMENTATION, ACCORDING TO TYPES OF DISEASES.THE UPPER PART IS THE
SOTA AORTIC SEGMENTATION METHODS SUGGESTED BY THE REVIEWER. THE MIDDLE IS THE MEDICAL SEGMENTATION BENCHMARKS. THE
LOWER PART IS THE COMPUTER VISION SEGMENTATION BENCHMARKS. UNIT ABBREVIATIONS, M:MILLION; MS:MILLISECOND.

Diseases Normal Aorta CoA AD True Lumen False Lumen Parameter Inference

Methods [ DSCT~ ASSD] | DSC+  "ASSD] | DSC1 "ASSD | | DSC{ “ASSD | | DSC{ ~ASSD | || Size M)  Time (ms)
Xiong [21] 0.928 3.33 0.924 3.41 0.917 3.58 0.904 3.92 0.922 3.46 75.4 63 £+ 3.7
Sieren [27] 0915 3.65 0918 3.57 0.908 3.84 0914 3.69 0.898 4.07 472 39+29
Li [24] 0.946 3.13 0.930 3.23 0.922 3.35 0.923 3.32 0.921 3.50 51.6 44 + 3.1
Zhao [33] 0.920 3.49 0914 3.69 0.912 3.68 0.916 3.55 0.910 3.72 40.1 414+2.3
Feiger [19] 0.920 3.51 0.922 3.44 0.910 3.81 0915 3.64 0.901 3.99 63.4 56 + 2.5
Wobben [23] 0.931 3.30 0.935 3.29 0.924 3.42 0.927 3.36 0.919 3.54 55.8 48+ 1.8
Song [34] 0.923 3.43 0.925 3.38 0918 3.54 0918 3.57 0.916 3.59 56.4 47+ 3.0
Hahn [28] 0912 3.76 0.906 3.89 0.900 4.04 0.903 3.95 0.894 4.17 33.7 37+1.6
Abdolmanafi [47] 0.921 3.52 0918 3.54 0914 3.63 0916 3.62 0911 3.75 534 50 + 2.2
Chen [26] 0.924 3.41 0.919 3.55 0.917 3.59 0.923 3.44 0915 3.63 522 46 +£4.2
Lyu [48] 0.916 3.60 0.924 341 0.915 3.62 0.917 3.58 0.912 3.76 57.5 53 +2.3
Zhao [36] 0.931 3.25 0.925 3.45 0.927 3.48 0.928 3.45 0.919 3.55 46.8 47 £3.7
Deng [32] 0.919 3.54 0913 3.72 0.904 391 0.910 3.80 0.900 4.03 40.3 42+28
Yu [49] 0.908 3.84 0.905 3.89 0.895 4.15 0.907 3.88 0.893 422 34.6 40+£1.9
Cheng [50] 0.905 3.88 0.903 3.93 0.896 4.12 0.896 4.13 0.894 4.18 88.2 105 + 3.5
Cao [22] 0.907 3.86 0.901 4.00 0.893 4.20 0.901 4.02 0.892 4.24 42.1 40+ 3.3
Unet [51] 0.906 3.87 0.901 4.02 0.887 4.37 0.893 4.21 0.885 441 28.9 38+2.1
TransUnet [52] 0.923 3.44 0.917 3.55 0.919 3.52 0.925 3.38 0.912 3.77 126.2 206 + 6.8
PSPNet [53] 0.906 3.88 0.906 3.87 0.890 4.29 0.901 3.98 0.889 428 48.8 53 +2.6
SegNet [54] 0.901 3.99 0.898 4.08 0.883 4.46 0.887 4.39 0.880 4.52 29.5 35+2.3
ViT [55] 0.908 3.85 0.902 3.96 0.896 4.12 0.903 3.94 0.893 421 85.6 101 +5.6
SwinTrans [56] 0.921 3.50 0916 3.58 0.924 3.48 0.922 3.47 0.923 3.42 88.3 95 +4.1
SegFormer [57] 0918 3.55 0912 3.76 0.906 3.89 0913 3.72 0.903 3.92 64.1 58 + 2.6
Ours 0.952 3.07 0.944 3.16 0.936 3.22 0.938 3.21 0.930 3.26 73.2 61+24

the ASSD of 3.22 and 3.92. Our model has a strong ability TransUNet [52], PSPNet [53], SegNet [54], Vision Trans-
to capture morphological information to still maintain smaller former (ViT) [55], Swim Transformer (SwimTrans) [56] and
errors. DCTN has advantages in many types of aortic diseases. SegFormer [57]. The lower half of Table I and Table II

both record the evaluation results of these benchmark models.
E. Comparison of DCTN with Medical Benchmarks and ~ SegNet achieve relatively inferior segmentation performance,
Computer Vision Segmentation Benchmarks with a DSC of 0.888 for the whole aorta. The results of Unet

We compare DCTN with models commonly used for com- and PSPNet are slightly better than SegNet, with the DSC of
puter vision in recent years, mainly including Unet [51], 0.893 and 0.896, indicating that the skip connection and multi-
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scale pyramid structure is beneficial to strengthen learning
for small features in the descending aorta and polymorphic
features in the aortic arch, but the effect is not obvious.
Despite the face that U-structure is a robust structure for
feature representation of medical images [58], U-Net relies
heavily on convolutional layers and down-sampling to handle
CT images. Its structure maybe lead to the loss of spatial
resolution and crucial aortic details, especially in areas such
as aortic intima, break of aortic dissection, and coarctation. U-
Net’s encoder-decoder architecture with skip connections may
limit the model’s ability to capture long-range dependencies
and maintain spatial information. Overall, U-Net primarily
focuses on local feature representations, which may struggle
to capture fine-grained details, various morphology, geometric
relationships between distant regions, and a large receptive
field. The experimental results show that CNN-based models
with short-range dependency are hard to learn long-range de-
pendencies, so the CNN models are not suitable for capturing
diverse shape information of the aorta in the long CT sequence.
The local receptive field of the models based on short-range
dependence limits the perception range and ignores some
global information.

We further compare our DCTN with seven 3D segmentation
methods. These methods include nn-Unet [59], 2.5D Unet
[60], 3D Unet [19], 3D Res-Unet [23],3D Attention-Unet [34],
Vnet [19] and SU-Net [19]. The results are shown in the Table
III. Our network achieves a DSC of 0.949, while the other
best-performing method gets a Dice coefficient of 0.935. Our
segmentation results also achieve the highest performance on
different aortic diseases (normal, CoA, AD, true lumen and
false lumen) and different anatomical segments (ascending
aorta, aortic arch and descending aorta). The results indicate
that our method DCTN outperforms these 3D networks. The
extractor includes inter-slice correlation module (ICM). The
ICM learns the spatial correlation between the z-axis slices.
Therefore, our DCTN can learn spatial correlation in the
depth dimension to obtain contextual information. Our DCTN
approximates the ability of learning contextual information in
3D networks [61]. We also evaluate other model based on self-
attention mechanism. The performance of ViT is a little better,
with the DSC of 0.908. Models based on the self-attention
mechanism have better performance due to their advantages in
learning long-range features of long-sequence images. Multi-
scale feature fusion of SegFormer improves the segmentation
performance, which is similar to the network structure of Unet
and PSPNet. TransUnet combines the advantages of Unet and
transformer, and achieves a DSC of 0.923, but the parameter
size and inference time are relatively large. It can be found
that transformer is still not good enough in the case of CoA
and AD. Overall, these transformers divide the complete aortic
structure into different patches. Traditional patches with fixed
size and position seriously destroy the integrity of semantic
features, so diverse morphology (dissection and arch) and
small vessels (stenosis) produce false predictions with high
confidence. These benchmarks demonstrate that the potential
of DCTN employment in aortic segmentation.

We employ the Wilcoxon Signed-Rank test to evaluate the
statistical significance of the scores in TABLE I and TABLE

II. The test includes the whole aorta, different aortic segments
and different types of aortic disease. The p-values in this
test are all less than the predetermined significance threshold
of 0.05 (p <0.05). The scores of our method is better than
other segmentation methods. Therefore, there is a significant
improvement in our method compared to other methods.

F. Quantitative Analyses of Clinical Indexes

According to multiple guidelines prescribed by the Euro-
pean Society of Cardiology, American Heart Association and
European Association of Cardiovascular Imaging [1], [2], [8],
we have validated the recommended clinical indexes of the
aorta, including volume, maximum and minimum diameter,
the diameter at the coarctation, the diameter at the tear, and the
diameter at ten key landmarks : sinuses of Valsalva, sinotubular
junction, mid ascending aorta, proximal aortic arch (aorta at
the origin of the brachiocephalic trunk), mid aortic arch (be-
tween left common carotid and subclavian arteries), proximal
descending thoracic aorta (20mm distal to left subclavian
artery), mid descending aorta (level of the pulmonary arteries),
diaphragm, celiac axis origin, and bifurcation.

Ezla!se Humen o| AHE

Fig. 4. 3D visualization segmented by our DCTN in patients with normal
aorta, CoA and AD (including true lumen and false lumen).

1) Volume: We reconstruct the 3D aorta to intuitively visu-
alize the overall anatomy, as shown in Fig. 4. The segmentation
results are seen to be consistent with the aortic structure and
our results are close to the GT in different viewpoints. In the
case of the normal aorta, main and branch vessels are well
segmented, including the ascending, arch, descending aorta.
In the case of CoA, stenosis is segmented well without severe
under-segmentation or fracture surface. In the case of AD,
our DCTN can segment irregular and complex morphology,
especially at the tear between true lumen and false lumen.
To fully display the segmentation result in the lumen, we
further divide AD into the true lumen and the false lumen.
It is found that DCTN can well preserve the shape of the
true and false lumen, but there are some adhesion between
the two lumen. The reason is that the rupture of the intima
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TABLE IlI
COMPARISON OF OUR METHOD WITH OTHER 3D NETWORKS BASED ON U-NET.
Methods Whole  Ascending  Aortic  Descending Normal  CoA AD True False
Aorta aorta arch aorta Lumen Lumen
nnU-Net [59] 0.933 0.934 0.931 0.935 0.942 0.936 9.926 0.930 0.924
2.5D U-Net [60] 0.908 0.913 0.905 0.912 0914 0.907 0.905 0.903 0.908
3D U-Net [19] 0.904 0.911 0.897 0.909 0.908 0.904 0.902 0.904 0.901
3D Res-Unet [23] 0.931 0.931 0.928 0.933 0.931 0.930 0.924 0.927 0.919
3D AttentionUnet [34] 0.927 0.932 0.926 0.925 0.923 0.925 0.918 0.918 0.916
V-Net [19] 0.912 0.922 0.904 0.910 0.916 0.915 0.906 0.910 0.904
SU-Net [19] 0.925 0.931 0.918 0.923 0.930 0.927 0.918 0.922 0.915
Ours 0.949 0.951 0.941 0.950 0.952 0.944 0.936 0.938 0.930
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clinical diagnosis, because the aorta is not a smooth tubular 401
structure. We quantify aortic volume, including the whole 01,
aorta, ascending, arch, descending, normal aorta, CoA and 205"

AD. The volume errors are shown in Fig. 5. The mean error
of volume is 374 mm? in the whole aorta, 323 mm? in the
ascending, 381 mm?3 in the arch, 342 mm? in the descending,
350 mm? in the normal aorta, 322 mm? in the CoA , and 386
mm? in the AD. Among all methods of aortic segmentation,
our model gets the smallest error. Our DCTN is thereby shown
to be suitable for volume estimation in clinical practice.

2) Diameter Measurement: We automatically calculate aor-
tic diameters and compare them with their actual values
measured by the clinician. The measurements include maxi-
mum diameter, minimum diameter, diameter at the coarctation
and diameter at the tear. Bland-Altman analysis and Pearson
correlation analysis are used for evaluation, as shown in
Fig. 6. The average bias and correlation coefficient R of the
maximum diameter are 1.2mm and 0.92, while those of the

20 30 40 50 60 70

20 30 40 50 60 70 80
(d) Dissection Diameter Measurement

Fig. 6. Bland-Altman analysis and Pearson correlation are used for
statistics. High consistent between our DCTN and manual GT.

minimum diameter are 0.8mm and 0.93. The average bias and
correlation coefficient of the stenosis are -0.4mm and 0.87.
Stenosis with low contrast intensity is under-segmented. The
fluctuation range of the error is relatively small, as can be seen
from the confidence interval. The average bias and correlation
coefficient of the tear are 1.1mm and 0.91. The DCTN only
produces a small amount of over-segmentation in the edge
area, and so the bias is relatively small. All measurements
are statistically significant with p-values less than 0.01. These
results indicate that there is no significant difference between
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2.5+ L1 raw image contains more messy geometric features and fewer
2.0+ mm L2 high-level semantic features in the early stage. Segmentation

: I}:i performance with a DSC of 0.926 is highest at Stage 4, while
1.5+ mm 5 it begins to decline after Stage 5. Hence, integrating the DAM
1.0+ L6  before Stage 4 can yield the optimal results.

m L7

- L8
0.5 L9 TABLE V
0.0 = B L10  ABLATION STUDY OF DAM IN DIFFERENT STAGES. "/" MEANS DAM IS
Normal CoA AD USED IN THIS STAGE OF OUR DCTN.
Stage 1  Stage 2 Stage 3 Stage 4 Stage 5 | DSC1T Pre 1t Recall T

Fig. 7.  Diameter errors of our DCTN and GT at different aortic 0.895  0.898  0.887
landmarks. Sinuses of Valsalva (L1), sinotubular junction (L2), mid v 0.901 0.906  0.895
ascending aorta (L3), proximal aortic arch (L4), mid aortic arch (L5), \\? y v 8'3?2 8'3}5 8'3?‘3‘
proximal descending thoracic aorta (L6), mid descending aorta (L7), v v v v 0926 0928 0922
diaphragm (L8), celiac axis origin (L9), and aortic bifurcation (L10). v v v v Vv 0920 0924 0918

our DCTN and manual measurement. Besides, we also mea-
sure the diameter of the ten key landmarks and record them as
L1 to L10, as shown in Fig. 7. The results indicate that there
is no significant difference between our DCTN and manual
measurements. The DCTN performs well on the measurement.

G. Ablation Study

1) Effectiveness of Deformable Attention Extractor: We de-
couple each key component from the DAM to verify the
effectiveness of the offset, scale and position embedding, as
shown in Table IV. Offset improves our model performance
the most when one of the components is used alone, with
a DSC of 0.912, followed by scale with a DSC of 0.907,
and finally embedding with a DSC of 0.901. When two
components are employed together, the combination of offsets
and scales improves model performance by 2.79%, with a
DSC of 0.920. Embedding works better in combination with
offset and scale. All components increase the DSC by 0.031,
and improve the performance by more than 3.46%. It is seen
that offset, scale and embedding are vital components of our
DAM. The offset moves more patches to aortic areas, the scale
enables better preservation of the complete semantic features,
and the embedding coordinates these components.

TABLE IV
DECOUPLE OF OFFSET,SCALE AND EMBEDDING IN DAM. "/" MEANS
TO PERFORM THE OPERATION IN THE MODULE, WHILE "X" MEANS NOT.

Offset Scale Eembedding | DSC{1 Pre{  Recall 1
X X X 0.895 0.898 0.887
VA X X 0912 0915 0.906
X Vv X 0.907 0.903 0.908
X X V4 0.901 0.896 0.904
v Vv X 0.920 0.924 0.918
Vv X V4 0916 0.917 0913
X V4 v 0.913 0.908 0.915
Vv v v 0.926 0.928 0.922

We conduct experiments to evaluate at which stage the
DAM should be integrated into the extractor. We replace the
original self-attention block with the DAM at different stages.
Besides, we add an extra stage, Stage 5, to illustrate the impact
of the number of stages on aortic segmentation performance.
According to the results shown in Table V, DAM is minimally
effective when applied in Stage 1. The reason may be that the

We verify the ability of the ICM to extract contextual
information in space. We calculate the feature correlation
between the current slice and the two slices before and after
it, where the current slice is marked as C'S, the two slices
before current slice are marked as C'S — 2 and CS — 1,
and the two slices after current slice are marked as C'S + 1
and C'S + 2. We visualize feature correlations between slices
through heat maps. The results are shown in Fig. 8(a). The
results show good spatial correlation between slices, with the
correlations of 0.78-0.93. The correlation between adjacent
slices is more than 0.86. The results prove that our ICM
can better capture the sequence relationship between slices
in space, extract the local feature correlation of morphology,
and promote the DCTN learn spatial context information. We
further compare our ICM and the 3D convolution to illustrate
the performance of both in extracting spatial correlation. We
calculate the spatial correlation in the depth dimension to
compare the differences of the contextual information. The
results are shown in Fig. 8(b). The results show that our ICM
approximates the ability of learning contextual information in
3D convolution, with the correlations of 0.80-0.93.

1000
cs-2 0.88 0.86 0.82 0.78 0s75

—_
=
N4

0350
0s25
0300
0875

0.850

CS+1

3D Convolution

0,825

cs+2 0.81 0.85 0800

CS-1 CS CS+1 CS+2

DCTN

Fig. 8. (a) The heat map shows that our DCTN has high feature correla-
tions between slices. (b) The heat map show that our ICM approximates
the ability of learning contextual information in 3D convolution

2) Effectiveness of Geometry-constrained OT Guider: We
visualize the topological process of constraints, as shown
in Fig. 9. For that, we employ the Gaussian distribution to
display that OT matches the source probability vector of raw
images into the target probability vector of CPR images. The
OT guider is beneficial for the accuracy of the geometric
constraint, because it learns inter-image geometric transfor-
mation and ensures the sensitivity to the aortic boundary.
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3D Constraint
Deduction

Orthogonal
Section

Distribution

Fig. 9. Visualization of OT process in the guider. The role of the guider
is shown from the orthogonal section, curves of Gaussian distribution,
results of 3D constraint and constraints deduction, respectively. The
optimal points in the curve are indicated by the stars for ascending aorta
(green), aortic arch (orange) and descending aorta (red).

In the case of the normal aorta, the distribution curve is
seen to be relatively smooth; the curve is more consistent
with the Gaussian distribution, which helps the network to
learn the morphological correlation between graphs. In the
case of CoA, the curve has a fluctuation in the middle; the
reason is anatomical mutations caused by aortic stenosis, but
nevertheless DCTN remains sensitive to stenotic vessels. In
the case of AD, the curve is more jagged; AD is irregular,
the false lumen is beak-shaped and the true lumen is small.
The variational inference via OT is not as smooth. However,
the DCTN still has high matching and good robustness. As
can be seen from the 3D constraints, our DCTN decodes the
constraints of spatial topology quite well. The results conform
to the anatomical structure of the aorta.

TABLE VI
ABLATION STUDY ON ALL MODULES.
Extractor Decoder Guider | DSC 1 Pre T Recall T
X X X 0.895 0.898 0.887
Vv Vv X 0.936 0.938 0.923
X X v 0912  0.907 0.915
v v v/ 0.949  0.952 0.933

3) Effectiveness of all Modules: We conduct experiments
on all modules to verify their effectiveness, including the
extractor, decoder and guider. The results are shown in Ta-
ble VI. The model achieves an average DSC of 0.895 for
aortic segmentation without any additional modules. However,
the model that includes the extractor and the decoder achieves
a higher DSC of 0.936. The extractor module performs well in
extracting semantic features of the aorta and capturing intra-
image and inter-slice correlations. The decoder enables the
model to perceive geometric contours of the aorta at multiple
scales, and enhance the foreground information of the aorta
with a low-contrast agent intensity. The combination of the two
modules leads to a substantial increase in the model’s learning
ability. When solely the guider module is employed, the model
achieves a DSC of 0.912. The guider can effectively learn
geometric features between raw and CPR images, enforce
morphological constraints, and facilitate the learning of the
aortic features. All modules in the DCTN cooperate and
complement each other to achieve the best performance, with

a DSC of 0.949, precision of 0.952 and recall of 0.933. The
convergence curve of our model is shown in Fig.10.

0.9
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Fig. 10. The convergence curve of our model during the training.

H. Applicability and Superiority on the Public Datasets

We conduct experiments on four public CT datasets (AVT
[62], TBAD [63], AAPM [64], and SegTHOR [65]) for better
evaluation of the applicability and superiority. These datasets
contain the raw CT images and the corresponding organ labels.
Table VII shows the comparison between the DCTN and the
fourteen aortic segmentation methods on four public datasets.
Our method achieves a mean DSC of 0.903, RMSD of 4.74
and HD of 6.21 on AVT; a DSC of 0.922, RMSD of 3.33 and
HD of 3.43 on TBAD; a DSC of 0.893, RMSD of 5.52 and HD
of 7.54 on AAPM; and a DSC of 0.941, RMSD of 3.06 and
HD of 3.12 on SegTHOR. The values of these results show that
our method is highly consistent and reliable across different
datasets and close to our private dataset (DSC:0.949, RMSD:
3.51, HD:3.45). These results also indicate that our method is
applicable on the separate, independent, and public datasets.
The performance of our method on these four public datasets
is superior to that of other state-of-the-art methods, as shown
by its higher DSC and lower HD values in comparison to the
others. These results provide evidence that the effectiveness of
our method extends beyond the separate dataset and is superior
to other methods in diverse datasets.

V. CONCLUSION

In this paper, we have developed a novel deformable con-
straint transport newtwork (DCTN) for aortic segmentation.
The DCTN adaptively extracts aortic features to define intra-
image geometric properties; it guides topological implemen-
tation in space to constrain inter-image morphological trans-
formation. Our method conduct on 267 in-house subjects,
including normal aorta, CoA, and AD. Our method also
conduct on four extra public datasets. The results show the
effectiveness of DCTN for more precision segmentation in all
these cases, and its superior segmentation accuracy compared
with other advanced segmentation methods. This contributes
to distinctive employment of DCTN for aortic segmentation,
for measurement of clinical indexes and for carrying out
appropriate aortic interventions.
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TABLE VI
THE RESULTS OF COMPARISON BETWEEN OUR MODEL AND OTHER SEGMENTATION METHODS ON FOUR PUBLIC DATASETS.

Method AVT [62] TBAD [63] AAPM [64] SegTHOR [65]
DSCF T RMSD | HD T DSEF TRMSD | THD LT DSEF T RMSD THD LT BSE T RMSD |HD
Xiong [21] 0.886 5.03 7.72 0.907 4.51 5.31 0.890 5.56 8.22 0.931 3.76 3.34
Sieren [27] 0.879 6.05 10.01 0.894 5.01 5.22 0.883 6.19 9.13 0.927 3.86 4.02
Li [24] 0.885 5.03 7.43 0.918 4.35 3.41 0.887 5.82 8.75 0.938 3.84 3.67
Zhao [33] 0.881 5.23 9.45 0.903 4.55 5.43 0.880 6.32 9.51 0.924 4.12 493
Feiger [19] 0.883 5.06 8.76 0.902 4.55 5.02 0.880 6.44 10.08 0.929 4.06 3.75
Wobben [23] 0.887 4.95 7.54 0.906 4.50 4.57 0.886 5.86 9.04 0.935 3.47 3.16
Song [34] 0.884 5.08 7.86 0.907 4.52 6.06 0.884 6.13 8.32 0.931 3.78 4.13
Hahn [28] 0.880 6.12 12.35 0.885 6.06 8.65 0.875 6.62 11.67 0.922 4.32 6.31
Abdolmanafi [47] 0.882 5.08 9.12 0.903 4.58 5.77 0.880 6.31 9.45 0.922 4.25 5.67
Chen [26] 0.889 5.02 8.36 0.905 4.53 5.63 0.886 5.73 8.45 0.925 4.16 5.24
Lyu [48] 0.888 4.96 8.41 0.902 4.52 6.53 0.882 6.41 9.43 0.927 4.14 4.89
Zhao [36] 0.898 4.82 7.13 0912 4.38 4.02 0.884 6.23 9.34 0.930 3.95 4.03
Deng [32] 0.883 6.06 10.36 0.894 4.71 5.88 0.880 6.42 10.02 0.918 5.01 6.28
Yu [49] 0.882 5.07 9.33 0.897 5.22 6.26 0.878 6.48 9.97 0.915 4.89 6.35
Cheng [50] 0.880 5.18 9.88 0.901 4.59 497 0.875 6.56 9.83 0.913 4.92 6.56
Cao [22] 0.881 5.11 9.86 0.896 5.18 6.31 0.879 6.51 11.23 0.912 4.87 5.82
Unet [51] 0.881 5.19 9.91 0.893 5.33 6.30 0.877 6.54 11.18 0.902 5.12 5.38
TransUnet [52] 0.886 5.05 7.65 0.912 4.41 4.06 0.885 5.83 8.77 0.910 4.92 5.57
PSPNet [53] 0.880 6.08 10.11 0.893 5.32 6.29 0.880 6.33 9.92 0.898 5.16 6.01
SegNet [54] 0.877 6.06 9.97 0.891 5.37 6.28 0.878 6.53 11.25 0.893 5.34 6.03
ViT [55] 0.882 5.30 8.92 0.908 4.52 5.58 0.881 6.25 9.73 0.905 5.07 5.39
SwinTrans [56] 0.888 4.92 7.41 0911 4.08 4.68 0.883 5.90 8.89 0.913 4.37 4.92
SegFormer [57] 0.884 5.01 7.56 0.906 4.54 5.89 0.881 6.27 9.61 0.908 5.23 5.45
Ours 0.903 4.74 6.21 0.922 3.33 343 0.894 5.52 7.53 0.941 3.06 3.12
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