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Abstract— Magnetic particle imaging (MPI) is an emerg-1

ing technique for determining magnetic nanoparticle distri-2

butions in biological tissues. Although system-matrix (SM)-3

based image reconstruction offers higher image quality4

than the X-space-based approach, the SM calibration mea-5

surement is time-consuming. Additionally, the SM should6

be recalibrated if the tracer’s characteristics or the mag-7

netic field environment change, and repeated SM measure-8

ment further increase the required labor and time. There-9

fore, fast SM calibration is essential for MPI. Existing cali-10

bration methods commonly treat each row of the SM as in-11

dependent of the others, but the rows are inherently related12

through the coil channel and frequency index. As these13

two elements can be regarded as additional multimodal14

information, we leverage the transformer architecture with15

a self-attention mechanism to encode them. Although the16

transformer has shown superiority in multimodal fusion17

learning across several fields, its high complexity may18

lead to overfitting when labeled data are scarce. Compared19

with labeled SM (i.e., full size), low-resolution SM data20

can be easily obtained, and fully using such data may21

alleviate overfitting. Accordingly, we propose a pseudo-22

label-based progressive pretraining strategy to leverage23

unlabeled data. Our method outperforms existing calibra-24

tion methods on a public real-world OpenMPI dataset and25

simulation dataset. Moreover, our method improves the26

resolution of two in-house MPI scanners without requiring27

full-size SM measurements. Ablation studies confirm the28

contributions of modeling SM inter-row relations and the29

proposed pretraining strategy.30

Index Terms— Magnetic particle imaging, system matrix,31
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multimodal data, pretraining strategy. 32

I. INTRODUCTION 33

Magnetic particle imaging (MPI) [1], [2] is an emerging 34

medical imaging technique that provides high imaging speed 35

and sensitivity [3]–[5]. MPI uses a tracer and the nonlinear 36

response of magnetic nanoparticles (MNPs) in a magnetic field 37

to determine their distribution. Additionally, new MPI designs 38

are currently being developed [6]. MPI has been widely used 39

in areas such as cell tracing [7], [8], functional neuroimaging 40

[9], [10], and vessel imaging [11]. 41

Two conventional reconstruction methods [12] for MPI are 42

available: X-space- [13] and system-matrix (SM)-based [4] 43

methods. Compared with the X-space-based method, the SM- 44

based method achieves a higher image quality [14], but the SM 45

measurement is time-consuming. For the SM measurement, a 46

delta MNP sample should be repeatedly moved across each 47

voxel in the field of view (FOV), and the corresponding 48

signals are recorded. Each measurement takes approximately 49

15 h for an MPI system with a small 3D FOV (30mm 50

× 30mm × 30mm) [15]. Multiple averaging is commonly 51

required to improve the SM measurement quality, significantly 52

increasing the calibration time (averaging ten measurements 53

can take more than 100 h). More importantly, the SM should 54

be recalibrated when changes to the tracer’s properties or 55

magnetic field environment occur. Frequent SM recalibration 56

results in excessive labor and time costs. Therefore, fast SM 57

calibration is an area of research interest for MPI. Several 58

compressed sensing (CS)- [16], [17] and deep learning-based 59

methods [18], [19] have recently been proposed to reduce the 60

SM calibration time. However, despite the success of existing 61

studies on SM calibration, as reviewed in Section II, there 62

is much room for improvement. In this study, we devise SM 63

calibration improvements in two aspects: 64

1) Introduction of coil channel and frequency index 65

to model SM inter-row relations. Existing methods often 66

treat an SM row as an independent data point. This modeling 67

approach neglects the SM integrity and the relationships 68

between frequency components. In fact, the SM frequency 69

components are not entirely independent. For example, each 70

frequency component contains two additional information el- 71

ements: the coil channel (i.e., the receiving coil obtaining 72

a specific frequency component) and the frequency index. 73

These elements can be regarded as additional multimodal 74
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Fig. 1. Visualization of t-distributed stochastic neighbor embedding
from SM rows. (a) The illustration of SM dimension reduction by the
embedding method. (b), (c) show the visualization results for OpenMPI
calibration dataset 5. Each point represents one SM row, and the color
indicates its receiving coils in (b) and frequency in (c).

information. Consider a result on OpenMPI data (calibration75

5) for illustrating the influence of the two elements. The76

dimension of each SM row is reduced using t-distributed77

stochastic neighbor embedding (t-SNE), as shown in Fig.78

1(a), and the visualization results are shown in Fig. 1(b),79

(c). SM rows in the same receiving coil or with a close80

frequency index are usually clustered. Because the fusion of81

multimodal information can improve the model performance82

[20], [21], we integrate the coil channel and frequency index83

as multimodal information into a model to improve the SM84

calibration accuracy.85

2) Use of unlabeled SM data through progressive pre-86

training. Deep learning methods have achieved great success87

for fast SM calibration [18], [19]. However, existing super-88

vised models are limited because they require a large, labeled89

dataset (high-resolution SM). Insufficient labeled data may90

cause overfitting and poor performance. Because unlabeled91

SM data (low-resolution SM) can be obtained relatively fast92

and affect model performance, we use unlabeled data to93

increase the SM calibration accuracy.94

Driven by the abovementioned analysis, we propose a pro-95

gressive pretraining transformer-based network called ProTSM96

to handle multimodal information for fast 3D SM calibration.97

Because transformer has shown superiority in multimodal98

fusion learning across many fields [22], [23], we use the99

self-attention mechanism to integrate coil information. In100

particular, the coil information is interpreted as tokens by101

embedding layers and interacts with the SM row through the102

transformer’s self-attention. Additionally, to prevent overfitting103

owing to the high complexity of the transformer, we propose104

a pseudo-label-based progressive pretraining strategy that uses105

unlabeled data. The proposed ProTSM was evaluated on real-106

world and simulation datasets for 3D SM calibration, and it107

notably outperformed similar methods.108

Our main contributions of the proposed work are summa-109

rized as follows:110

TABLE I
SYMBOLS AND INTERPRETATIONS.

Symbol Interpretation
sLi measured low-resolution SM component
sHi measured high-resolution SM component
ŝHi predicted high-resolution SM component
h,w, d the 3D shape of sLi , h× w × d = NL

pixel

H,W,D the 3D shape of sHi , H ×W ×D = NH
pixel

pi, fi coil channel and frequency index of sLi
epi , e

f
i embeddings of pi and fi

xL
i the output of transformer encoder

xH
i the output of upsampling module with xL

i as input
x̂H
i the output of sucessive convolution operations

x̃H
i the output of skip connection with sLi as input

z
(l)
i , the hidden output of l-th layer in encoder
p patch size in SM component sequencing process
Nds downsampling point set
F hidden representation dimension in the encoder
C

′
, C hidden channels in the encoder and decoder, respectively

Φθ trainable parameters in the proposed model

• We firstly take the coil channel and frequency index 111

into consideration for SM calibration. Our visualization 112

analysis shows that frequency components are not inde- 113

pendent, and we explicitly model their relationships using 114

the transformer to improve the calibration. 115

• We propose using unlabeled data with a progressive 116

pretraining strategy. We generate pseudo-labels for the 117

isolated unlabeled pretraining dataset. These data are used 118

to train our model, which is then finetuned on accurately 119

labeled data. Our results show that pretraining accelerates 120

model convergence and improves the SM calibration 121

performance. 122

• We propose a transformer-based 3D SM calibration 123

framework. ProTSM is evaluated on real-world and simu- 124

lation datasets and outperforms the state-of-the-art meth- 125

ods. Additionally, the proposed ProTSM is embedded into 126

two in-house MPI systems to generate high-resolution 127

images without requiring a full-size SM measurement. 128

II. RELATED WORK 129

Interpolation-based methods are straightforward and easy 130

to implement for super-resolution SM calibration. The per- 131

formance of bicubic and nearest-neighbor interpolation has 132

been investigated in SM calibration [24]. Simple linear in- 133

terpolation can help resolve high-resolution structures. Ad- 134

ditionally, CS-based methods have admirable performance 135

in super-resolution SM calibration. Knopp and Weber [25] 136

first used CS to speed up SM calibration. They sparsified 137

the SM using certain basis transformations, such as discrete 138

Fourier and cosine transforms. Accordingly, many CS-based 139

variant methods have been developed [16], [17], [26]–[28]. For 140

example, Ilbey et al. [27] proposed a coded calibration scene 141

method, which places multiple MNP samples inside the FOV 142

in each MPI scan instead of using a single MNP sample, as 143

in conventional methods. This operation increases the signal- 144

to-noise ratio and significantly improves the conventional CS 145

calibration. 146

MPI reconstruction [29], [30] and SM calibration [18], 147

[19], [31], [32] have both demonstrated the efficacy of deep 148

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3297173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 3

learning. For the MPI image reconstruction area, Gungor et al.149

[33] proposed a deep equilibrium-based model using learned150

data consistency. This method demonstrated excellent gener-151

alization and quick imaging. Similarly, deep learning-based152

methods for the SM calibration area can benefit from measured153

high-resolution SMs and integrate prior knowledge of SM154

calibration through training. Many deep learning models have155

been proposed for the SM calibration. For example, 3dSMRnet156

was the first model based on a convolutional neural network157

(CNN) for 3D SM calibration [18]. This model improved both158

SM calibration and image reconstruction.159

The transformer architecture has recently emerged for di-160

verse computer vision applications [34], [35]. Despite the161

success of CNN, long-range dependencies are not adequately162

modeled. The transformer architecture has also been applied163

to SM calibration. Gungor et al. [36] introduced a CNN-164

transformer hybrid model (TranSMS) for 2D SM calibration.165

TranSMS contains one CNN and one transformer branch166

for feature extraction. The fusion feature maps are then167

upsampled, and a high-resolution SM is generated through a168

data consistency module. This model shows a performance169

improvement compared with CNN-based methods.170

Because the SM frequency components are inherently re-171

lated, we can model these relationships using the multimodal172

information of coil channel and frequency index. Several173

studies have shown that multimodal information fusion im-174

proves model performance [20], [21], which is encouraging175

for SM calibration. In our previous conference paper [37], we176

preliminarily demonstrated feasibility of utilizing multimodal177

information using transformer. In this study, on the basis178

of introducing multimodal information, we propose a novel179

pretraining strategy to prevent potential overfitting caused by180

the high complexity of the transformer architecture. We also181

provide more extensive experiments and in-depth discussions182

to confirm the contribution of coil information and the ef-183

fectiveness of our pretraining strategy. Overall, this study184

offers valuable insights and a comprehensive evaluation of our185

proposed method, which may advance the current researches186

on fast SM calibration.187

III. PROPOSED PROTSM188

The architecture of the proposed ProTSM is shown in Fig.189

2(a). The transformer encodes the low-resolution SM and the190

multimodal tokens of the coil channel and frequency index.191

Then, the encoded hidden representation is upsampled and192

followed by successive convolution blocks to predict the high-193

resolution SM components. The adopted notation is listed in194

Table I, and details of the proposed model are provided in the195

following subsections.196

A. Problem Formulation197

Let u ∈ CNf×1 and S ∈ CNf×NH
pixel be the measured198

voltage signals in an MPI scan and SM, respectively, where Nf199

and NH
pixel denote the total number of frequency components200

and pixel number of high-resolution SM, respectively. Image201

reconstruction aims to solve the MNP concentration c ∈202

RNH
pixel×1 in u = Sc. The measurement of full-size (high- 203

resolution) S is generally time-consuming. Therefore, a small 204

size (low-resolution) SM, SL ∈ RNf×NL
pixel , is measured in 205

an attempt to recover the full-size SM, SH ∈ RNf×NH
pixel . 206

Each row of SL is considered a low-resolution 3D im- 207

age with two channels (real and imaginary channels) sLi ∈ 208

R2×h×w×d with h× w × d = NL
pixel. Additionally, each SM 209

component, sLi , comprises a coil channel pi and frequency 210

index fi. pi ∈ {0, 1, 2} is a discrete variable, which denotes 211

the spatial coil related to sLi . fi is the frequency index of sLi , 212

and the range of values of fi depends on the MPI system 213

and filtered frequency components (e.g., 50 kHz∼500 kHz in 214

the OpenMPI dataset). pi and fi are auxiliary and multimodal 215

data related to sLi . The goal is to recover sHi ∈ R2×H×W×D
216

using a deep learning model, f(·), with parameters Φθ (i.e., 217

ŝHi = f(sLi , pi, fi|Φθ)). 218

B. Progressive Pretraining Strategy 219

The flowchart of the proposed pretraining strategy and 220

finetuning process is shown in Figs. 2(b) and 2(c), respectively. 221

We first collect a large unlabeled dataset, {Sun}, and obtain 222

pseudo-labels {Y} using a super-resolution model. This model 223

can be a simple linear model (trilinear interpolation) or a 224

trained deep learning model. The proposed model is then 225

pretrained on this large dataset and optimized using pseudo- 226

labels as follows: 227

min
Φθ

L(suni , yi,Φθ) = ∥yi − f(suni , pi, fi|Φθ)∥1, (1)

Φθ = Φθ − η · ∇L(suni , yi,Φθ), (2)

where suni and yi are pretraining data represented by {Sun} 228

and {Y}, respectively, and η is the learning rate. Following 229

pretraining, the model has better initial weight parameters 230

Φpre
θ than those obtained through random initialization. The 231

model is then finetuned on an accurately labeled dataset, {SL}, 232

{SH} starting with pretraining initialization and a smaller 233

learning rate. 234

Φθ = Φθ − η · ∇∥sHi − f(sLi , pi, fi|Φ
pre
θ )∥1, (3)

The proposed pretraining strategy achieves the following 235

improvements while fully using low-resolution SM data: 236

1) The pretrained model performs a weak super-resolution 237

SM calibration, which improves the performance of the 238

SM calibration and serves as a suitable initialization for 239

optimization through supervised learning. 240

2) Compared with supervised methods, our model lever- 241

ages low-resolution SM data. Hence, the risk of overfit- 242

ting owing to limited SM data is mitigated. 243

3) Compared with training from scratch, finetuning simply 244

optimizes our model from a weak to a more refined one, 245

hastening the training convergence. 246

C. Transformer Encoder with Coil Embedding 247

1) Embedding of Coil Channel and Frequency Index: . Be- 248

cause pi and fi are single numeric variables, we project them 249
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Fig. 2. (a) The overall framework of the proposed method. (b) The illustration of our proposed pseudo-label-based pretraining strategy. (c) The
finetune process after pretraining.

onto a vector space for computation. We use the following250

linear and embedding layers for projection:251

epi = EmbeddingLayer(pi) ∈ R1×F , (4)
252

efi = LinearLayer(fi) ∈ R1×F , (5)

where F denotes the latent representation dimension.253

2) SM Component Sequencing: . To handle the 3D image254

sLi as the input for the transformer encoder, we first reshape it255

as 1D sequence tokens sLi → xi ∈ R(h
p ·wp · dp )×(C·p3). Then, a256

linear layer projects the tokens into latent space zi = Wpxi +257

bp, where zi ∈ R(h
p ·wp · dp )×F and Wp and bp are trainable258

parameters.259

Before feeding zi into the transformer encoder, epi and efi260

are added to zi, with epi and efi serving as global tokens used in261

self-attention calculations with other image tokens. Therefore,262

the final input is constructed as zi = [Wpxi + bp; e
p
i ; e

f
i ] ∈263

R(N+2)×F , where N = h
p · w

p · d
p .264

3) Transformer Encoding: . Following an existing method265

[34], we add absolute position embeddings epos ∈ R(N+2)×F
266

to label the patch position, i.e., zi = [Wpxi + bp; e
p
i ; e

f
i ] +267

epos. Compared with its relative counterpart, absolute position268

encoding explicitly indicates the spatial location relationship269

between image tokens, likely supporting dense prediction (e.g.,270

super-resolution reconstruction).271

The transformer encoder contains two modules: multi-head 272

self-attention MSA and multilayer perceptron MLP . Encod- 273

ing can be expressed as follows: 274

z
(l)′

i = MSA(LayerNorm(z
(l−1)
i )) + z

(l−1)
i , (6)

275

z
(l)
i = MLP(LayerNorm(z

(l)′

i )) + z
(l)′

i , (7)

where z
(l)′

i and z
(l)
i are the hidden result and the output 276

of layer l, respectively. MSA(·) is the key operation of the 277

transformer and can be expressed as 278

MSA(zi) =
H

∥
h=1

Qh(zi) ·Kh(zi)
T

√
d

V h(zi), (8)

where ∥ and H are the concatenation operation and number 279

of heads, respectively; Q(·), K(·), and V (·) are linear trans- 280

formation operations, with Q(zi) = Wq · zi; and d denotes 281

the number of dimensions in this head. 282

The information from epi and efi is encoded into sLi using the 283

multi-head self-attention module. Additionally, each sL has the 284

same encoding parameters of p and f. If two SM components 285

have the same coil channel or similar frequency index, their ep 286

and ef are the same or similar, respectively. Thus, we establish 287

the relationship between the SM components using the coil 288

channel and frequency index. 289
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Fig. 3. (a),(b) show the 3D schematic diagrams of the field-free point
(a) and field-free line (b) scanners. (c) The numerical phantom ”M” used
in simulation dataset. (d), (e) show the phantoms used in field-free point
scanner (d) and field-free line (e) scanner for 2D imaging.

D. Decoder290

The decoder contains upsampling and convolution blocks.291

First, it upsamples the output of the transformer encoder be-292

fore generating high-resolution frequency components through293

successive 3D convolution blocks.294

Considering that epi and efi are encoded into image tokens,295

they are not involved in SM construction during decoding. Let296

zLi ∈ RN×F be the output of the transformer encoder without297

coil tokens. We reshape zLi into a 3D image zLi → xL
i ∈298

RC
′
×h×w×d and upsample xL

i to obtain a high-resolution299

feature map through 3D pixel shuffling as follows:300

xH
i = UpSampling(xL

i ) ∈ R
C

′

r3
×H×W×D, (9)

where xH
i and r denote the hidden representation after up-301

sampling and the downsampling ratio, respectively. The sub-302

sequent convolution operations produce the feature map for the303

prediction header (i.e., 1×1×1 kernel convolution operation):304

x̂H
i = Conv3D(xH

i ) ∈ RC×H×W×D. (10)

E. Skip Connection305

To alleviate the potential vanishing gradient problem in the306

deep network, we add a skip connection to our model. In par-307

ticular, we directly upsample the original 3D SM components308

and extract shallow feature map x̃H
i as follows:309

x̃H
i = Conv3D(UpSampling(sLi )) ∈ RC×H×W×D. (11)

Finally, we aggregate x̃H
i and x̂H

i to predict the high-310

resolution component ŝHi using the prediction header as fol-311

lows:312

ŝHi = Conv3D1×1×1(x̂
H
i + x̃H

i ) ∈ R2×H×W×D. (12)

IV. DATASETS AND EXPERIMENTAL SETUP313

A. Datasets314

1) Evaluation Datasets: We evaluated the proposed ProTSM315

on two datasets:316

TABLE II
SM CALIBRATION RESULTS ON OPENMPI AND SIMULATION DATASETS.

Dataset OpenMPI Simulation
Ratio 2× 4× 2× 4×
Method nRMSE nRMSE nRMSE nRMSE
Bicubic 5.44% 8.91% 7.27% 18.23%
Trilinear 5.27% 6.80% 6.95% 17.83%
CS 4.40% 7.70% 11.82% 21.68%
SRCNN 3.55% 5.18% 2.22% 5.22%
VolumeNet 3.79% 5.90% 3.22% 6.91%
3dSMRnet 4.02% 4.86% 1.01% 2.75%
MetaBlock 3.60% 4.51% 0.93% 2.81%
IDL 3.37% 4.56% 0.99% 2.74%
ProTSM 3.08% 4.10% 0.72% 2.70%

• OpenMPI dataset. OpenMPI is the first open-source 317

MPI dataset [38]. It contains SM calibration and phantom 318

measurements from multiple MNPs. Similar to [18], 319

we used SM calibration experiment 7 with Synomag- 320

D MNPs (Micromod GmbH, Germany) to construct the 321

training set and evaluated the model performance on 322

calibration experiment 6 with Perimag MNPs (Micromod 323

GmbH, Germany). This setting was intended to evaluate 324

the generalization ability for different MNP types. In both 325

training and test sets, we only preserved the SM rows 326

with a signal-to-noise ratio of SNR > 3, leaving 4129 327

and 3290 for training and test sets, respectively. 328

• Simulation dataset. We rewrote a 3D version for sim- 329

ulating SMs based on a code1 and [39]. The FOV size 330

was 40mm × 40mm × 40mm and the grid size was 331

40× 40× 40. The sampling frequency was 1MHz. The 332

drive frequencies along the X , Y , and Z axes were 333

24.51 kHz, 26.04 kHz, and 25.25 kHz, respectively. The 334

MNP temperature was 300K, and the Boltzmann constant 335

kB was set as 1.38 × 10−23. We evaluated the model 336

generalization performance for different MNP diameters 337

and selection field gradients. In particular, the training set 338

included three 3D SMs (gradients of 0.5T/m, 1T/m, 339

and 5T/m). The MNP diameter was 25 nm. For the 340

testing set, the SM gradient and the MNP diameter were 341

1T/m and 12.5 nm, respectively. The remaining data for 342

training and test sets are 3933 and 1311, respectively. The 343

phantom used for imaging is shown in 3(c) 344

2) Pretraining Dataset: We obtained low-resolution SM data 345

from OpenMPI calibration experiments 7, 8, and 9. In particu- 346

lar, we extracted 20×20×20 and 10×10×10 SM samples for 347

downsampling ratios of 2 and 4, respectively. This pretraining 348

dataset contains 14596 samples. Then, we obtained pseudo- 349

labels using the super-resolution CNN (SRCNN) [40] model 350

trained on the OpenMPI training set. 351

3) In-House Datasets for Generalization Ability Evaluation: 352

We evaluated the proposed ProTSM trained on the OpenMPI 353

dataset using two in-house MPI systems: field-free point (FFP) 354

and field-free line (FFL) scanners. The 3D model schematic 355

diagrams for the two scanners are shown in Figs. 3(a) and 356

3(b), respectively. For the FFP scanner, the selection field 357

gradient was {−1.7, −1.7, 3.4}T/m along the axes X,Y, Z. 358

The excitation frequency along the X axis was 25 kHz and 359

1https://github.com/OS-MPI/Educational Simulations
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Fig. 4. The visualization results of three reconstructed SM rows (center
slice) for downsampling ratio 2 (a) and 4 (b), respectively.

the driving frequency along the Y axis was 20Hz. A Carte-360

sian trajectory was used to scan the FOV. The sampling361

frequency was 2.5MHz. The FOV of the MPI scanner was362

20mm × 20mm. A delta sample (2mm × 2mm) filled363

with Perimag MNPs was used to measure the low-resolution364

SM with a grid size of 10 × 10. For image reconstruction,365

the frequency components were selected using the formula366

f = mxfx + myfy . In this study, mx ∈ [1, 13], my ∈367

[−7, 7] and only frequency components with f < 330 kHz368

are used. Finally, 195 frequency components were preserved.369

This FFP instrument uses active compensation techniques to370

minimize the influence of excitation feed-through, and the base371

frequency signal was unfiltered. The phantom used for imaging372

is shown in Fig. 3(d). For the FFL scanner, the selection field373

gradient was 0.6 T/m along the X , and the drive frequency374

was 2.51 kHz. For 2D imaging, the object to be imaged375

rotates along the Z-axis in the FOV. The sampling frequency376

was 1MHz. The FFL scanner was rotated along the XY377

plane from 0 to 180◦ with increments of 12◦ (15 measured378

angles). We measured a square grid of 9× 9 for the SM with379

a delta sample (3 × 3mm2). The second through thirteenth380

frequency components for each angle (totaling 15× 12 = 180381

frequency components) were used for image reconstruction.382

The phantom used for imaging is shown in Fig. 3(e). We383

stacked the replicated 2D frequency components along the Z384

axis to create 3D data. Then, the predicted 3D high-resolution385

data (i.e., grid size of 40× 40× 40) were averaged along the386

Z axis for 2D image reconstruction. We did not measure the387

high-resolution SM but conducted a qualitative analysis of the388

reconstructed image.389

B. Implementation Details 390

The proposed ProTSM contains four transformer layers and 391

four 3D convolutions per upsampling block. In this study, the 392

hidden representation dimension F was 1024. The number 393

of heads was eight, each of which had 128 dimensions 394

(denoted by d) per head. The number of channels, C, for 395

the convolutions was 64. For pretraining, the batch size was 396

50 and the learning rate was 5 × 10−4. We pretrained the 397

model for 50 epochs. For finetuning, the batch size was eight 398

and the learning rate was 1 × 10−3 (half the learning rate 399

for the encoder). We first trained the model for ten epochs 400

using linear warmup and then for 50 and 100 epochs using 401

a constant learning rate for downsampling ratios of 2 and 4, 402

respectively. We conducted two experiments using different 403

downsampling ratios (2 and 4) on each dataset. The model 404

contained two upsampling blocks for a downsampling ratio of 405

4. The patch size was set to two and one for downsampling 406

ratios of 2 and 4, respectively. For image reconstruction based 407

on the calibrated SM, we used the kaczmarzReg algorithm2
408

with parameter λ = 0.75 over three iterations. 409

C. Baselines and Evaluation Metrics 410

• Bicubic Interpolation [24]. Bicubic interpolation is a 411

common super-resolution reconstruction method. How- 412

ever, because it can only process 2D images, we applied 413

bicubic interpolation twice to perform a 3D upsampling. 414

In particular, we first upsampled the SM component along 415

the XY and then along the Z axis. 416

• Trilinear Interpolation [41]. Trilinear interpolation cal- 417

culates the values of points in a cube based on the values 418

of its vertices. 419

• CS [27]. CS assumes that the SM components are 420

sparse after applying the discrete cosine transform DCT . 421

We obtained the low-resolution data through Poisson 422

disc sampling and optimized the following problem: 423

min
ŝHi

∥DCT(ŝHi )∥1 subject to Poisson(ŝHi ) = sLi . 424

• SRCNN [40]. SRCNN is the first CNN-based super- 425

resolution reconstruction model. It first upsamples low- 426

resolution images through bilinear interpolation before 427

reconstructing high-resolution images using three convo- 428

lutions. 429

• VolumeNet [42]. VolumeNet is a CNN-based super- 430

resolution model designed for 3D medical images. It 431

contains several parallel branches for multiscale feature 432

extraction. The features are aggregated to generate a high- 433

resolution image through voxel shuffling. 434

• 3dSMRnet [18]. 3dSMRnet is a state-of-the-art method 435

for super-resolution 3D SM calibration. It leverages 436

residual-in-residual dense blocks to extract features from 437

low-resolution SM components. Then, it upsamples the 438

feature maps and reconstructs high-resolution SM com- 439

ponents using 3D convolutions. We executed the open- 440

source code at the website3. 441

2https://github.com/MagneticParticleImaging/MDF/tree/master/python
3https://github.com/Ivo-B/3dSMRnet
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Fig. 5. The image reconstruction result for resolution and shape phantom in OpenMPI dataset. The first row shows the reconstructed image, and
the second row shows the corresponding 3D error map that is averaged in Z-axis. Number ”2” and ”4” indicate the downsampling ratio. GT image
is reconstructed by the measured full-size SM.

In addition to the above-mentioned baseline models, we442

present two competitive baselines that use coil information:443

• MetaBlock [43]. MetaBlock uses an attention-based444

mechanism to enhance image features using non-image445

data (such as age and gender). In this study, the frequency446

index and coil channel represent the non-image data.447

• IDL [44]. IDL proposes a multistage interactive fusion448

strategy to convolve image and non-imaging data. Instead449

of simple concatenation of multimodal data, this model450

uses channel-wise multiplication at each feature map451

downsampling level.452

In our 2D experiments, we select the same baseline models453

as the recent work [36], and the extra methods are listed below:454

• VDSR [45]. VDSR uses a very deep CNN-based neural455

network model for super-resolution tasks. This model456

learns the residual between the low- and high-resolution457

images to address the gradient vanishing and explosion458

problem.459

• TranSMS [36]. TranSMS is the most recent state-of-the-460

art model for 2D SM calibration. This model proposes a 461

two-branch architecture with a convolutional branch and 462

a transformer branch. The transformer branch contains a 463

novel transformer block with a convolution-based patch 464

embeded method. 465

For each experiment, both the baseline models and our 466

proposed model required the same number of calibration mea- 467

surements. For the SM calibration, we obtained the normalized 468

root-mean-square error (nRMSE) as the evaluation metric, as 469

in [18]: 470

nRMSE(ŝHi ) =
∥ŝHi − sHi ∥F

max(|sHi |)−min(|sHi |)
, (13)

where ∥ · ∥F denotes the Frobenius norm, | · | denotes the 471

complex modulus, and ŝHi and sHi are converted into the 472

complex format for evaluation. 473

To evaluate a reconstructed image, we calculated the peak 474

signal-to-noise ratio (PSNR), structure similarity index mea- 475

sure (SSIM), and nRMSE. 476
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TABLE III
IMAGE RECONSTRUCTION RESULTS BASED ON CALIBRATED SM ON OPENMPI DATASET.

Phantom Resolution Shape
ratio 2× 4× 2× 4×
Method nRMSE↓ PNSR↑ SSIM↑ nRMSE↓ PNSR↑ SSIM↑ nRMSE↓ PNSR↑ SSIM↑ nRMSE↓ PNSR↑ SSIM↑
Bicubic 2.15% 33.34 0.8155 5.51% 25.18 0.3360 4.11% 27.73 0.6269 7.93% 22.01 0.4357
Trilinear 2.11% 33.50 0.8456 7.14% 22.93 0.2133 3.68% 28.69 0.7250 5.46% 25.25 0.4568
CS 2.08% 33.64 0.8324 3.94% 28.08 0.6107 3.75% 28.53 0.7162 6.95% 23.15 0.3618
SRCNN 1.15% 38.82 0.8995 3.55% 29.00 0.4498 2.58% 31.76 0.7689 4.25% 27.42 0.5754
VolumeNet 1.28% 37.89 0.9177 4.30% 27.32 0.3984 2.12% 33.46 0.8110 4.32% 27.29 0.5216
3dSMRnet 1.32% 37.56 0.8660 3.63% 28.81 0.4687 2.87% 30.85 0.7205 3.93% 28.11 0.5706
MetaBlock 1.07% 39.45 0.9112 2.279% 32.85 0.7196 2.49% 32.09 0.7796 4.40% 27.13 0.6036
IDL 1.06% 37.47 0.8914 2.276% 32.86 0.6908 2.63% 31.61 0.7182 3.39% 29.38 0.6651
ProTSM 0.86% 41.43 0.9410 2.13% 33.43 0.7376 1.60% 35.90 0.8763 2.64% 31.57 0.7540

TABLE IV
IMAGE RECONSTRUCTION RESULTS BASED ON CALIBRATED SM IN

SIMULATION DATASET.

Phantom M
Ratio 2× 4×
Method nRMSE↓ PNSR↑ SSIM↑ nRMSE↓ PNSR↑ SSIM↑
Bicubic 3.47% 29.19 0.9285 8.88% 21.04 0.7194
Trilinear 3.33% 29.62 0.9310 8.57% 21.34 0.7306
CS 4.49% 26.96 0.9010 9.99% 20.01 0.6713
SRCNN 1.74% 35.21 0.9613 2.13% 33.42 0.9561
VolumeNet 1.46% 36.71 0.9736 2.60% 31.71 0.9552
3dSMRnet 1.32% 37.61 0.9772 1.66% 35.60 0.9605
MetaBlock 1.30% 37.74 0.9767 1.67% 35.54 0.9628
IDL 1.43% 36.87 0.9742 1.78% 35.00 0.9629
ProTSM 1.22% 38.25 0.9804 1.49% 36.53 0.9742

V. RESULTS477

A. SM Calibration478

Table II lists the 3D SM calibration results for the two479

datasets. The proposed ProTSM is highly superior to the480

other evaluated methods on the OpenMPI dataset in terms of481

nRMSE (3.08% and 4.10% for downsampling ratios of 2 and482

4, respectively), with an improvement of approximately 15%483

over the best single modal-based method. Additionally, the484

proposed ProTSM achieves a relative improvement of approx-485

imately 9.5% compared with other multimodal-based methods.486

ProTSM also performs the best on the simulation dataset, with487

nRMSE values of 0.72% and 2.70% for downsampling ratios488

of 2 and 4, respectively.489

Fig. 4 shows the center slice of the reconstructed 3D SM490

data for a qualitative evaluation. Overall, the deep learning491

models, such as SRCNN, VolumeNet and 3dSMRnet outper-492

form other methods for the two downsampling ratios. The CS-493

and interpolation-based methods cannot use prior knowledge494

from the existing high-resolution SM data. Consequently, they495

are unable to provide satisfactory calibration accuracy. For a496

large downsampling ratio (Fig. 4(b)), the proposed ProTSM497

produces the best SM recovery results.498

B. Evaluation of Image Reconstruction499

We evaluated the image reconstruction performance using a500

super-resolution calibrated SM. For image reconstruction, we501

selected the phantom shape and resolution from the OpenMPI502

dataset. Additionally, we simulated numerical phantom M (see503

3(c)) in the simulation dataset. The corresponding reconstruc-504

tion results are listed in Tables III and IV.505

TABLE V
2D SM CALIBRATION RESULTS COMPARED WITH SOTA METHODS IN

OPENMPI DATASET.

Ratio 2× 4× 8×
Method nRMSE nRMSE nRMSE
Bicubic 4.55% 18.13% 52.02%
Bicubic (str.) 16.86% 47.41% 92.08%
CS 8.81% 51.48% 101.31%
SRCNN 50.88% 62.81% 106.76%
VDSR 3.34% 11.83% 113.81%
2d-SMRnet 6.86% 17.22% 78.88%
TranSMS 3.32% 10.66% 114.45%
ProTSM 3.13% 9.88% 49.98%

The results of image reconstruction and SM calibration 506

are consistent. The proposed ProTSM achieves the best per- 507

formance for the three metrics (nRMSE, PSNR, and SSIM) 508

on both OpenMPI and simulation datasets. On the OpenMPI 509

dataset, ProTSM outperforms single-modal-based methods at 510

high downsampling ratios. The PSNR of ProTSM and the 511

best single-modal-based model are 35.90 and 33.46 (7.29% 512

improvement) for phantom shape, respectively, for a down- 513

sampling ratio of 2. The PSNR of ProTSM and the best single- 514

modal-based model are 31.57 and 28.11 (12.3% improvement) 515

for a ratio of 4. A similar trend is observed for phantom 516

shape. Our proposed ProTSM still performs better than the 517

two multimodal methods. On the simulation dataset, ProTSM 518

also performs better (PSNR of 38.25 and 36.53 for down- 519

sampling ratios of 2 and 4, respectively). Therefore, ProTSM 520

consistently outperforms the other evaluated methods. 521

Fig. 5 shows two reconstructed images for qualitative eval- 522

uation. The figure shows the center slice of 3D images and 523

the 3D error map averaged along the Z axis for phantom 524

resolution. All methods provide an acceptable image quality 525

in the center slice for a downsampling ratio of 2. How- 526

ever, the error maps show how poorly the interpolation-based 527

methods perform with 3D images. When the downsampling 528

ratio is 4, the baseline models reconstruct low-quality images 529

polluted with noise and artifacts. Conversely, the proposed 530

ProTSM provides a better image quality. These qualitative 531

results demonstrate that ProTSM is robust even with a high 532

downsampling ratio. 533

C. Comparisons with State-of-the-Art 2D Methods 534

For comparison with the TranSMS state-of-the-art model 535

for 2D SM calibration, we adapted the proposed ProTSM 536
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TABLE VI
2D SM CALIBRATION AND IMAGE RECONSTRUCTION RESULTS OF THE

4 REPRESENTATIVE METHODS IN OPENMPI DATASET. THE METRIC

NRMSE IS USED TO ASSESS SM RECOVERY AND METRICS PSNR,
SSIM ARE USED TO ASSESS IMAGE QUALITY RECONSTRUCTED BY THE

SM.

Ratio 4× 8×
Method nRMSE PNSR SSIM nRMSE PNSR SSIM
Bicubic 47.45% 28.95 0.7684 68.21% 20.60 0.2266
SRCNN 28.96% 36.32 0.9253 71.58% 24.75 0.3229
TranSMS 24.70% 42.80 0.9716 81.95% 24.80 0.4220
ProTSM 23.84% 44.78 0.9848 65.65% 29.47 0.5250

Fig. 6. The 2D image reconstruction results of four representative
methods for resolution Phantom in OpenMPI dataset at ratio 4.

to handle 2D data. We first conducted the same experiment537

using the same dataset used in [36]. We directly referenced538

the study’s results, and the 2D SM calibration comparison539

results are listed in Table V. ProTSM performs similarly to540

TranSMS for a small downsampling ratio of 2 and 4. ProTSM541

outperforms TranSMS for a high downsampling ratio. How-542

ever, the SM calibration results of all methods are insufficient543

for a downsampling ratio of 8, which may mean that the metric544

nRMSE is insignificant.545

Four representative methods—bicubic, SRCNN, TranSMS,546

and ProTSM—were selected for its validation, and another547

experiment (OpenMPI calibration 7 for training and calibration548

6 for test) was conducted in 2D settings. Table VI and Fig. 6549

show the results. For ratio 4, ProTSM and TranSMS continue550

to perform better in terms of SM calibration and image recon-551

struction. Although bicubic achieves a better metric nRMSE552

for SM recovery for ratio 8, the metrics of the reconstructed553

image are lower. All calibrated SMs fail to reconstruct a554

satisfactory image; therefore, metric nRMSE may not be able555

to assess the model’s performance in such a scenario.556

D. Application to In-House MPI Systems557

We applied the proposed ProTSM to in-house MPI systems558

to improve the quality of the image reconstruction. We es-559

timated high-resolution SM from a measured low-resolution560

SM, and reconstructed images using the measured SM and561

estimated high-resolution SMs. The corresponding results are562

shown in Fig. 7. The reconstructed images from two phantoms563

are shown. We measured the phantom resolution using two564

parallel cylindrical tubes filled with Perimag MNPs with 3565

mm distance using the FFP scanner (top of Fig. 7) and the566

phantom vessel using the FFL scanner (bottom of Fig. 7). The567

Fig. 7. The reconstructed image with the raw measured low-resolution
SM and predicted high-resolution SM for two in-house MPI instruments.
The first and second rows show the image reconstruction results of FFP
(resolution phantom of two parallel cylindrical tubes with 3mm distance)
and FFL (vessel phantom) instruments, respectively.

boundaries of the reconstructed images appear mixed for the 568

measured low-resolution SM, whereas the image reconstructed 569

using the high-resolution SM shows better quality for phantom 570

resolution. For the phantom vessel, the reconstructed image 571

using the low-resolution SM does not distinguish the vascular 572

bifurcation in the upper-right region, whereas the image gen- 573

erated by the calibrated SM clearly shows that structure. The 574

evaluation results of ProTSM embedded in in-house FFP and 575

FFL scanners validate our proposal. 576

E. Ablation Studies 577

We also investigated the impact of three main design com- 578

ponents in the proposed ProTSM: pretraining strategy, model- 579

ing of coil information, and transformer architecture. Three ab- 580

lation models [ProTSM-scratch (ProTSM without pretraining 581

strategy), ProTSM-w/o coil information (ProTSM without coil 582

information and pretraining strategy), and ProTSM-CNN (re- 583

place the transformer layer with equal number of convolution 584

layer for ProTSM-w/o coil information)] were evaluated on the 585

public OpenMPI dataset. In Section IV-B, the other experiment 586

settings remain unchanged. Both SM calibration and image 587

reconstruction tasks were conducted, and the corresponding 588

results are shown in Tables VII and VIII and Fig. 8. 589

Regarding the pretraining strategy, the nRMSE values of 590

ProTSM without pretraining (ProTSM-scratch) are 3.29% and 591

4.33% for downsampling ratios of 2 and 4, respectively. This 592

demonstrates a performance decline of approximately 6%. 593

ProTSM w/o coil information refers to ProTSM results that 594

do not consider the coil channel and frequency index. The 595

corresponding nRMSE metrics for downsampling ratios of 2 596

and 4 are 3.44% and 4.45%, respectively. Finally, to investigate 597

the impact of the transformer, the encoder was replaced with 598

a CNN. The performance is comparable to that of the CNN- 599

based models (VolumeNet and 3dSMRnet) without the trans- 600

former. Therefore, super-resolution SM calibration benefits 601

from the transformer, as discussed in [36]. 602
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TABLE VII
THE ABLATION RESULTS IN OPENMPI DATASET FOR SM CALIBRATION.

THE NUMBER INDICATES THE NRMSE METRIC.

Method 2× 4×
ProTSM 3.08% 4.10%
ProTSM-scratch 3.29% 4.33%
ProTSM-w/o coil information 3.44% 4.45%
ProTSM-CNN 3.75% 4.54%

TABLE VIII
THE ABLATION RESULTS IN OPENMPI DATASET FOR IMAGE

RECONSTRUTION. THE DOWNSAMPLING RATIO IS 4.

Phantom Resolution Shape
Method PSNR SSIM PSNR SSIM
ProTSM 31.57 0.7540 33.43 0.7376
ProTSM-scratch 29.82 0.6834 31.88 0.6593
ProTSM-w/o coil information 27.35 0.6665 31.11 0.6448
ProTSM-CNN 26.07 0.6584 30.59 0.6092

Additionally, in Fig. 8(a), we show the image reconstruction603

and error map results using the calibrated SMs for downsam-604

pling ratio 4. The ProTSM-scratch-reconstructed image con-605

tains more artifacts around it. Additionally, ProTSM without606

coil information generates a distorted image, and ProTSM-607

CNN shows low image quality.608

We further highlight the effectiveness of the proposed pre-609

training strategy. The training loss and test nRMSE variations610

for ProTSM training with and without pretraining are shown611

in Fig. 8(b). Compared with training starting from scratch,612

finetuning provides a lower loss during training. Furthermore,613

the test nRMSE indicates that finetuning has better perfor-614

mance and stability. These results confirm the importance and615

contribution of the proposed pretraining strategy.616

F. Visualization Results617

To demonstrate an intuitive comprehension, this section618

visualizes hidden features from the transformer layer. Particu-619

larly, we averaged the feature maps using the token dimension620

after obtaining them through the final transformer layer. We621

used t-SNE to visualize the representations in Fig. 9(a).622

ProTSM-rand. init denotes the ProTSM model without training623

(i.e., with randomly initialized model parameters). The low-624

resolution SM rows are mixed distributed before training, and625

they are clustered closer together through the frequency index626

after training. This demonstrates that the calibration may help627

the low-resolution SM rows regain the coil-related properties.628

Additionally, three examples of test set data demonstrate the629

impact of coil information. The performance of ProTSM-w/o630

coil information and ProTSM-scratch is compared, and the631

attention map is calculated using the frequency index and coil632

channel as seeds. The attention mask is averaged using the two633

tokens, and the top 25% activation areas are preserved. The634

results are shown in Fig. 9(b). The attention mask covers rel-635

atively important areas, and the coil information may help the636

ProTSM-scartch perform better. The above results show that637

the SM calibration task may benefit from the coil information.638

639

Fig. 8. (a) Reconstructed image based on SMs predicted by ProTSM
variant models. (b) Variation in train loss and test nRMSE for finetune
mode and train from scratch mode during training epochs.

VI. DISCUSSION 640

To accelerate the 3D SM calibration for MPI, we propose a 641

transformer-based method to model the relationship between 642

SM rows and a pretraining strategy to use unlabeled data. The 643

estimated time of high-resolution SM in the OpenMPI dataset 644

is shown in Table IX. The measurement time cost is estimated 645

using [38]. Measurement and CS methods take a lot of time to 646

recover SM. Interpolation-based methods have notably shorten 647

the calibration time, while the quality of recovered SM is 648

not satisfactory especially in high downsampling ratio. The 649

deep learning-based approaches reduce the calibration time to 650

the hundred-second level. Considering that the SM calibration 651

is not required to be real-time, the proposed method, just 652

like other deep learning-based approaches, has efficiently 653

saved time and labor costs compared with the measurement. 654

Moreover, in light of the quality of the recovered SM, our 655

proposed method may also strike a more desirable balance 656

between SM recovery prediction accuracy and calibration time. 657

Existing methods conceptualize SM calibration as a super- 658

resolution task in natural images, but the calibration accuracy 659

of the SM frequency components is higher than the recon- 660

struction accuracy of natural images. Additionally, the spatial 661

size of the SM rows (32 × 32 × 32) is significantly smaller 662

than that of natural and medical images (e.g., 256 × 256 × 663

128). In large images, the relationship between distant pixels 664

is relatively weak, while the SM’s compact size promotes 665

stronger relationships between its elements. Considering the 666

high level of accuracy required and the strong relationship 667

between elements, SM calibration may benefit from modeling 668

long-range dependencies than natural image reconstruction. 669

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3297173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 11

Fig. 9. (a) The t-SNE visualization of SM rows generated from the
model. The color of the points represents the frequency index. ProTSM-
rand. init indicates the ProTSM model without training. (b) Qualitative
visualizations of the ProTSM-scratch and ProTSM-w/o coil information
for three representative SM rows. The attention mask indicates the most
attentive areas with the coil information as seed.

This may explain the notable contribution of transformer670

architecture to SM calibration.671

To prevent overfitting owing to the high complexity of the672

transformer, we introduce a pretraining strategy that lever-673

ages low-resolution SM data. A low-resolution SM is easily674

collected during the development of an MPI system. We675

may measure the small SM repeatedly throughout system676

development to verify its performance. However, we should677

not measure the full-size SM because it is inaccurate after678

system upgrade. Hence, massive low-resolution SM data can679

be collected during the development process and used for SM680

calibration.681

Despite the success of previous SM recovery studies [16]–682

[18], [36], they may have overlooked the potential benefit of683

the hardware information (e.g., coil information in this study).684

Numerous studies have shown the importance of multimodal685

data fusion learning [46], [47], e.g., non-image data in medical686

image analysis. However, the effectiveness of multimodal data687

(i.e., frequency index and coil channel) in the MPI area has not688

been evaluated. This study introduces previously overlooked689

hardware information and validates its effectiveness for SM690

recovery.691

One limitation of our study is that the robustness of the692

proposed method has not been validated in vivo imaging. Sev-693

TABLE IX
THE COMPARISON OF ESTIMATED TIME (SECONDS) FOR

HIGH-RESOLUTION SM IN OPENMPI DATASET.

Method 2× 4×
Measurement 124621.28 423971.82
Bicubic 0.81 0.51
Trilinear 0.75 0.50
CS 54984.28 19620.41
SRCNN 22.22 21.93
3dSMRnet 107.92 22.53
VolumeNet 7.83 6.19
IDL 30.26 17.90
MetaBlock 92.04 39.98
ProTSM 58.34 62.59

eral phantoms were imaged in vitro for image reconstruction 694

task assessment, and we only assessed the performance using 695

nRMSE, PSNR and SSIM. These metrics evaluate the overall 696

quality of the reconstructed image, but may be insufficient 697

in assessing the specific image details, especially in vivo 698

imaging. Different nanoparticle behaviors have been observed 699

between in vitro and in vivo settings because tracers’ signals 700

will change when they interact with biological tissue [48], 701

[49]. Therefore, higher metric (PSNR and SSIM) may not 702

guarantee better performance in vivo imaging especially for 703

clinical applications. The solution to this problem remains an 704

open debate. We intend to develop better metric to discuss the 705

potential solution to this problem, and validate the effective- 706

ness of our proposed method in vivo settings in our future 707

research. 708

There are two future research directions to improve the 709

current study: 710

1) Better utilization of multimodal information. We use 711

the coil channel and frequency index for SM calibration, but 712

the integrated method may not be optimal. Hence, multimodal 713

information should be fully used to model the relationships 714

between SM rows and improve the calibration accuracy. For 715

example, graph convolutional networks [50], [51] may better 716

model the relationships using graphs. Therefore, developing 717

SM calibration using such networks may be a direction worth 718

exploring. 719

2) More powerful pretraining strategy. We introduce a 720

pseudo-label-based pretraining strategy to use available un- 721

labeled data. A more enhanced pretraining strategy should 722

be explored and analyzed. For example, more accurate and 723

transferable pseudo-labels should be generated for different 724

downstream datasets. Additionally, self-supervised pretraining 725

has demonstrated its effectiveness on medical data [52], [53]. 726

The fusion of such pretraining strategies may further improve 727

the SM calibration. 728

VII. CONCLUSION 729

We proposed a transformer-based model for fast 3D SM 730

calibration that uses multimodal information. Additionally, we 731

proposed a pretraining strategy to fully use available unlabeled 732

SM data. Our results on the OpenMPI and simulation datasets 733

demonstrated that our ProTSM outperforms other methods. 734

Moreover, the results for in-house MPI systems indicated the 735

applicability and generalization ability of ProTSM. 736
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J. Stelzner et al., “Magnetic particle imaging: current developments and740

future directions,” International journal of nanomedicine, vol. 10, p.741

3097, 2015.742

[2] T. Knopp and T. M. Buzug, Magnetic particle imaging: an introduction743

to imaging principles and scanner instrumentation. Springer Science744

& Business Media, 2012.745

[3] J. Weizenecker, J. Borgert, and B. Gleich, “A simulation study on746

the resolution and sensitivity of magnetic particle imaging,” Physics in747

Medicine & Biology, vol. 52, no. 21, p. 6363, 2007.748

[4] T. Knopp, T. F. Sattel, S. Biederer, J. Rahmer, J. Weizenecker, B. Gleich,749

J. Borgert, and T. M. Buzug, “Model-based reconstruction for magnetic750

particle imaging,” IEEE Transactions on Medical Imaging, vol. 29, no. 1,751

pp. 12–18, 2009.752

[5] W. Tong, H. Hui, W. Shang, Y. Zhang, F. Tian, Q. Ma, X. Yang,753

J. Tian, and Y. Chen, “Highly sensitive magnetic particle imaging of754

vulnerable atherosclerotic plaque with active myeloperoxidase-targeted755

nanoparticles,” Theranostics, vol. 11, no. 2, p. 506, 2021.756

[6] G. Jia, L. Huang, Z. Wang, X. Liang, Y. Zhang, Y. Zhang, Q. Miao,757

K. Hu, T. Li, Y. Wang et al., “Gradient-based pulsed excitation and758

relaxation encoding in magnetic particle imaging,” IEEE Transactions759

on Medical Imaging, vol. 41, no. 12, pp. 3725–3733, 2022.760

[7] X. Y. Zhou, Z. W. Tay, P. Chandrasekharan, Y. Y. Elaine, D. W.761

Hensley, R. Orendorff, K. E. Jeffris, D. Mai, B. Zheng, P. W. Goodwill762

et al., “Magnetic particle imaging for radiation-free, sensitive and high-763

contrast vascular imaging and cell tracking,” Current opinion in chemical764

biology, vol. 45, pp. 131–138, 2018.765

[8] R. Kuo, P. Chandrasekharan, B. Fung, and S. Conolly, “In vivo therapeu-766

tic cell tracking using magnetic particle imaging,” International Journal767

on Magnetic Particle Imaging, vol. 8, no. 1 Suppl 1, 2022.768

[9] L. C. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss,769

F. Du, J. Rao, G. Song et al., “A review of magnetic particle imaging and770

perspectives on neuroimaging,” American Journal of Neuroradiology,771

vol. 40, no. 2, pp. 206–212, 2019.772

[10] C. Z. Cooley, J. B. Mandeville, E. E. Mason, E. T. Mandeville, and L. L.773

Wald, “Rodent cerebral blood volume (cbv) changes during hypercapnia774

observed using magnetic particle imaging (mpi) detection,” NeuroImage,775

vol. 178, pp. 713–720, 2018.776

[11] A. C. Bakenecker, M. Ahlborg, C. Debbeler, C. Kaethner, T. M. Buzug,777
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