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Abstract— Grating interferometry CT (GI-CT) is a promis-
ing technology that could play an important role in future
breast cancer imaging. Thanks to its sensitivity to refrac-
tion and small-angle scattering, GI-CT could augment the
diagnostic content of conventional absorption-based CT.
However, reconstructing GI-CT tomographies is a complex
task because of ill problem conditioning and high noise
amplitudes. It has previously been shown that combin-
ing data-driven regularization with iterative reconstruction
is promising for tackling challenging inverse problems in
medical imaging. In this work, we present an algorithm that
allows seamless combination of data-driven regularization
with quasi-Newton solvers, which can better deal with ill-
conditioned problems compared to gradient descent-based
optimization algorithms. Contrary to most available algo-
rithms, our method applies regularization in the gradient
domain rather than in the image domain. This comes with a
crucial advantage when applied in conjunction with quasi-
Newton solvers: the Hessian is approximated solely based
on denoised data. We apply the proposed method, which we
call GradReg, to both conventional breast CT and GI-CT and
show that both significantly benefit from our approach in
terms of dose efficiency. Moreover, our results suggest that
thanks to its sharper gradients that carry more high spatial-
frequency content, GI-CT can benefit more from GradReg
compared to conventional breast CT. Crucially, GradReg
can be applied to any image reconstruction task which
relies on gradient-based updates.

Index Terms— Grating Interferometry, Iterative Recon-
struction, Machine Learning, Regularization, Tomography

I. INTRODUCTION

Over the last decades there has been an increasing interest
in X-ray phase contrast CT due to the higher soft-tissue
contrast that can be attained compared to absorption-based CT
[1]. Among the many techniques that have been developed
[2]–[4], grating interferometry (GI) [5]–[7] arguably holds
the biggest potential to undergo a successful transition from
synchrotron facilities to the clinics. GI yields three signals
which arise from distinct physical phenomena, i.e. absorption,
refraction and small-angle scattering, which could provide
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complementary diagnostic information. Several ex-vivo studies
have shown promising results of GI in the context of planar
breast imaging [8], [9]. Consequently, the logical next step
is to extend the technology to three-dimensional CT. To this
end, we have built a large field-of-view (FOV) prototype to
assess the technical feasibility of scanning large specimens
with grating interferometry CT (GI-CT) [10].

Given that GI-CT has been extensively described in recent
articles [10]–[12] and since this paper revolves around algo-
rithmic concepts, which are not limited to this particular use
case but are applicable to virtually any imaging modality, we
will only give a brief overview of GI-CT and focus instead
on the main problems our approach seeks to solve. When
used together with conventional X-ray tubes, GI requires three
gratings placed between the source and the detector. The first
grating, commonly called G0, is placed behind the source
to increase the coherence of the beam. The G1 grating is a
phase grating that creates a spatial interference pattern called
Talbot carpet. Finally, a third grating called G2 is placed
before the detector to analyze shifts and amplitude reductions
in this pattern, which in turn allows one to measure the X-ray
refraction and small-angle scattering, respectively. In GI-CT
the source, the detector, and the gratings jointly rotate around
the scanned subject to acquire sufficient angular projections
for a tomographic reconstruction.

There are two main challenges associated with the tomo-
graphic reconstruction of these data: high noise amplitudes
[13], [14] and ill problem conditioning [11]. The noise ampli-
tudes in GI are more significant compared to conventional CT
because the G2 grating absorbs half of the flux. Therefore, for
a given dose, half of the photons will hit the detector in GI-CT
compared to conventional CT. Moreover, the uncertainty in the
measured data is further increased by the modest visibility, i.e.
the amplitude of the interference pattern, that can be achieved
with currently available gratings [10]. In fact, the latter plays
a crucial role in the uncertainty propagation in GI [13]. In
particular, low visibilities lead to higher uncertainties in the
phase- and small-angle scattering images. On the other hand,
the ill problem conditioning mainly affects the phase-contrast
channel and manifests itself by very slow convergence dur-
ing iterative reconstruction, which consequently exacerbates
the noise accumulation [11]. It is intrinsically linked to the
physics of the signal acquisition in GI-CT, in particular to the
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differential nature of the refraction measurement as well as
to the periodicity created by the gratings. Note that the bad
conditioning of GI-CT’s phase contrast operator is not directly
related to the ill-conditioning that often arises in CT due to
angular under-sampling. In fact, GI-CT acquisitions can be
ill-conditioned despite dense angular sampling.

In light of these challenges, solving the inverse problem
in GI-CT is highly complex. As we show in [12], the ill-
conditioning can be circumvented by assuming a fixed non-
linear dependence between the phase and the absorption chan-
nel which enables fusing the strengths of both channels into
one. This allows to reconstruct an image that takes the low
spatial frequency information from absorption while taking
the high frequencies from phase. This strategy enabled us to
reduce the dose necessary to achieve a given spatial reso-
lution compared to conventional CT. However, the problem
of high noise amplitudes persists and becomes particularly
cumbersome at low-dose acquisitions. To address the noise
problem, promising reconstruction results were obtained in
[11] by combining physics-based likelihoods with data-driven
priors. In particular, data-driven Plug-and-Play regularization,
i.e. the use of an off-the-shelf denoising algorithm that acts as
a regularizer in iterative reconstruction, was combined with a
quasi-Newton solver to iteratively reconstruct phase-contrast
tomographies based on differential phase contrast sinograms.
Specifically, in our previous work, we applied the denoising
step in the image space every k iterations and restarted the
quasi-Newton updates after each denoising step. This strategy
was proposed because, as we will explain in detail below, it
is not possible to efficiently denoise after each iteration in
the image space when using quasi-Newton solvers. However,
this has the disadvantage that noise accumulates over a larger
number of iterations, which makes the regularization more
cumbersome.

In this paper, we build upon these previous works and
present an algorithm that seamlessly combines data-driven
denoising with a quasi-Newton solver to reconstruct virtu-
ally noise-free fused absorption-phase contrast tomograms by
applying the regularization step in the gradient space. In
particular, contrary to the previously published work [11], the
regularization step takes place after each likelihood update,
thus greatly facilitating denoising, and consequently improving
the performance. This article is organized as follows. We will
first briefly explain the fused iterative reconstruction algorithm
developed in [12]. We will then highlight a feature of this
reconstruction algorithm that motivated us to develop a novel
regularization strategy which, contrary to most regularization
approaches, operates on the image gradients, rather than in
image space. Next, we will show on both in-silico and real
data that the proposed regularization strategy, which we call
GradReg, significantly improves the reconstruction quality of
both conventional CT and GI-CT. Finally, we demonstrate
that GI-CT reconstruction benefits more from the GradReg
compared to conventional CT.

II. METHODS

A. Fused intensity-based iterative reconstruction

In a recent article [12] we proposed a new reconstruction
algorithm for GI-CT called fused intensity-based iterative
reconstruction (FIBIR) in which a single fused absorption-
phase contrast image is reconstructed, alongside the dark-
field image. The method is an extension of two previously
published algorithms which seek to jointly reconstruct the
three image channels [15], [16], which however fail to achieve
robust convergence under clinically compatible acquisition
conditions. The FIBIR algorithm is based on a quasi-Newton
solver, i.e. the L-BFGS algorithm [17], which optimizes the
following loss function:

argminµ,ϵ
1

2
∥ log (I/I0) +Aµµ

− log(1 + V0 exp [−Aϵϵ] cos(φ0 −Aδmθ[µ]))∥22. (1)

I0, V0 and φ0 are the flat-field intensity-, visibility- and phase-
map. µ represents the fused absorption-phase image and ϵ
is the dark-field image. mθ is an image-to-image mapping
function defined as

mθ(µ) =


δa
µa

µ, µ <
µa+µf

2
δf
µf

µ,
µa+µf

2 ≤ µ ≤ µf+µs

2
δs
µs
µ,

µf+µs

2 < µ

(2)

Here, µa, µf , µs are the linear attenuation coefficients for
adipose, fibroglandular and skin tissue at Ed, i.e. the design
energy of our prototype, which are related to the imaginary
part of the index of refraction via µi = 4πβi/λ. δa, δf , δs
are the real parts of the indices of refraction of adipose,
fibroglandular and skin tissue at Ed.

We found that with FIBIR, GI-CT can outperform con-
ventional CT in a clinical-dose regime. More specifically,
we showed that it is possible to either increase the spatial
resolution at a given dose level, or to decrease the dose for
a given spatial resolution. To allow for a fair comparison on
equal image quality, the reconstructed images were compared
at a contrast-to-noise ratio (CNR) of 5, which was obtained by
filtering the raw tomograms with a Gaussian denoising kernel
[12].

Examination of the raw tomograms however revealed that
while GI-CT images contain more information compared
to conventional CT, and in particular more high-frequency
information, they are also affected by more noise since the
data acquired in GI-CT has half the counts compared to
conventional CT. This can also be observed when looking at
the gradient images of the loss with respect to the two signals
during reconstruction (see Fig. 1). Note that here the term
gradient image does not refer to an image which has been
processed with a gradient (or finite-difference) filter but to the
gradients of the loss function we seek to optimize during re-
construction. Since regularization can remove unwanted noise
but cannot artificially create signal, we thus hypothesized that
GI-CT could benefit more from regularization compared to
conventional CT.
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Fig. 1. FIBIR-enabled GI-CT yields sharper but noisier gradients
compared to conventional CT. On the top, from left to right: attenuation
and phase gradient in FIBIR. On the bottom, from left to right: the
total FIBIR gradient, i.e. the combination of the two above, and the
CT-equivalent gradient. The latter refers to iterative reconstruction of
conventional CT, i.e. absorption-only. All gradients were taken at iteration
7. As in [12], this iteration number was chosen because in the first
iterations the gradients carry only coarse signals while at later iterations,
when the image is close to convergence, the gradients do not contain
much signal anymore.

B. Gradient denoising for quasi-Newton optimization

Before explaining the concepts behind GradReg, let us
consider a prototypical inverse problem in tomographic re-
construction where we wish to reconstruct the tomogram x
based on the acquired projections y. With a (possibly non-
linear) forward operator A modelling the imaging physics and
assuming Gaussian noise we seek to minimize the likelihood
function

L =
1

2
∥Ax− y∥22. (3)

Usually, gradient-based optimization schemes are employed to
solve this problem with the following update rule:

xk+1 = xk − γ∇xL, (4)

where γ is the step size and ∇xL is the gradient of the
loss function with respect to the image xk at iteration k.
In these schemes the image is thus obtained by iteratively
refining it based on the available gradient information. When
the loss function is convex, which is the case for linear inverse
problems, these types of optimization schemes are guaranteed
to converge [18].

In the real world, the measurement y is always noisy and,
consequently, the gradient ∇xL as well. Therefore, more noise
will be added to the image iterate xk at every iteration.
To avoid reconstructing a corrupted image, prior knowledge
can be introduced into the inverse problem in the form of
regularization. Most existing regularization strategies act in the
image space as they represent some prior knowledge about the
images we seek to reconstruct. This can be achieved by two
main approaches. In the first one a regularization term R(x)
is explicitly added to the reconstruction loss

L =
1

2
∥Ax− y∥22 + λR(x). (5)

Here, λ is a scalar which determines how strongly the prior
knowledge shall be weighted during reconstruction. A second
type of update rule that can be used, especially if R(x) is not
continuously differentiable or if it is computationally infeasible
to compute ∇xR(x), is

xk+1 = T
(
xk − γAT (Axk − y)

)
, (6)

where T is a projection operator which effectively acts as
an image denoising/artefact removal step. The latter approach
can be viewed as an implicit type of regularization which is
implemented by alternating a gradient-based data update and
a regularization or denoising step in the image space.

In this article, we are interested in the latter type of
regularization. A multitude of classical approaches that fit into
this scheme has been proposed over the last decades, with
most projection operators involving either a thresholding or
a shrinkage step [19], [20]. In recent years the concept of
data-driven regularization has been gaining popularity and,
in the context of alternating schemes, Plug-and-Play-like de-
noising has received a lot of attention due to its astonishing
performance [21]–[24]. In these approaches, the projector T
is parameterized by a neural network fθ trained a-priori on a
representative set of data. After training this then leads to the
following update rule:

xk+1 = fθ (xk − γ∇xL) . (7)

Instead of regularizing in the image space, we propose to
regularize, i.e. denoise, the gradients gk(x) = ∇xL at every
iteration k:

gdenoised,k(xk) = fθ (gk(xk)) . (8)

One might ask why do we need to denoise the gradients if
image-space Plug-and-Play works so well? In fact, they do
perform extremely well, but only when first-order algorithms
are used. In such cases, each iterate xk+1 is projected to
the manifold of clean images and will thus be noise-free.
Sometimes, however, plain gradient descent-based algorithms
suffer from slow convergence, especially when dealing with
highly ill-conditioned problems. Therefore, in those cases
one might want to use quasi-Newton methods which can
significantly increase convergence speed, and possibly limit
noise accumulation.

Quasi-Newton methods aim at leveraging information not
only about the steepness of the loss function, i.e. the gradient,
but also about its curvature, i.e. the Hessian. Unfortunately,
computing H explicitly is computationally infeasible for large-
scale imaging problems. Luckily, it can be approximated at
every iteration by employing the secant equation which relates
the difference in iterates (xk+1 − xk) and the difference in
gradients (gk+1 − gk) with the Hessian:

(gk+1 − gk) ≈ H(xk+1)(xk+1 − xk). (9)

This then allows to compute an approximate Hessian Bk+1 at
iteration k + 1 with

Bk+1(xk+1 − xk) = gk+1 − gk. (10)
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The approximated Hessian can then be used to compute the
image update. Different quasi-Newton methods have been
proposed [25], but most update the image iterate xk+1 as a
function of a history of approximate Hessians Bi at previous
iterations i. An example of such an update rule is the L-
BFGS method [17] which stores the difference in gradients
yk = gk+1 − gk and the difference in iterates sk = xk+1 −xk

at every iteration. In the first iteration, the update direction p
is given by the gradient, i.e. p = g0. For later iterations the
descent direction is computed as follows [17]:

p = gk
ρ = 1/(yTk sk)
for i = k − 1, k − 2, . . . , k −m

αi = ρis
⊤
i p

p = p− αiyi

γk =
s⊤k−1yk−1

y⊤
k−1yk−1

H0 = γkI
p = H0p
for i = k −m, k −m+ 1, . . . , k − 1

βi = ρiy
⊤
i p

p = p+ si(αi − βi)
p = −p

Applying classical Plug-and-Play methods in a naive way
to quasi-Newton optimization schemes thus yields suboptimal
results. In fact, the update rule would be based on data coming
from two different functions, i.e. gradients originating from a
noisy function gk and clean iterates xk coming from a denois-
ing step. Consequently, it would yield noisy approximations
of the Hessian Bk. On the contrary, in our approach gk will
be noise free and thus xk will also be noise free, thus yielding
an update rule which is based solely on denoised data. There-
fore a noise-free approximation of the Hessian Bk will be
obtained. Note that for linear inverse problems, gradient- and
image-space denoising yield equivalent secant equations as
gk+1−gk is independent of the noise in those cases. However,
since quasi-Newton methods compute Hessian approximations
with recursive algorithms which require the current gradient,
gradient-space denoising offers superior results even on linear
inverse problems.

The benefits of GradReg can be analyzed by looking at the
simple experiment displayed in Fig. 2. We simulated a noisy
quadratic loss function, minimized it with gradient descent and
saved both the iterates and the gradients. Assuming perfect de-
noising, we then plotted the approximated Hessians computed
with (10) for each of the iterations, once for gradient-space
denoising (GradReg) and once for image space denoising. The
second plot in Fig. 2 shows that, if we assume perfect gradient
denoising, this leads to near perfect approximations of the
Hessian in GradReg. On the contrary, perfect image space de-
noising leads to highly unstable approximations of the Hessian
due to the noise that flows into (10) from the corresponding
gradients. If we now used the Hessian approximations obtained
with image space denoising together with a quasi-Newton
solver, optimization would become highly unstable. On the
contrary, a stable solution could be found with GradReg.

Since in this work we made use of the L-BFGS algorithm,

Fig. 2. The effect of gradient space denosing on the approximation of
the Hessian. In the first plot a noisy quadratic loss is shown together with
the iterations steps needed to minimize it with gradient descent. In the
second plot the approximations for the Hessian are shown for GradReg
(blue) and image-space denoising (orange). A perfect denoiser was
assumed in this experiment.

we will focus our further analysis on this particular update
rule. However, the proposed concept holds for all methods
which aim at approximating the Hessian based on a history of
gradients and image iterates [26].

C. Data generation pipeline
In order to regularize the gradients with a data-driven

algorithm we had to provide the means to train the denoising
model fθ. We decided to opt for a supervised training strategy
in which the model learns to map noisy gradients to their
corresponding clean ground truths.

We simulated noisy and clean sinograms using the in-silico
absorption and phase breast phantoms introduced in [27]. For
the dark-field channel, we simulated simple dots representing
microcalcifications. We projected the absorption, phase and
dark-field phantoms with the ASTRA toolbox [28] into the
sinogram space, and then combined simulated phase stepping
with the GI forward model

I0 exp [−Aµµ](1 + V0 exp [−Aϵϵ] cos(φ0 −Aδδ)) (11)

to generate clean phase stepping data Iclean. Finally, we
simulated Poisson noise to obtain realistic phase stepping
data Inoisy. While in this work we used phase stepping data,
the developed methods are also applicable to stepping-free
scans with fringe-based phase maps as discussed in [12]. We
would like to point out that we used in-silico data in this
article as we do not possess sufficient amounts of real data
yet to train a data-driven algorithm on actual measurements.
However, the presented approach is compatible with real data
as well, in which case the clean ground truth would be replaced
by high-quality scans. If no high-quality scans are available,
unsupervised or self-supervised approaches [29]–[32] could
also be envisioned.

A straight-forward way to generate the gradient images
used as training data is to take noisy and clean sinograms,
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Fig. 3. Data generation pipeline. The clean data is displayed in green,
the noisy data in orange. The pipeline can be applied for an arbitrary
number of iterations. This figure displays the data generation for a linear
inverse problem (see (3)) with a gradient descent-based update rule.
The forward operator is therefore indicated by A, the backward operator
by AT , the image iterate by xi the noisy and clean measurement data
by yn and yc, respectively. In this work the operator was based on
(13) and the L-BFGS update rule was used instead of gradient descent.
The terms input and target refer to the data intended for training the
regularization network. Specifically, the former refers to the inputs for
the denoiser, whereas the latter to the labels, i.e. the training signals.
On the contrary, the inputs for the data generation pipeline are the noisy
and clean sinograms.

iteratively reconstruct the tomograms and save the gradients at
each iteration. Unfortunately, this does not generate the data
we need to train our model. In fact, the data we simulate
must allow the denoiser to learn what it shall do at inference
time during reconstruction. Since our denoiser has to remove
the noise which is introduced by a single likelihood-based
update step, we must generate training data in which the
corrupted gradient images contain the noise backprojected
from one single update step. On the contrary, storing the
gradients that arise in unregularized iterative reconstruction
leads to increasing amounts of noise with increasing iterations.
The regularizer would therefore face an increasingly arduous
denoising task.

This can be avoided by running an (unregularized) recon-
struction pipeline which takes both the noisy and the clean
sinograms as input. More specifically, we start with an empty
image x0, use the noisy sinogram to compute the first noisy
gradient and save it. We then use the clean sinogram and repeat
the same process. However, this time we also update our image
iterate with the clean gradient, which will leave us with a clean
image iterate that can be used to compute the subsequent noisy
and clean image gradients. By repeating the process a dataset
that contains noisy and clean gradients can be built in which
the noise arises from a single update step. The entire data-
generation process is displayed in Fig. 3 for a generic image
reconstruction task, i.e. not specifically for GI-CT.

To train a network fθ, we ran ten simulations to generate
the training data and ten to generate the validation data. The
testing data consisted of a single simulation experiment. Each
simulated experiment had an image size of 16 × 1340 × 1340
voxels and a sinogram size of 16 × 1200 × 1340 pixels. We
saved 30 gradients per experiment as we observed that after 30
iterations the reconstructions had always converged, i.e. only
noise was being added to the reconstructions. The total number
of 2D gradient images in both the training and validation sets

Fig. 4. Noisy and clean FIBIR gradients as inputs for the regularization
network. From top to bottom: noisy gradients, clean gradients and their
difference images. From left to right: increasing iteration numbers k =
4, 8, 12, 16, 20, 24.

was therefore 10×16×30 = 4800, yielding a total dataset size
of roughly 140 GB for every network trained in this study.

Fig. 4 shows an example of the generated training data.
There are two interesting observations to be made. First, the
image content significantly varies among iterations. Specif-
ically, the first iterations mostly introduce trends into the
tomograms, i.e. large features, whereas the later ones add
details, i.e. small features. Second, with increasing iterations
the noise intensity stays constant (see difference images in Fig.
4), whereas the signal intensity decreases (see the ranges of
the colorbars). As we will see below, this fact can be leveraged
to enhance the denoising performance.

D. Residual network architecture for gradient denoising
Since the image gradients vary significantly over the course

of the iterations, we initially hypothesized that training a single
network to denoise them all would be challenging because the
underlying data distribution is spread out over a large space.
In fact, training a convolutional neural network (CNN) to map
all noisy gradients to their clean counterparts proved to be
difficult. However, since there exists a common feature across
all iterations, i.e. the noise, we reformulated the problem
to leverage this prior knowledge. In particular, we used a
CNN with a residual loss which learns to fit the difference
between the input and the target image, i.e. that learns to
extract the noise rather than to fit the signal. This led to
considerably better results. It is important to note that classical
filters could have been used instead of the more complex
data-driven denoiser. However, this led to considerably worse
results. We attributed this to two main reasons. First, strong
noise amplitudes cannot be easily removed with simple filters.
Second, since gradient images vary significantly from iteration
to iteration, it is not possible to apply a classical filter with the
same hyperparameters to each iteration, thus requiring careful
hyperparameter tuning for each iteration. On the contrary, a
neural network-based denoiser automatically learns to process
all iterations.

The network fθ is thus trained with the following loss
function

argmin
θ

1

S

1

kmax

∑
s

kmax∑
k=1

∥∥gsk,µ,noisy − fθ(g
s
k,µ,noisy)− gsk,µ

∥∥2
2
.

(12)
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Fig. 5. Architecture of the network fθ used to denoise image gradients.
The data that flows through the network is represented by dark-blue
rectangles. The channel dimension is given below each rectangle, the
spatial dimension on their left. Different operations are highlighted by
arrows of different colors. The network is trained to fit the noise in the
input gradient.

gsk,µ,noisy refers to the noisy 2D gradient at iteration k coming
from sample s and gsk,µ to its clean counterpart. S is the dataset
size and kmax is the highest iterations number, which was set
to 30. fθ was parameterized with a U-net-like architecture with
5 scales and 96 channels per layer, implemented in Tensorflow
[33] (see Fig. 5). Downsampling was performed with average
pooling and a feature-wise trainable normalization was applied
to each layer. We used ReLU activation functions and the
kernel size in each channel was set to 3. The model had
a total of 1656769 parameters. The Adam algorithm [34]
was used to optimize the loss with a decaying learning rate
starting at 10−4 on a NVIDIA Titan GPU with 24GB of
memory. At each iteration, we randomly chose a sample s
and an iteration number k corresponding to one particular
gradient image in our dataset. The images were then randomly
cropped to 512 × 512 to fit into the GPU memory. All models
were trained until convergence, i.e. until the validation loss
saturated. Consequently, the training time varied considerably
from experiment to experiment, with an average of around 63
hours.

E. The reconstruction algorithm
The full reconstruction algorithm, which combines the L-

BFGS optimizer and the data-driven gradient regularizer, is
depicted in Algorithm 1. In what follows the method will
be described for GI-CT reconstruction. However, the GI-
CT forward model can be replaced with the forward model
associated with any other image reconstruction task, be this in
tomography, medical imaging or beyond.

In its GI-CT implementation the algorithm requires the
measurement data I , the flat-field data (I0, V0, φ0), empty
starting images (µ0, ϵ0) for the fused absorption-phase chan-
nel and for the dark-field channel, the forward operators
(Aµ, Aδ, Aϵ) associated with the three channels, the trained
gradient regularizer fθ, the number of L-BFGS iterates to
consider m, the maximal number of iterations kmax and the
mapping function mθ. The forward operators are based on
spherically symmetric blob functions [11], [35], [36] and Aµ

is equal to Aϵ in the current implementation of the algorithm.

The algorithm starts by forward projecting the image chan-
nels based on

I0 exp [−Aµµ](1+V0 exp [−Aϵϵ] cos(φ0−Aδmθ[µ])). (13)

Next, it computes the gradient with respect to µ and ϵ.
Subsequently, the gradient with respect to µ is fed into the
denoising network. We did not apply gradient denoising to the
dark-field channel in this work as we were only interested in
the fused channel here. However, we expect the method to be
applicable also to the dark-field channel by training a separate
denoiser for the latter. Once the fused gradient is denoised, it
is concatenated with the dark-field gradient. The same holds
for the two image iterates. Together they are then used to
compute the image update based on the L-BFGS update rule
[17]. Finally, this update is subtracted from the current iterate
to yield the next one, and the two images and gradients are
decatenated, thereby concluding one iteration of our algorithm.

The reconstruction algorithm is very similar to the data-
generation pipeline. The main difference lies in the fact
that instead of using a parallel stream to generate the clean
gradients needed to train the denoising network, it uses the
latter to regularize the gradients during reconstruction.

One iteration of our algorithm takes around 45 seconds for
an image volume of 1340 × 1340 × 16 with sinograms of size
5 × 1200 × 1340 × 16 on a NVIDIA Titan GPU with 24GB of
memory. Once the network has been trained, the regularization
step is very fast. In fact, it has a negligible computation time in
the order of tens of milliseconds per slice. A large fraction of
the computation time is thus used by the forward and backward
operators.

F. Regularization in GI-CT vs. CT-equivalent

In [12] we compared the performance of GI-CT and conven-
tional CT at different radiation doses. The results suggested
that the former could either increase the resolution or lower the
dose compared to conventional CT. Here, we want to explore
how GradReg influences this comparison.

We therefore performed a simulation study at 3 different
radiation doses: 4 mGy, 8 mGy and 16 mGy. As in [12]
we matched the photon counts in the projection space of
our ASTRA toolbox-based [28] ray-tracing simulations to the
counts of CT scans for which dose calculations had been
performed by the means of Monte Carlo simulations, where
the simulation geometry and source parameters were validated
through dosimetric measurements [10]. We used a visibility
of 13% which corresponds to the current mean value we can
reach on our setup. At each dose, we generated training data as
explained in section II-C, i.e. at each dose 10 image volumes
of 1340 × 1340 × 16 voxels were generated for training and
10 for validation. For each of them 30 noisy and clean gradient
iterations were saved. We then trained separate networks for
every dose level, one for FIBIR and one for the CT-equivalent,
thus leading to a total of 6 trained networks.

Once the networks were trained we used them to regularize
the gradients within iterative reconstruction as described in
Algorithm 1. The reconstructions were stopped at iteration
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30, which was after the norm of the difference between two
reconstruction iterates did not significantly change anymore.
In parallel, we reconstructed all simulated data also without
regularization. To compare all these experiments we then an-
alyzed both spatial resolution and reconstruction error (MSE)
of the final tomographies.

III. RESULTS

A. Gradient regularization performance
As a first step, we inspected the performance of the regular-

ization network in denoising the image gradients. Fig. 6 shows
an example of the denoising results for different iterations
at a dose of 16 mGy. In the first iterations the denoising
performance is nearly perfect. With increasing iterations, the
quality naturally slightly deteriorates since the signal intensity
decreases while the noise intensity stays constant. A look
at iteration 16 and 20 shows that the denoiser is still able
to extract a significant amount of signal from the noisy
gradient, even though the task becomes highly challenging for
the human eye. Finally, in the last iterations the denoiser is
not able anymore to extract any further signal. Note though
that in these last iterations the output of the network is
almost an empty image (see iteration 24), which suggests that
after convergence the algorithm does not start overfitting to
the noise since practically nothing is added anymore to the
image iterates at this stage. Importantly, while the network is
unable to extract the little remaining signal towards the later
iterations, we observed that the network is not hallucinating
any structures which are not present in the data.

The results in Fig. 6 thus confirm that, even though the im-
age content varies significantly between iterations, one single

Fig. 6. Gradient denoising. From top to bottom: noisy gradients,
denoised gradients, difference between noisy and denoised gradients,
and ground truth (clean) gradients. From left to right, different iterations
are plotted at k = 4, 8, 12, 16, 20, 24. Zoomed-in sections of the full
gradient images are plotted with a FOV of 30 × 30 mm and with a pixel
size of 75 µm.

network trained with a residual architecture can satisfactorily
process them all. There is therefore no need to condition the
architecture on the gradient iteration.

B. Regularized reconstruction

After having verified the successful gradient denoising,
we will now analyze the reconstruction results. The focus
will initially be on the 16 mGy simulation to show some
important characteristics of GradReg. Next, a comparison
across different radiation dose levels will be provided. Fig. 7
shows the reconstruction error of the image iterates, in terms of
the MSE, compared to the clean ground truth. It compares the
performance of the regularized and non-regularized algorithm,
for both FIBIR-enabled GI-CT and conventional CT. As it was
shown in [12], we observe that the unregularized FIBIR-based
reconstruction leads to faster convergence compared to its CT-
equivalent counterpart since it reaches its lowest MSE within
less iterations, i.e. 13 vs. 23 in this case. Moreover, we see
that the regularized dashed lines steadily decrease whereas the
unregularized solid lines increase once the algorithms start
fitting the noise, thus confirming the excellent regularizing
effect of GradReg. This is also consistent with the fact that
at later iterations the regularized algorithm proposes nearly
empty image updates instead of adding noise (see Fig. 6), thus
avoiding the increase in the reconstruction error that occurs in
the unregularized case. Further, we note that the regularization-
induced improvement in FIBIR is significantly larger than in
CT. This confirms the hypothesis that thanks to its sharper
but noisier gradients, GI-CT benefits more from regularization
compared to classical CT, in which the gradients are less
noisy but also less sharp. Finally, although conventional CT
operates on data with twice the amount of photons, because
of the absence of the G2 grating, the final MSE in regularized
classical CT and in regularized FIBIR-enabled GI-CT is very
similar.

The favourable quantitative findings of Fig. 7 are confirmed
by the excellent qualitative results in Fig. 8 which plots the
image iterates for the unregularized and regularized recon-
struction of CT-equivalent and FIBIR-enabled GI-CT. For the
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Fig. 7. Regularization effect on the reconstruction error. The recon-
struction error is plotted as a function of the iteration. The regularized
reconstructions are plotted as dashed lines, the unregularized coun-
terparts as solid lines. The CT-equivalent reconstruction is displayed in
purple, the FIBIR-enabled GI-CT in blue. The MSE is plotted in log-scale
for clarity.

Fig. 8. Regularization effect during iterative reconstruction. From
left to right: image iterates of unregularized CT-equivalent reconstruc-
tion, unregularized FIBIR-enabled GI-CT reconstruction, regularized CT-
equivalent reconstruction, regularized FIBIR-enabled GI-CT reconstruc-
tion and ground truth. From top to bottom: different iterations for k =
5, 15, 25. Zoomed-in sections of the full images are plotted with a FOV
of of 15 × 15 mm and with a pixel size of 75 µm. Quantitative results for
these images are shown in Fig. 7.

unregularized case, FIBIR-enabled GI-CT yields noisier but
sharper images compared to the CT-equivalent. The higher
noise is caused by half the photon counts in the former case,
whereas the sharper images are enabled by being sensitive not
only to the Radon transform of the image but also to its 1-
dimensional derivative [12]. The two regularized results reveal
that the FIBIR-enabled GI-CT reconstruction is significantly
sharper compared to the CT-equivalent image. In both cases
the noise is removed practically entirely. Finally, as for the
unregularized case, also regularized FIBIR allows to speed up
convergence compared to the CT-equivalent counterpart.

Without regularization the FIBIR-enabled GI-CT recon-
struction has a better spatial resolution, computed with Fourier
ring correlation (FRC) [37], compared to the CT-equivalent
counterpart (203 µm vs. 231 µm). With gradient-based regu-
larization the resolution of the FIBIR reconstruction improves
to 155 µm, while for the CT-equivalent reconstruction it
improves to 200 µm. Gradient-based regularization thus allows
to increase the spatial resolution in both cases, with the former
achieving a slightly bigger improvement in this experiment.

We will now discuss general trends of GradReg across
different radiation doses. The left panel in Fig. 9 shows the

Fig. 9. Left panel: reconstruction errors at different radiation doses.
Right panel: dose vs. resolution for FIBIR-enabled GI-CT and CT-
equivalent, with and without regularization. FIBIR results are plotted in
blue, CT-equivalent in purple. Regularized results are shown as dashed
lines, unregularized results as solid lines. The dashed horizontal grey
line displays the dose limit for today’s breast CT [38].

Fig. 10. Reconstruction at 16 mGy. From left to right: CT-equivalent,
FIBIR and ground truth. In the left and central images, the left panel of
the images is unregularized, the right panel is regularized. All results are
shown for iteration k = 30, i.e. the iteration closest to convergence as
seen in Fig. 7. Zoomed-in sections of the full images are plotted.

reconstruction errors of the CT-equivalent and FIBIR, with
and without regularization for different doses, at kmax. In
the unregularized case GI-CT has significantly higher MSEs
since it operates on half the number of counts. As expected,
regularization significantly improves both results. In particular,
with regularization both methods achieve similar results across
different doses. This again shows that FIBIR benefits more
from regularization. In the unregularized case the two lines
have only slightly different slopes, which makes them cross
only at extremely high doses, whereas with regularization they
cross at a dose of 10 mGy. Consequently, for doses higher
than 10 mGy, regularized FIBIR is expected to yield lower
reconstruction errors compared to conventional CT despite the
higher noise in the measured data.

Fig. 10 shows the reconstructed images which correspond
to the quantitative results in Fig. 9 at 16 mGy. Unregularized
results are plotted in the left panels of each image, whereas
regularizated results in the right panels. If we first consider
the unregularized results, we see again that the CT-equivalent
reconstructions are affected by less noise due to the higher
photon counts, which results in lower MSE values. Looking
at the regularized reconstructions, we observe that the noise is
strongly suppressed. The results are of excellent quality with
high sharpness.

The right panel in Fig. 9 shows the spatial resolution of the
reconstruction results at different doses measured with Fourier
ring correlation. Note that here the resolutions were calculated
directly on the reconstructed images. Therefore, contrary to
[12], no smoothing was involved to keep the comparison to
the unregularized case fair. First, we see that regularization
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improves the resolution for both FIBIR and CT-equivalent
across all investigated doses. Only at doses below 3.5 mGy
our results suggest that for FIBIR this is not the case anymore
because of prohibitively high noise amplitudes. Second, we
observe that with regularization the fitted CT-equivalent and
FIBIR lines cross at a comparable dose (around 6 mGy) but
at a better spatial resolution (278 µm vs. 244 µm).

These results suggest that regularization allows to increase
dose efficiency. In fact, if we want to achieve a resolution of
e.g. 155 µm (the resolution FIBIR reached in the experiment
at 16 mGy), without regularization we would need 156 mGy
for conventional CT and 40 mGy for FIBIR-enabled GI-CT.
With regularization this improves to 43 mGy and 15 mGy,
respectively. GradReg thus allows to significantly decrease the
dose necessary to achieve this particular spatial resolution, and
enables FIBIR-based GI-CT to reach a clinically-compatible
dose regime. Furthermore, the results in Fig. 9 argue that
from 10 mGy upwards, regularized FIBIR-enabled GI-CT is
superior to conventional CT both in terms of spatial resolution
and in terms of reconstruction error for a visibility of 13%.
While this dose is already within a range that is considered to
be clinically acceptable [38], the break-even point between
GI-CT and conventional CT is expected to decrease with
increasing grating quality in the future [10].

To investigate the algorithm’s effect on the spectral char-
acteristics of the noise, in Fig. 11 we plot the noise power
spectrum (NPS) for unregularized and regularized reconstruc-
tions for both conventional CT and FIBIR. In the unregularized
case we confirm the presence of more high-frequency noise in
FIBIR compared to CT, which is due to 1) GI-CT’s sensitivity
to a differential signal and 2) the presence of the G2 grating
which kills half of the X-ray flux. Moreover, we see that
regularization allows to significantly reduce the noise power
across the entire studied frequency range. Like in previous
experiments, we observe that the noise suppression is more
significant in FIBIR compared to conventional CT. In our
experiments the ground truth image had no texture and there-
fore the network learned to predict a piece-wise linear image.
This is also visible in the NPS results since the regularized
curves show a very smooth behaviour. Real samples however
contain texture, which in fact can be critical for physicians in
detecting suspicious lesions. Therefore, future work will have
to investigate how the NPS is modified when the network is
trained on real measurement data.

To confirm the promising results obtained on in-silico data
we scanned a formalin-fixed breast specimen received at the
Department for Pathology and Molecular Pathology at the
University Hospital Zürich without any significant patholog-
ical findings. The specimen has been obtained with written
informed consent under the ethical approval KEK- 2012 554
obtained from the Cantonal Ethics Commission of canton
Zürich. The results in Fig. 12 show reconstructions of a fixed
mastectomy scan, with and without regularization, in FIBIR
and CT-equivalent, at a dose of 22 mGy. The results indicate
that data-driven gradient regularization is able to produce
stable reconstruction results also on real data, even though
the network was trained solely on simulations. Specifically, we
used the network trained on 16 mGy data for the reconstruction

Fig. 11. Noise power spectrum of regularized and unregularized recon-
structions for conventional CT and FIBIR. FIBIR results are plotted in
blue, CT-equivalent in purple. Regularized results are shown as dashed
lines, unregularized results as solid lines. The NPS was computed on a
homogeneous region in the in-silico reconstructed images.

of this 22 mGy measurement data. This mismatch in the
dose was necessary because the dose level in simulations
was slightly inferior compared to the dose-equivalent of real
measurements, probably due to non-simulated effects such
as polychromaticity, a source size of roughly 400 µm which
blurs the image, vibrations, etc. Fig. 12 shows that also on
real data the regularized FIBIR images are of higher quality
compared to the CT-equivalent ones, despite the higher noise
in the former. Specifically, the signal-to-noise ratio (SNR)
of the unregularized CT-equivalent and FIBIR was 4.79 and
5.07, whereas with regularization it became 88.44 vs. 195.54,
confirming a larger improvement in FIBIR also in terms of
SNR. Unfortunately, the MSE could not be computed as no
clean ground truth image was available.

While the overall reconstruction performance is of high
quality, we observe that some small details are missing. We
attribute this shortcoming to the domain shift that occurs
between training (on simulations) and testing (on real measure-
ments). This limitation will be addressed once large numbers
of samples will have been scanned.

Since no ground truth was available for this data, it is
difficult to determine whether these details constitute real
structures in the fixed mastectomy or hallucinated structures.
Considering however that the same features are present both in
the CT-equivalent as well as in FIBIR, it seems probable that
the details indeed represent real structures in the mastectomy.
In fact, the probability of two distinct regularization networks
hallucinating the same features appears small.

We could, however, compute the spatial resolution of the
reconstructions. As in the in-silico study regularization is
able to increase the spatial resolution in both conventional
CT (from 536 µm to 471 µm) and in FIBIR (from 453 µm
to 380 µm), with the latter achieving the best metric. The
resolution on real data is lower by a factor of roughly two
compared to the resolution on in-silico data. This is likely due
to polychromaticity, finite source size, scattering and other
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Fig. 12. Reconstruction results of fixed mastectomy scanned at a dose
of 22 mGy. On the top: unregularized FIBIR and regularized FIBIR. On
the bottom: unregularized CT-equivalent and regularized CT-equivalent.
Ring-removal was applied after reconstruction [39].

physical phenomena which are not modelled in the forward
operators of the reconstruction algorithm, and which were not
simulated in the in-silico study.

IV. CONCLUSION

In this article we have proposed a new type of data-
driven regularization strategy called GradReg which, instead
of operating in the image space, acts on the image gradients.
This method is more flexible than conventional Plug-and-
Play algorithms that act in the image space since it can in
principle be applied to any type of gradient-based optimization
scheme, both to first-order methods as well as to quasi-Newton
algorithms. GradReg in particular offers important advantages
in the context of quasi-Newton solvers. In fact, in these cases
the data updates are computed based on a history of past image
iterates and image gradients. Consequently, combining non-
denoised gradients and denoised image iterates, as it is done in
classical image-space Plug-and-Play regularization, will result
in an invalid secant equation and thus to noisy approximations
of the inverse Hessian. On the contrary, our strategy ensures
that both the image iterates and the gradients will be denoised
at each iteration. The secant equation will thus be based solely
on denoised data which yields better estimates of the inverse
Hessian used to compute the next data update.

The motivation for developing this algorithm came from
the observation that the fused intensity-based iterative recon-
struction (FIBIR) algorithm in GI-CT yields gradients which
are noisier but at the same time also sharper compared to
the gradients obtained in classical iterative CT reconstruction.
We thus hypothesized that especially the former could gain a
large benefit from gradient-space denoising. This hypothesis
was confirmed in the results in Figs. 7 - 10, which clearly
demonstrate that the improvements in both reconstruction
error and spatial resolution are larger in GI-CT compared to
conventional CT.

Importantly, all experiments in this work were performed
with a mean visibility of 13%. Since the visibility of a GI setup
strongly influences the noise propagation in the acquired data
[13], improvements in grating fabrication and consequently
in visibility are expected to increase the reconstructed image
quality in GI-CT, thereby reducing the break-even point in
terms of radiation dose between the latter and conventional
CT.

We did not have access to sufficient amounts of real
data to train the data-driven regularizer and to validate the
reconstruction performance of the proposed hybrid algorithm.
Therefore, we trained all our models on simulated data and
applied the hybrid reconstruction algorithm to both in-silico
and to real data. When we applied the algorithm to real data
there was thus a distribution mismatch between the training
data, which was based on simulated data, and the testing data,
which came from real measurements. Despite this mismatch,
the results in Fig. 12 showed very promising results. We thus
expect that training all models on real data will improve the
performance on real measurements even further.

A potential weakness of data-driven denoising algorithms
concerns their generalization to different scanned specimens
and image acquisitions. Considering the variability in speci-
mens, it will be critical to build a representative training set
that contains samples which cover the whole space of mammo-
graphic tomograms. This will allow the network to effectively
approximate the posterior distribution p(gdenoised,k|gk) across
the entire relevant domain. Regarding different image acqui-
sitions, it would be best to train one network for each image
acquisition scheme since the noise and artifacts in the gradients
strongly depend on factors such as photon count, angular sam-
pling, pitch etc. Considering that our scanner will operate with
a limited number of different acquisition schemes, training a
small number of different models will not pose a problem. A
possible strategy to introduce robustness to distribution shift
could be test-time training/instance adaptation as suggested in
[40].

To train the data-driven regularizer on real data, two
strategies could be envisioned. If high-dose acquisitions are
possible, e.g. in ex-vivo cases, high-quality target gradients
could be obtained by scanning samples with high photon count
statistics. If this is not possible, e.g. when radiation exposure
must be minimized in in-vivo applications, the models could
be trained in a unsupervised or self-supervised manner [29]–
[32] without the need for high-quality targets. In any case,
training the regularization networks on large amounts of real
data will likely increase the reconstruction performance and
reduce the chances of hallucinating or smoothing out features.

A strength of the proposed regularization method is that
there is no need to fine tune the regularization strength
as it is e.g. the case in variational optimization where the
regularization function is usually weighted by a scalar λ. In
fact, in GradReg the network is trained to remove exactly the
correct amount of noise, which consequently determines the
perfect regularization strength. The way the training data is
generated, and in particular how much noise it contains, thus
implicitly determines the regularization strength of the method.

Even though in this work we applied the presented method

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3325442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



VAN GOGH et al.: DATA-DRIVEN GRADREG FOR QUASI-NEWTON OPTIMIZATION IN ITERATIVE GI-CT RECONSTRUCTION 11

to GI-CT and conventional CT reconstruction, we would like
to highlight that GradReg is applicable to any image recon-
struction task that relies on gradient-based methods. Also, the
denoising engine could in principle be replaced by a classical
denoiser such as the non-local means (NLM) algorithm [41] or
block matching and 3D denoising (BM3D) algorithm [42]. In
this work we used a data-driven denoiser because we wanted
to investigate the feasibility of processing all iterates with a
single data-driven denoising engine.

In this article we have not performed theoretical con-
vergence analyses, nor did we study necessary conditions
for convergence. Similarly to the recently published analysis
for Plug-and-Play quasi-Newton method convergence in [43]
future work should thus try to develop theoretical guarantees
for this new type of reconstruction algorithms.

In conclusion, given the promising results obtained in this
article, the proposed hybrid reconstruction algorithm with
data-driven gradient denoising could become an important tool
in the field of GI-CT reconstruction and beyond.
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