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Morph-SSL: Self-Supervision With Longitudinal
Morphing for Forecasting AMD Progression
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Abstract— The lack of reliable biomarkers makes predict-
ing the conversion from intermediate to neovascular age-
related macular degeneration (iAMD, nAMD) a challenging
task. We develop a Deep Learning (DL) model to predict
the future risk of conversion of an eye from iAMD to nAMD
from its current OCT scan. Although eye clinics generate
vast amounts of longitudinal OCT scans to monitor AMD
progression, only a small subset can be manually labeled for
supervised DL. To address this issue, we propose Morph-
SSL, a novel Self-supervised Learning (SSL) method for
longitudinal data. It uses pairs of unlabelled OCT scans
from different visits and involves morphing the scan from
the previous visit to the next. The Decoder predicts the
transformation for morphing and ensures a smooth feature
manifold that can generate intermediate scans between
visits through linear interpolation. Next, the Morph-SSL
trained features are input to a Classifier which is trained in
a supervised manner to model the cumulative probability
distribution of the time to conversion with a sigmoidal
function. Morph-SSL was trained on unlabelled scans of
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399 eyes (3570 visits). The Classifier was evaluated with
a five-fold cross-validation on 2418 scans from 343 eyes
with clinical labels of the conversion date. The Morph-SSL
features achieved an AUC of 0.779 in predicting the conver-
sion to nAMD within the next 6 months, outperforming the
same network when trained end-to-end from scratch or pre-
trained with popular SSL methods. Automated prediction of
the future risk of nAMD onset can enable timely treatment
and individualized AMD management.

Index Terms— Self-supervised learning, disease progres-
sion, age-related macular degeneration, retina, longitudinal
OCT.

I. INTRODUCTION

AGE-RELATED macular degeneration (AMD) is a leading
cause of blindness in the elderly population [1]. Although

asymptomatic in its early and intermediate stages, it gradually
progresses to a late stage leading to irreversible vision loss.
Early or intermediate AMD (iAMD) is primarily characterized
by the presence of drusen. Additionally, the Retinal Pigment
Epithelium (RPE) and Photoreceptor (PR) layers degenerate
over time and are associated with Hyper-reflective Foci (HRF).
The late stage is characterized by significant vision loss either
due to the presence of Geographic Atrophy (GA) called dry
AMD, the presence of choroidal neovascularisation (CNV)
called neovascular AMD (nAMD), or a combination of both.
nAMD is caused by the abnormal growth of blood vessels that
leak fluid into the retina [2] which can be effectively treated
with intravitreal anti-VEGF injections. If patients at a higher
risk of conversion to nAMD can be identified in the iAMD
stage itself, then potential future vision loss could be avoided
through frequent monitoring and early treatment. However, the
rate of progression varies widely across patients. There are no
reliable biomarkers in the iAMD stage to differentiate between
slow and fast progressors making it difficult for clinicians to
determine the precise risk and timing of conversion. Thus,
deep learning (DL)-based methods to predict the future risk
of conversion to nAMD can play a critical role in enabling
patient-specific disease management.

Optical Coherence Tomography (OCT) provides a 3D
view of the retinal tissue and comprises a series of cross-
sectional 2D image slices called B-scans. In clinical practice,
a longitudinal series of OCT scans is routinely acquired over
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multiple patient visits to assess and monitor AMD progression.
It generates a large amount of retrospective imaging data that
can potentially be used to train DL models. However, due to
the time, effort, and clinical expertise required, manual Ground
Truth (GT) labels are rarely available for supervised training.
Self-Supervised Learning (SSL) offers a way to address this
issue by training DL networks to solve pretext tasks on
unlabelled training data to learn useful feature representations.

In this work, we propose a novel SSL method specifically
adapted to longitudinal datasets called Morph-SSL. It involves
morphing an OCT scan from one visit to a future visit
scan of the same eye. We surmise that the change between
the features extracted from two visits should reflect the
structural deformation and the intensity changes between them.
Morph-SSL is employed to develop a prognostic model to
predict future conversion from iAMD to nAMD within the
next t months from a single current OCT scan. t can be
any continuous time-point up to a maximum of 18 months.
We refer to this task as TTC, predicting the probability
distribution of the Time-to-Conversion. Once an Encoder has
been trained with Morph-SSL, a 3-layer Classifier is trained
for the TTC task on limited labelled data. The Encoder
and Classifier can further be fine-tuned jointly. Our key
contributions are:

(i) We propose Morph-SSL, a novel SSL method to
learn representations that capture temporal changes in the
retinal tissue from unlabelled longitudinal datasets. With
minimal constraints on the unlabelled training data, Morph-
SSL requires at least two visits per eye and can also use scans
acquired at irregular intervals. The learned feature manifold
is enforced to be smooth with meaningful notions of distance
and direction, such that linear interpolation between two scans
in the feature space leads to a gradual transition between them
in the image space.

(ii) We model the Cumulative Distribution Function (CDF)
of the probability of the TTC with a sigmoidal function over
time. It allows using continuous GT labels of conversion
time during training, ensures the monotonic non-decreasing
property of the CDF, and can predict the conversion risk for
arbitrary continuous time-points at test time.

(iii) We propose a score r ∈ [0, 1] that quantifies the future
risk of eyes to develope nAMD and can categorize them into
low and high risk groups for conversion. r can play a crucial
role in personalized treatment by identifying the high risk
patients for early treatment and more frequent monitoring.

(iv) We develop an efficient CNN network to process entire
OCT volumes instead of individual 2D B-scans. We explore (a)
S3DConv block to replace 3D convolutions with three groups
of 2D convolutions oriented in the three orthogonal planes; (b)
concatenation-based (instead of additive) skip connections to
have the same output channel size with fewer convolutions; (c)
Layer Normalization instead of Batch Normalization to allow
training with a batch size of 1.

II. RELATED WORK

A. Self-Supervised Learning

It offers a way to overcome the paucity of labelled datasets
for supervised training. SSL learns feature representations

from unlabelled data by training the network on a pretext
task that does not need manual labels. SSL-trained models
can either be utilized for off-the-shelf feature extraction or
to provide initial weights for fine-tuning on the desired
downstream task with limited labelled training data. Recent
SSL methods employ pretext tasks based on image recon-
struction or Contrastive Learning (CL). Reconstruction-based
methods train networks to predict the original image from
its distorted version and have been applied to X-ray, CT,
MRI and ultrasound images [3], [4]. The distortions involve
transformations such as non-linear intensity mapping, local
shuffling, and in-painting in Model-Genesis [3] and randomly
swapping patches in the image [4].

CL has been applied to chest X-ray, dermatology [5],
histology [6], MRI [7] and ultrasound [8] images. CL trains
networks using random batches comprising two data-
augmented versions per image, called positive pairs. While
positive pairs are pulled closer, the features of different images
in the batch called negative pairs are pushed apart. However,
the images in a negative pair can still be semantically similar
(same pathology or disease stage), resulting in many False
Negative pairs. Their impact can be reduced by training with
large batch sizes (1024 for chest X-rays, 512 for dermatology
images in [5] and 128 for histology image patches in [6]).
Since large batch sizes do not scale well to 3D images due to
limited GPU memory, existing methods learn features at a 2D,
slice-level for 3D MRI volumes [7], or for individual frames in
ultrasound videos [8] where neighboring slices/frames of the
same 3D image are excluded from negative pairs. The recently
proposed Non-Contrastive methods overcome the problem of
False Negative pairs. They do not maximize the negative pair
separation but only ensure that they do not collapse onto the
same feature representation. VICReg [9] keeps the standard
deviation of each feature dimension over a batch above a
threshold. Barlow Twins [10] forces the cross-correlation
between two batch of features extracted from the two images
in each positive pair to be close to the identity matrix. BYOL
[11] prevents feature collapse using slightly different network
weights to extract features for the two views in the positive
pair, where the second network weight is computed as the
moving average of past weights.

CL and Non-Contrastive SSL have been adapted for retinal
OCT to learn features for 2D B-scans with training batch
sizes of 128 in [12] and 384 in [13]. Another method learns
features for central B-scans by predicting the time interval
between two input scans from random visits of the same
patient [14]. In contrast, Morph-SSL with a novel image
morphing-based pretext task can be trained with a batch size of
1 to reduce GPU memory usage, allowing us to learn feature
representations for entire 3D OCT volumes instead of 2D B-
scans.

B. Time to Conversion Prediction
Existing methods either employ Color Fundus Photographs

(CFP) or OCT imaging for TTC prediction. CFP is a 2D
image of the retinal surface and lacks a cross-sectional view
of the retina. A 9-grade AREDS disease severity scale [15]
further stratifies the iAMD stage in CFPs, where each
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Fig. 1. (a) Overview of our 2-stage training framework: Stage-1 involves self-supervised pre-training of an Encoder using Morph-SSL. Stage-2
involves supervised training of a classifier for the downstream task of predicting future nAMD conversion within the next t months. Optionally, an end-
to-end fine-tuning of the pre-trained Encoder and the classifier can be performed. The motivation behind Morph-SSL is shown in (b) and its details
in (c). Please refer to Fig. 2(c) for the Encoder and Fig. 3(b) for the classifier architecture.

successive stage has been linked to an increased 5-year risk
of conversion to advanced AMD (from 1% in grade 1 to
about 50% risk in grade 9). However, no such severity scale
exists for the relatively new OCT imaging. The establishment
of imaging biomarkers in the iAMD stage preceding the
onset of nAMD remains a topic of ongoing investigation,
as evidenced by many recent [2], [16], [17], [18] and ongoing
clinical studies [19]. In [16], morphological changes such as
hyperreflective foci (HRF) and pigment epithelial detachment
(PED) were observed one month before the manifestation of
choroidal neovascularization (CNV). Additionally, an increase
in drusen area or thickness [2], [17], HRF [17] and the
presence of a thick Double-Layer Sign (characterized by
the visible separation of the retinal pigment epithelium
and Bruch’s Membrane with different reflectivity) [18] have
emerged as potential biomarkers indicative of an elevated
risk of converting to nAMD within a two-year time frame.
Moreover, an accelerated thinning and appearance changes in
the choroid was also observed in [20] prior to nAMD onset
within a one year follow-up period.

Some CFP-based methods predict the AREDS severity
scale [21], [22]. Two-year conversion of nAMD was predicted
with an ensemble of such predictions combined with features
from drusen segmentation and demographic data [22]. The
CNN-LSTM based methods in [23] and [24] require images
from multiple past visits, hence cannot be used for patients
visiting for the first time. The input CFPs from visits at
irregular intervals are handled by scaling the input image
features with visit time intervals [23] or using a time-
aware LSTM network [24]. In [25], a Generative Adversarial
Network was used to generate synthetic CFP images for
future time-points. Combining CFP with genetic features can
improve performance [26], but such information is not readily
available in eye clinics. While CFP-based methods can predict
long-term conversion, they are not sensitive to short-term
conversion risks within 2 years, required for effective clinical

intervention. Because CFPs lack a 3D view of the retina,
they cannot capture subtle changes in retinal layers or extract
accurate lesion volumes.

Many OCT-based methods first extract a set of handcrafted
quantitative biomarkers to capture the distribution, appearance
and volume of lesions like drusen, HRF and retinal layers
such as RPE and PR. These biomarkers combined with
other demographic [27] or genetic data [28] are input
to an LSTM [27], Cox proportional hazards model [28],
or an L1-penalized Poisson model [29] to predict the TTC.
The biomarkers are extracted with automated segmentation
methods that are often inaccurate and require voxel-level
labels to train. Moreover, handcrafted biomarkers may not
adequately capture the subtle retinal changes related to disease
progression.

Another approach directly uses the OCT scans as input.
To reduce the compute and GPU memory, most existing
methods operate on individual B-scans with 2D CNNs. Some
methods in [14] and [12] only use the central B-scan that
passes through the macula, ignoring the remaining B-scans
in the volume. While [14] employed this strategy for TTC
prediction, [12] used it on other tasks such as predicting age,
sex and visual acuity from OCT. Alternatively, 2D CNNs
can be applied independently to every B-scan in the volume.
During inference, the predictions from each B-scan is pooled,
either by taking the average [30] or maximum [13] to obtain
the volume-level prediction. During training, the same GT
for the conversion time is used for every B-scan in the
volume, even if only a few of them have the biomarkers
indicative of progression risk, resulting in noisy training labels.
In contrast to these methods, in this work we explore a full
3D approach by developing a compact 3D-CNN network to
effectively capture the spatial information across the individual
B-scans. Other than our work, the only other 3D-CNN method
is found in [31], which employs two prediction networks to
predict the conversion risk within six months, one using raw
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OCT volumes and the other using retinal layer and lesion
segmentation maps.

III. METHOD

Our primary contribution is Morph-SSL, a new Self-
Supervised Learning method designed to leverage the wider
availability of unlabeled longitudinal training data. It learns
feature representations that are sensitive to the morphological
characteristics in an input OCT scan which are indicative of
future disease progression. Morph-SSL uses pairs of unlabeled
scans acquired at irregular (but known) time-intervals from
each subject to solve the pretext task of morphing the scan
from the prior visit to the next as detailed in III-A. Considering
implementation challenges such as GPU memory and the
computation time required in a 3D convolutional network,
we also developed a lightweight CNN architecture (in Fig. 2)
for processing 3D OCT volumes.

In order to demonstrate the effectiveness of our learned
representations, we chose a clinically relevant downstream task
of predicting the future risk of conversion of eyes (currently
in the iAMD stage) to the late nAMD stage in Section III-B.
The Cumultative Distribution Function (CDF) of the time-
to-conversion (TTC) is modeled as a sigmoid function over
time. The CDF parameters are predicted using a classifier that
employs the Morph-SSL trained encoder.

The overall pipeline combining the unsupervised represen-
tation learning and the supervised downstream conversion
prediction stage is depicted in Fig. 1(a). First, a Fully
Convolutional Encoder is trained with Morph-SSL to project
an input OCT scan I to a convolutional feature map F.
This stage only utilizes unlabeled longitudinal image-pairs for
training. Next, F is input to a classifier for the downstream
task of predicting the future conversion to nAMD within
the next t months. This task involves modeling the CDF of
conversion time using a sigmoid distribution whose parameters
are predicted by the classifier. By freezing the Morph-
SSL pre-trained weights for the encoder, the classifier is
trained in a supervised manner on limited labeled data.
Optionally, an additional end-to-end finetuning can also be
performed using the Morph-SSL pre-trained weights for
network initialization.

A. Self-Supervised Learning
1) Motivation: Let {It |1 ≤ t ≤ T } represent a set of 3D

OCT scans of an eye acquired over T visits, in which It is
obtained on the t th visit. The Encoder projects each It to a
feature map Ft of size 128@12×12×16. Ft can be interpreted
as 128-dimensional features for overlapping 3D image patches
in It , with the patch size defined by the effective receptive field
of the Encoder. As AMD progresses over successive visits,
Ft traces a trajectory (denoted by the violet dotted line in
Fig. 1(b)) that is locally linear between nearby visits It , and
It+k (assuming a smooth feature manifold) but maybe non-
linear over the entire AMD progression. Let TD,A(.) denote
a transformation which morphs It to look similar to It+k ,
with parameters D and A. As It morphs into It+k in the
image space, Ft should be linearly displaced to Ft+k by

Vt = Ft+k − Ft in the feature manifold. This observation
motivates our pretext task for Morph-SSL which employs
an Encoder-Decoder architecture. The Encoder projects scans
from two nearby visits, It and It+k to their features Ft and
Ft+k . The Decoder uses the displacement Vt as input to predict
D and A of the morphing transformation TD,A. Our pretext
task ensures that the displacements in the learned feature
manifold capture the corresponding appearance changes in the
image space.
TD,A comprises a spatial deformation with the 3-channel D

and an additive intensity transformation with the 1-channel A,
both of the same spatial size as It . Each voxel at location p in
It is displaced to the location p + D( p), where D( p) is a 3-
dimensional displacement vector representing the translations
along the height, width and depth direction. Additionally, A( p)
captures the intensity changes at each location p, caused by
newly formed pathologies in It+k such as fluids or drusen.
Thus, the transformed image is Ît = TD,A (It ) = 8(It ; D)+A,
where 8 is the spatial deformation applied in a differentiable
manner similar to the registration methods in [32] and [33]
based on the Spatial Transformer Networks [34]. A has a
single color channel (similar to It ) to model the additive
intensity transformation since OCTs are grayscale images.

2) Morph-SSL Framework: The details are depicted in
Fig. 1(c). Ft is split into two subspaces FD

t and FA
t

of 64 channels each. The Decoder has two sub-networks,
Decoder-D and Decoder-A that operate on FD

t and FA
t feature

maps respectively, to predict D and A. A notion of seman-
tically meaningful directions and distance is incorporated.
The amount of deformation between It and It+k should be
proportional to the Euclidean distance ||V D|| = ||FD

t+k −

FD
t ||2, while the nature and location of the deformation should

be captured by the direction alone, represented by the unit
vector V D/||V D||. This property is enforced by our Decoder
architecture in Fig. 1(c). Only the direction information
γ1.(V D/||V D||) is input to Decoder-D and its output D̂ is
normalized and scaled to obtain D = α1.||V D||.(D̂/||D̂||).
This ensures that ||D|| = α1.||VD||. Both γ1, α1 are learnable
parameters (positive scalar weights) employed for numerical
stability during training. A similar scheme is employed to
predict A. The direction γ2.(V A/||V A||) is input to Decoder-
A and its output scaled to A = α2.||V A||.(Â/||Â||), where γ2,
α2 are learnable positive weights (see Fig. 1(c)).

a) Loss function: The Encoder-Decoder network is trained
to minimize the Mean Squared Error (MSE) between Ît and
It+k by directly comparing their voxel intensities (Lmse) as
well as their feature maps extracted with a CNN (Lprc). Lmse
alone leads to blurred reconstructions which is remedied by
using the additional perceptual loss Lprc [35], [36]. The OCT
scans have a dark noisy background region both above and
below the retinal tissue. We define the region between the
Inner Limiting Membrane (ILM) and the Bruchs Membrane
(BM) along with a small margin below the BM (to include
the choroid) as the region of interest (ROI) containing the
retinal tissue. The binary ROI mask Rt for the scan It is
extracted automatically (see Section IV, Preprocessing section
for details). While registering It to It+k , we aim to morph the
ROI in It to the corresponding retinal tissue region in It+k . The
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Fig. 2. The S3DConv block in (a) is used as the basic convolution operation in our entire Encoder and Decoder architecture. A series of Basic
Encoder Blocks detailed in (b) constitutes our Encoder architecture as shown in (c). The Decoder-D and Decoder-A accept FD and FA as input
respectively and employ a similar architecture comprising a series of Basic Decoder Blocks in (d), except the number of output channels in the last
layer (n = 3 for Decoder-D and n = 1 for Decoder-A) as depicted in (e).

background noisy region is ignored while computing Lmse and
Lprc using Rt (for It ) and Rt+k (for It+k), obtained during
pre-processing. Before computing the loss, the background
regions are masked out through element-wise multiplication
It+k = It+k ⊙ Rt+k and Ît = Ît ⊙ 8(Rt ; D). The Encoder
does not require the binary masks at inference time as they
are only used to compute the loss.
Lmse has two terms. First, the MSE is computed with the

only spatially deformed image 8(It ; D). Next, A is fitted
to the residual difference left after the spatial deformation,
U = It+k − 8(It ; D).detach(). The detach() indicates that
the gradients are not allowed to backpropagate through U
which is computed on the fly and treated as the GT for A.
This two-step design is to ensure that D accounts for most of
the reconstruction and avoid trivial solutions where D is an
identity transformation (0 displacement for all voxels) while
A tries to learn the entire difference It+k − It . Thus,

Lmse =
λ1

|�|
.||It+k −8(It ; D)||22 +

λ2

|�|
.||U − A||

2
2, (1)

where |�| is the total number of voxels in the image and the
relative weights λ1 = 101, λ2 = 102 were set empirically.

The MSE in the voxel intensity space encourages smoothed
reconstructions, blurring the edges and textural content in Ît .
A perceptual loss term Lprc addresses this issue by extracting
convolutional feature maps for It+k and Ît with a Comparator
CNN network ψ and computing the MSE in the extracted
feature space (rather than the raw voxel intensities) as

Lprc =
1
3

3∑
j=1

1
|�|

||ψ j (It+k)− ψ j (̂It )||
2
2. (2)

ψ j (I) denotes the feature map from the j th layer of ψ
for the input I. Typically, the first few layers of a pre-
trained network such as VGG-16 are used for ψ [35], [36].
In the absence of a suitable pre-trained 3D CNN network
for OCT volumes, we define ψ to have an architecture
identical to the first 3 layers of our Encoder. Inspired by
BYOL [11], ψ maintains a separate copy of its network
weights which is updated with an exponential moving average
of the past Encoder weights (for the first 3 layers) as the
training proceeds. Although initially ψ is randomly initialized,
the quality of its feature maps improves gradually during
training. Thus, we eliminate the need for an existing pre-
trained network for ψ .

Additional regularization loss terms are also incorporated
to obtain an anatomically feasible TD,A. D is encouraged
to be diffeomorphic by penalizing it to be smooth with
Lsmth and prevent folding with L f ld . The Lsmth =∑

p∈� ||∇D( p)||22 was defined as in [32], where the spatial
gradient ∇D(p) is computed at all voxel positions through
discrete numerical approximation. L f ld as defined in [33],
penalizes the anatomically infeasible deformations where the
retinal tissue folds onto itself. Finally, the sparsity of A is
ensured with an L1-regularization Ladd =

∑
p∈� |A( p)|.

Thus, the total loss is

L = Lmse + λ3.Lprc + λ4.Lsmth + λ5.L f ld + λ6Ladd , (3)

where λ3 = 101, λ4 = 10−1, λ5 = 106 and λ6 = 10−5 are
empirically fixed, based on their relative importance and also
to scale the different loss terms to a similar range. The range
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of the L f ld is orders of magnitude lower than the other terms,
thus requiring a significantly larger scaling weight.

3) Network Architecture: The separable 3D Convolution
Block (S3DConv) depicted in Fig. 2(a) replaces 3D con-
volutions throughout our Encoder and Decoder Networks
to reduce computation and network parameters. It employs
2D convolution filters in the three orthogonal planes. While
50% of the filters are 3×3×1 that operate on individual B-
scans, the remaining are an equal number of 1×3×3 and
3×1×3 filters to capture contextual information across the
neighboring B-scans. Using Layer Normalization instead of
Batch Normalization allows training with a batch size of 1.
The pre-activation strategy [37] ensures that the normalization
and E LU activations are applied after the skip connections,
at the beginning of the next S3DConv block for better gradient
backpropagation.

The Encoder depicted in Fig. 2(c) has a series of five Basic
Encoder Blocks interleaved with downsampling. The Basic
Encoder Block comprises two S3DConv Blocks followed by
a concatenation based skip connection (see Fig. 2(b)). Here,
each S3DConv has C input and output channels by setting
P = C/4 in Fig. 2(a). The downsampling is performed
with a strided 3×3×3 depthwise-separable convolution [38].
It applies a separate 3×3×3 convolution (with 1 input and
output channel) to each of the C input channels individually
and their outputs are concatenated together. It is implemented
in Pytorch by setting groups = 1 in the Conv3D layer. Due to
large voxel spacing across the B-scans, downsampling along
this direction is only performed in the final block with a stride
of (2, 2, 2) to ensure a roughly isotropic receptive field. All
previous downsampling layers use a (2, 2, 1) stride to only
halve the height and width dimensions. The last Encoder block
is followed by two parallel pathways, each consisting of two
1×1×1, 3D convolutional layers to obtain the final 64 channel
FD and FA.

Decoder: Both Decoder-D and Decoder-A (in Fig. 1(c))
have the same architecture as shown in Fig. 2(e), except for
the number of output channels in the last 1×1×1, convolution
layer (1 channel for A and 3 to predict D respectively).
The Decoder architecture employs a series of Basic Decoder
Blocks. They map a C@(H,W, D) input feature map to a
C
2 @(2H, 2W, D.s) output, where s is the upsampling factor
across B-scans (s = 2 in the first block, 1 otherwise).
As depicted in Fig. 2(d), it comprises an upsampling layer
followed by a S3DConv whose outputs are concatenated
with a skip connection. The upsampling layer performs
two operations. First, the input of size C@(H,W, D) is
upsampled to C@(2H, 2W, D.s) using trilinear interpolation.
Next, a Depth-separable 3×3×3 convolution is employed,
which divides the C input channels into C

4 groups of
4 channels each. A separate convolution filter is applied to
each group to compress them to a single channel resulting in
a C

4 @(2H, 2W, D.s) output.

B. Downstream TTC Estimation Task

The problem setting of the Downstream TTC task for an
eye is depicted in Fig. 3(a). An OCT is acquired at each visit

(red dots) occuring at irregular time intervals. The eye remains
in the early/iAMD stage up to the visit at time T − and is first
diagnosed to have progressed to nAMD at time T +. The exact
time of conversion T ∗ is unknown as patients are monitored at
discrete time-points but lies in T − < T ∗

≤ T +. We treat T ∗

as a continuous random variable and aim to model its CDF,
P(T ∗

≤ t) (y-axis in Fig. 3(a)). P(T ∗
≤ t) is the probability

that the eye has converted within the time-point t . The binary
GT for P(T ∗

≤ t) is 0 for 0 ≤ t ≤ T −, 1 for t ≥ T + and
unknown in the range T − < t < T +. We propose to model
P(T ∗

≤ t) with a sigmoidal distribution over time as

pt = P(T ∗
≤ t) = 1/

[
1 + exp

{
−

(
t − b

a + 0.05

)}]
, (4)

where b is an estimate of T ∗ and a controls the slope of the
sigmoidal CDF. A steep slope (small a) would indicate a fast
progression rate around T ∗ and viceversa.

1) Classifier Architecture: The scalars a and b are predicted
with the classifier in Fig. 3(b). The SSL-trained feature map
F of the input OCT scan is fed to the classifier. F is mapped
to a single channel feature map M through a series of three
1×1×1 convolutional layers. A Class Activation Map (CAM)
can be computed as a weighted sum of all channels in the
final convolutional feature map, which in our case is M with
a single channel. Thus, M can be interpreted as a saliency
map for our classifier (see Fig. 4) which motivates how a and
b are computed.

The b is obtained through the Global Average Pooling
(GAP) of M denoted by b̂, scaling it by a non-negative
learnable scalar weight α1 and taking the reciprocal b =

1/(α1 · b̂). We hypothesize that images predicted to convert
soon (with small b) should lead to higher activations on the
saliency map M.

The a is obtained by computing the spatial entropy of
M denoted by â, scaling it by non-negative learnable scalar
α2 and applying the sigmoid activation. We hypothesize that
low entropy (certain locations in M have high activations while
others take very small values) indicates the detection of some
salient regions in the OCT which may correlate to a sudden
disease progression around the conversion event leading to a
steep slope (small a). The spatial entropy is computed by first
normalizing M to sum to 1, M′(i) = M(i)/

∑
p∈� M(p) and

then computing the entropy as H = −
∑

i∈� M′(i).logM′(i),
where � represents each spatial position in M.

2) Loss Function: A maximum time interval of 18 months
(normalized to [0,1]) was considered as longer durations are
not useful for clinical intervention. The T ∗ for scans that do
not convert within 18 months is unknown. For each scan, the
classification loss Lcls consists of the average Binary Cross
Entropy loss (BCE) computed for two time-points as

Lcls =


Lce (pT + , 1)+ Lce (pT − , 0) , if 0 ≤ T +, T −

≤ 1
Lce (p0, 0)+ Lce (p1, 0) , if T +, T − > 1
Lce (p0, 1)+ Lce (p1, 1) , if T +

= 0,

(5)

where pt at time t is computed using Eq. 4. Lce denotes
half of BCE loss to compute the average BCE over the two
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Fig. 3. Overview of the TTC Task. (a) CDF of the conversion time T∗ can be best modeled using a sigmoidal function. Exact T∗ is unknown due
to the discrete nature of the visits (red dots) but occurs between the first visit where the eye has converted (T+) and the visit (T−) just before it. (b)
The Classifier Network to predict the parameters of the sigmoidal function.

time-points. The first condition in Eq. 5 occurs when both
T − and T + occur within 18 months (1 after normalization)
and Lce is computed at these two time-points with the GT
labels 0 at T − and 1 at T +. Since the sigmoidal function
is monotonically non-decreasing, minimizing the loss at these
two points automatically improves pt for all t because pT − ≈

0 also ensures equal or lower predictions before T − and
pT + ≈ 1 enforces equal or higher predictions after T +. The
second condition in Eq. 5 represents the scenario where the
conversion (if the scan ever converts) occurs after 18 months
and exact T + and T − are unknown. Here, Lce is computed
at t = 0 and 1 with a GT label of 0 in both cases. The last
condition in Eq. 5 occurs when the input OCT scan is the first
visit of conversion and the GT label remains 1 throughout
the 18-month interval. In addition to Lcls , two regularization
terms are also employed. Thus, the total loss

Ltot = Lcls + γ1||a||
2
2 + γ2||M ⊙ (1 − R̂)||1, (6)

where γ1 = γ2 = 0.1. An L2-regularization of a is performed
for numerical stability. Moreover, higher activations in M
outside the retina defined by the binary mask R̂ are penalized.
R̂ is the ROI mask of the input scan R resized to 12×12×16.

IV. EXPERIMENTS

A. Dataset

A private longitudinal dataset was created from the Fellow
Eyes of a real-world retrospective cohort of OCT scans from
the PINNACLE consortium [19] collected from the University
Hospital Southampton and Moorfields Eye Hospital. The
images were acquired using Topcon scanners with an average
3.6 ± 5.7 months interval between successive visits. A subset
of the dataset was manually labelled for the TTC task and the
remaining were used to train Morph-SSL.

The SSL Dataset had 3570 unlabelled OCT scans from
multiple visits of 399 eyes with at least 3 visits per eye.
Whenever treatment information was available, the visits after
the first anti-VEGF injection were removed to ensure that most
scans in the dataset are in the iAMD stage.

The TTC Dataset with 343 Eyes (2418 OCT Volumes) was
manually examined by clinical experts for the downstream
task. In our experiments, each OCT scan was considered
independently and the corresponding GT labels for T + (and
T −) were obtained as the time-interval between the current
visit and the manually identified first visit of conversion (and
the visit just before it). All Scans after the first visit of

conversion were removed to focus on the iAMD stage and
the earliest indicators of nAMD in the first conversion visit.

B. Preprocessing:
The top and bottom boundaries delineating the retinal tissue

called the Inner Limiting Membrane (ILM) and the Bruch’s
Membrane (BM) were extracted using the automated method
in [39]. Thereafter, the curvature of the retinal surface was
flattened by shifting each A-scan by an offset such that the BM
lies on a straight plane similar to [39]. The binary ROI mask
of the retina contained the region from 26 µm above the ILM
to 169 µm (to include the choroid) below the BM. Both the
OCT and its ROI mask were then cropped to the central 3×3
mm2 en-face region. This region has been correlated with the
onset of GA and neovascularization [20]. Finally, the volume
was resized to 192×192×32 and its intensity linearly scaled to
[−1,1].

As an additional preprocessing for the SSL Dataset, the
enface projections of all visits of an eye were aligned to its
first visit using the unsupervised affine registration method
in [20]. This step ensures that the Morph-SSL features capture
the structural changes caused by AMD progression instead of
image misalignment. The step is not performed for the TTC
Dataset where each visit’s scan is considered independently.

C. Experimental Setup
Morph-SSL was trained on image pairs formed from two

random visits of the same eye, acquired within two years
from each other. The SSL Dataset was randomly divided into
350 eyes (14078 image pairs) for training, 25 eyes (640 image
pairs) for validation and the remaining 24 eyes (600 image
pairs) for a qualitative evaluation of the learned features (see
Fig. 5).

A stratified five-fold evaluation was conducted for the TTC
task to reduce the bias of a specific train-test data split.
The TTC Dataset was randomly divided into 5 mutually
exclusive parts at the eye level. The experiments were
repeated 5 times, each time considering one part as the
held out test set while the remaining dataset was randomly
divided into 85% for training and 15% for validation. The
performance was evaluated for predicting the conversion
to nAMD within t = 0, 6, 12 and 18 months, where t
= 0 indicates that the input image is the first visit of
conversion. We evaluated prediction scores using the area
under the receiver operating characteristic curve (AUC), and
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we evaluated binary predictions using balanced accuracy
calculated as (Sensitivity+Specificity)/2 after thresholding the
prediction scores at an operating point that maximized the
Youden’s J statistic. We performed both scan-level and eye-
level evaluations. The scan-level performance was evaluated
on all scans in the test set by treating each patient visit
as an independent sample. The average performance across
the five-folds is reported in the Appendix, Tables VI-X and
the Delong test was employed for statistical significance
between AUCs using the pyroc 0.20 library [40]. The eye-
level performance assessment employed a bootstrapping based
approach, incorporating 1000 random eye-level re-samplings
of the test set in each fold. Each re-sampling of the test-set
contained only one OCT scan (by randomly selecting a patient
visit) from each eye. This re-sampling process was repeated
1000 times for each of the five folds, resulting in a total
of 5 × 1000 = 5000 sample estimates for each performance
metric (AUC and balanced accuracy). The mean and standard
deviation across these 5000 sample estimates are reported in
Tables I-V and the statistical significance was ascertained with
the Wilcoxon Signed Rank Test.

D. Implementation Details

All experiments were implemented in Python 3.8.5 with
Pytorch 1.8.1 on a server, using a single NVIDIA A100,
40 GB GPU. An implementation of the proposed method is
available at: https://github.com/arunava555/Morph-SSL. Both
the Morph-SSL and downstream TTC training employed sim-
ilar Data Augmentations comprising random 3D translations
(up to 15% of the image size along each axis), random
horizontal flip (with 0.5 probability), Gaussian blurring (µ=0,
random σ ∈ [0, 0.9]) and Gaussian noise (µ= 0, σ = 0.001).
For Morph-SSL, both scans in the training image pair were
translated and flipped identically, while other augmentations
were applied independently. During both training stages,
Adam optimizer [41] was used (β1 = 0.9, β2 = 0.999, weight
decay = 10−5 for Morph-SSL, 10−2 for TTC) with a cyclic
learning rate schedule [42] where the learning rate was linearly
varied from lrmin (10−6 for Morph-SSL, 10−5 for TTC) to
lrmax =10−4 and back to lrmin in each epoch. The validation
performance was monitored to save the best network weights
using minimum loss for Morph-SSL and highest average AUC
for TTC.

Morph-SSL trained with a batch size of 1 for 160 epochs,
2000 batch updates per epoch, required 23 GB GPU memory.
The downstream training was performed for 400 epochs of
500 batch updates. A batch size of 6 was employed when the
Encoder and Classifier were fine-tuned together on the TTC
task, requiring 28 GB GPU memory. Training the Classifier
alone required 4GB of GPU for a batch size of 16. During
inference, the proposed method requires 30.487 GFLOPs and
takes an average of 0.04 seconds per image using GPU and
2.2 seconds per image using CPU alone for the downstream
conversion prediction task.

During Morph-SSL based pre-training, the size of the
encoder’s output and the tunable weights of the loss terms
in Eqs. 1 and 3 were empirically fixed by conducting a

preliminary hyperparameter search. The large amount of time
required in training multiple 3D models prevented a thorough
hyperparameter grid search. So, multiple models were trained
with different hyperparameter configurations on a small subset
of 100 image pairs from the entire SSL Dataset. They were
manually selected to cover a range of morphological changes,
from small to moderate changes in the drusen structure,
to large changes in the retinal thickness due to the presence of
abnormalities such as PED. Reducing the size of the Encoder’s
output feature map below 128@12×12×16 was found to have
an adverse impact on the quality of the reconstructed images.
Initially, each loss term was scaled in powers of 10 to balance
their values to a similar range. Next, the weight of each loss
term was varied one at a time in orders of 10 (keeping the
other loss weights fixed). The output image reconstructions
from the trained models were visually found to provide better
image reconstructions when the scale of the loss values were
in the following order: Lprc > deformation term in Lmse >

additive term in Lmse > L f ld > Ladd > Lsmth . Here, the first
three terms guide the network toward better reconstruction,
while the weights of the last three regularization terms are
kept relatively low to enable it to learn large transformations.

V. RESULTS

A. Results on the TTC Task

1) Impact of Morph-SSL : In Table I, rows 1-3, we evaluate
3 training setups: (a) end-to-end training from random weight
initialization (RI); (b) freeze the Morph-SSL trained Encoder
weights and only train the classifier on the TTC task (FR); (c)
use the Morph-SSL trained Encoder weights and the learned
classifier weights from (b) to initialize and perform end-to-end
finetuning of the Encoder and Classifier on the TTC task (FN).

The Morph-SSL features showed significant performance
improvement, even without fine-tuning, over end-to-end
training form scratch (row 1 vs 3). Further fine-tuning on
the TTC task (row 1 vs. 2) did not lead to a statistically
significant performance improvement, except for t = 18. This
indicates that the initial Morph-SSL trained weights are very
close to the optimal network weights for the TTC task. Overall,
a good performance is observed in identifying the scans that
have just converted to nAMD (t = 0) or are about to convert
within 6 months. However, the AUC drops progressively as we
consider larger time-intervals for forecasting into the future.
This may indicate that often, distinct morphological changes
signaling imminent nAMD conversion appear unexpectedly
only a few months before conversion rather than gradually
over a long period. Similar trends are also observed for the
scan-level performance reported in the Appendix, Table VI.

A few examples of the Saliency Maps M of the proposed
method are shown in Fig. 4 for OCT scans that convert at
different time intervals in the future. It shows that the trained
model is sensitive to abnormalities in the outer retina such as
drusen, PED and HRF, which are known to be associated with
AMD progression [2], [16], [17].

2) Comparison With TTC regression: Conversion prediction
can also be posed as a regression task for predicting the
TTC. In order to compare our approach against regression,
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TABLE I
EYE-LEVEL EVALUATION (MEAN±STD. DEVIATION) OF MORPH-SSL PRE-TRAINING AFTER FREEZING WEIGHTS (FR) AND END-TO-END

FINE-TUNING (FN), COMPARED WITH RANDOM NETWORK INITIALIZATION (RI). THE PROPOSED METHOD OF MODELING THE

TIME-TO-CONVERSION IS COMPARED AGAINST REGRESSION IN ROWS 4-5. THE VALUES HIGHLIGHTED WITH
∗ ARE NOT STATISTICALLY DIFFERENT FROM PROPOSED-FR (ROW 1) WITH p > 0.05

TABLE II
EYE-LEVEL PERFORMANCE (MEAN ± STD.DEV) FOR ABLATION ON THE ENCODER-DECODER ARCHITECTURE. EACH NETWORK IS PRE-TRAINED

WITH MORPH-SSL AND EVALUATED BY EITHER FREEZING (FR) WEIGHTS OR END-TO-END FINETUNING (FN) ON THE DOWNSTREAM TASK. THE

BEST VALUE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. THE STATISTICAL SIGNIFICANCE OF ROWS 2-4 IS COMPARED WITH ROW 1
AND ROWS 6-8 WITH ROW 5 AND THE VALUES HIGHLIGHTED WITH * ARE NOT STATISTICALLY DIFFERENT WITH p > 0.05

Fig. 4. Examples of saliency maps with frozen Morph-SSL weights.

we use the same Encoder (pre-trained with Morph-SSL)
and the downstream classification network architecture (in
Fig. 3(b)) but the prediction obtained through GAP of the
final single channel output M is treated as the time-to-
conversion from the current visit. The GT was computed as
the mean of T − and T + and used for training with a MSE
loss. The output prediction is binned into 6-month intervals
to obtain the binary prediction of nAMD conversion within
t = 0, 6, 12, 18 months for comparison with our method (see
row 4,5 in Table I for eye-level and Appendix, Table VI for
scan-level performance). Since, the resulting predictions are
binary and not continuous scores, AUC could not be computed

and only balanced accuracy has been reported. A large drop
in performance is observed between this regression-based
approach as compared to our proposed method of modeling the
CDF (with a sigmoid function over time) trained with the BCE
loss at different time-points in Eq. 5. This performance gap
can be primarily attributed to the inability of the regression-
based approach to utilize training samples that do not convert
within the time-period of 18 months as their GT label for the
conversion time is unknown while these samples are also used
for training in our formulation (second condition in Eq. 5).
Another problem with the regression-based formulation is the
unavailability of the exact conversion date T ∗ between T +

and T − leading to noisy labels. Furthermore, in some cases,
formulating regression problems as a classification task has
been shown to yield better performance. This has been linked
to the ability of the cross-entropy-based classification loss to
learn high-entropy (more diverse) feature representations as
compared to regression with a MSE loss [43].

3) Impact of the Encoder Architecture : In this work,
we propose an efficient CNN for 3D input images that
optimizes the amount of computation and trainable parameters.
Our solution involves two modifications: (i) substituting
3 × 3 × 3, 3D convolutions with S3DConv which applies
3 × 3 convolutions along the three orthogonal spatial
orientations (see Fig. 2(a)); (ii) using concatenation-based
skip connections [44] instead of the additive residual skip
connections in the Basic Blocks in Fig. 2(b), (d) which
are used at each scale of our Encoder and Decoder
architectures. We also employ Layer Normalization instead
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TABLE III
EYE-LEVEL PERFORMANCE (MEAN ± STD. DEVIATION) FOR ABLATION ON THE DOWNSTREAM TTC CLASSIFICATION LOSS (ROWS 2-3) AND THE

CLASSIFIER ARCHITECTURE (ROWS 4-5). THE MORPH-SSL PRE-TRAINED ENCODER WEIGHTS ARE FROZEN AND ONLY THE CLASSIFIER IS
TRAINED IN EACH EXPERIMENT. THE BEST VALUE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. ROWS 2-5 ARE COMPARED WITH

ROW 1 AND THE VALUES WHICH ARE NOT STATISTICALLY SIGNIFICANT (p > 0.05) ARE HIGHLIGHTED WITH A *

of Batch Normalization which enables stable training with
small batch sizes on limited GPU memory. Substituting 3 ×

3 × 3 convolutions with S3DConv in our Encoder-Decoder
architecture reduces computation from 189 GFLOPs (with full
3D convolutions) to 71 GFLOPs and the 6,622,457 trainable
network parameters to 2,702,329 during the Morph-SSL based
pre-training. To evaluate the impact of the concatenation-based
skip connections, the proposed Basic Encoder and the Basic
Decoder Block in Fig. 2(b), (d) were substituted with the
additive residual connection-based alternatives depicted in the
Appendix, Fig. 7(a), (b). These modified Basic Encoder and
Decoder Blocks require double the number of convolutional
filters in the two S3DConv layers inside them compared to our
concatenation-based skip connections for the same number of
input and output channels, thereby requiring significantly more
computation (203G vs 71G FLOPs) and network parameters
(7,025,881 vs 2,702,329).

Although full 3D convolutions require a significant amount
of computation and network parameters, S3DConv performs
better in both settings with frozen Morph-SSL pre-trained
weights (rows 1,2 in Table II) and fine-tuning (rows 5,6 in
Table II) at all time-points. Full 3D convolutions are more
prone to over-fitting when trained on limited labelled data for
the downstream conversion prediction task. The performance
of Layer Normalization (pre-trained with a batch size of 1)
and Batch Normalization (pre-trained with a batch size of 2,
limited by GPU memory) is presented in Table II (rows 1,3
for frozen Morph-SSL pre-trained weights and rows 3,5 with
fine-tuning). Overall, Layer Normalization outperforms Batch
Normalization under both settings at t = 0, 6, 12 whereas
Batch Normalization performs better at t = 18. The proposed
concatenation-based skip connections also outperform the
residual additive skip connections for both the frozen and
fine-tuned models with a statistically significant difference
at all time-points (rows 1,4 and rows 5,8 in Table II). Our
architectural choices also exhibited better performance in the
scan-level evaluations reported in Appendix, Table VII.

4) Impact of the Loss Terms for the TTC Task : An ablation
of the auxiliary loss terms in Eq. 6 is evaluated in rows 2,
3 of Table III at an eye-level (and Table VIII at a scan-level).
The removal of L-2 regularization on the slope parameter a
(row 1 vs 2) causes a minor drop in the AUC and Balanced
Accuracy across all time points except t = 0, where no
statistically significant difference is observed.

Removing the loss term which penalizes high activations
outside the retinal tissue leads to a small drop in both AUC and
Balanced Accuracy for all time-points (row 3 vs 1). However
the difference at t = 18 was not statistically significant.
Similar overall trends are also observed in the scan-level
performance reported in the Appendix, Table VIII.

5) Impact of Our TTC Formulation: We propose to model the
CDF of the TTC with a sigmoidal function. An alternative
way is to pose it as multi-label classification with each
class indicating if the image converts within a discrete time-
point [13], [14], [30]. We compare our eye-level performance
against multi-label classification in Table III, row 4 by
modifying the last layer of our classifier architecture to
produce a 4 channel ouptut (instead of 1), to which GAP
is applied followed by a sigmoid activation to obtain the
predictions for the 4 time-points. Both in terms of AUC and the
Balanced accuracy, the proposed method clearly outperforms
multi-label classification at t = 12, 18. At t = 6, the
slightly better performance of our method was not statistically
significant while the multi-label classification performed better
at t = 0. Similar performance trends are also observed at
the scan-level in the Appendix, Table VIII row 4. Although
the performance of both methods are similar, our approach
guarantees the monotonic increasing property of the CDF (e.g.,
the probability of an eye to convert within 12 months cannot
be lower than the conversion probability within 6 months)
which is not the case with multi-label classification. Across
the 5 folds, the multi-label classifier is inconsistent in some
cases, with higher prediction scores for a previous time-point
compared to the next for a given input scan, 16 cases between
t = 0, 6 months, 60 cases between t = 6, 12 and 84 cases
with inconsistencies between t =12, 18 months. Additionally,
once trained, our model can predict conversion risk at any
time-point within 18 months by varying t in eq 4, unlike
multi-label classification that can predict conversion risk only
at predefined discrete time intervals used during training.

6) Architecture Design to Predict Slope : Spatial entropy of
M was used to predict the slope a of the sigmoid function.
We compared this design choice against one which predicts
two channels. One channel is used similar to M to compute
b while a GAP is applied to the second channel for obtaining
a. Although this new architecture requires extra network
parameters, it did not result in a statistically significant
difference in performance (see rows 1, 5 in Table III).
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TABLE IV
EYE-LEVEL PERFORMANCE (MEAN±STD. DEVIATION) TO BENCHMARK THE PROPOSED METHOD (FINE-TUNED FROM MORPH-SSL PRE-TRAINED

WEIGHTS) AGAINST STANDARD 3D NETWORKS (FINE-TUNED FROM THEIR AVAILABLE WEIGHTS PRE-TRAINED ON THE KINETICS DATASET) AND

HANDCRAFTED BIOMARKERS WITH A RANDOM FOREST CLASSIFIER. THE BEST PERFORMANCE IN EACH COLUMN IS HIGHLIGHTED IN BOLD.
THE PERFORMANCE DIFFERENCE OF ROWS 2-4 COMPARED TO THE PROPOSED METHOD (ROW 1) WAS FOUND TO BE STATISTICALLY

SIGNIFICANT WITH (p < 0.05) FOR ALL TIME-POINTS

TABLE V
EYE-LEVEL AREA UNDER THE ROC CURVE (MEAN±STD. DEVIATION) TO COMPARE SSL METHODS UNDER DIFFERENT TRAINING

CONFIGURATIONS BY: EITHER TRAINING ON ONE-THIRD OR THE ENTIRE TRAINING DATASET; EITHER FREEZING SSL-TRAINED WEIGHTS

OR FINETUNING END-TO-END. THE VALUES HIGHLIGHTED WITH ∗ IN EACH COLUMN ARE NOT STATISTICALLY DIFFERENT (p > 0.05)
COMPARED TO THE PROPOSED METHOD TRAINED WITH IDENTICAL DATA (EITHER ONE-THIRD OR THE ENTIRE DATASET) AND PROTOCOL

(EITHER FREEZE SSL WEIGHTS OR FINETUNE). THE BEST PERFORMANCE IN EACH COLUMN IS HIGHLIGHTED IN BOLD

7) Comparison With State-of-the-Art 3D Networks : An
alternative to SSL is to fine-tune standard CNN networks after
initializing them with the already available pre-trained weights.
We compared our performance against two popular 3D-CNN
networks, I3D [45] and X3D [46]. Their last fully connected
layer was modified to predict a and b in Eq. 4. Both networks
were initialized with pre-trained weights trained on the
Kinetics video dataset and fine-tuned end-to-end on our task.
Our Morph-SSL trained Encoder significantly outperformed
both of these networks ( see rows 1-3 in Table IV for eye-level
and Appendix, Table IX for scan-level performance) in terms
of both AUC and Balanced accuracy across all time-points.

8) Comparison With Handcrafted Biomarker Based Method
: Recent clinical research has linked the spatial distribution
of drusen and HRF to the future progression of AMD [16],
[17]. Similar to [17], we segmented the drusen and HRF
automatically using the Iowa Reference Algorithm [39] with
modified smoothness constraints [47] for drusen and a deep
learning-based method [48] for HRF. Thereafter, the volume of
drusen, HRF, and their areas in the enface (surface) projection
were computed in 14 spatial sectors (entire scan, central
1 mm disc, central 3 mm disc, central 6 mm disc, peri-fovea,
para-fovea, peri-nasal, para-nasal, peri-superior, para-superior,
peri-inferior, para-inferior, peri-temporal and para-temporal
sectors) based on the ETDRS grid commonly used in clinical
research. This resulted in a 14 (sectors) × 4 (area and volume

of HRF and drusen) = 56 dimensional feature vector. A multi-
output random forest comprising 350 decision trees (selected
based on best validation performance) was trained to predict
the conversion to nAMD for the different time-points. The
results presented in Table IV (and Appendix, Table IX), rows
1 and 4, indicate the superiority of the proposed method over
handcrafted biomarkers. This highlights the inadequacy of
the current clinically known prognostic features in predicting
nAMD conversion and motivates the use of DL networks that
directly learn the prognostic imaging features from raw OCT
scans instead of hand-crafting them.

9) Comparison With Other SSL Methods : We compare the
performance of Morph-SSL against other state-of-the-art SSL
methods at an eye-level in Table V and scan-level in Appendix,
Table X. The same 3D U-net and the transformations for
the reconstruction task were employed for Model Genesis as
reported in [3]. The time interval prediction task [14] was
originally developed for the central B-scans alone, however
we implemented a 3D version using our Encoder architecture
for a fair comparison. The latest CL methods, VICReg [9]
and Barlow Twins [10] could not be trained in 3D due to
their large batch size requirements. They were used to train
a ResNet-50 with a batch size of 128 following [13]. The
positive image pairs were constructed by selecting B-scans
(from the same position) from two random visits of the same
eye within 18 months and applying the data augmentations
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used in [13]. The Classifier was modified to handle a 2048×32
(feature dimensions × B-scans) input. First, a 1D convolution
layer with 32 input and 1 output feature channel was used to
obtain a 2048 dimensional feature for the entire OCT volume.
This was followed by two fully connected layers with 1024 and
2 neurons respectively, to get the predictions for a and b
in Eq. 4. The SSL methods were compared under different
training setups by: (a) using the SSL-trained features off-the-
shelf and only training the Classifier (Freeze) vs. initialization
with the SSL-trained network weights for end-to-end fine-
tuning (Finetune), and (b) training on the entire vs. one-third
of the supervised training data. To evaluate performance in a
small data regime, one-third of the training data in each fold
of the TTC Dataset was randomly selected and kept consistent
across all SSL methods.

Small Data Regime: Morph-SSL outperforms all benchmark
methods (under identical Freeze/Finetune setup) across all
4 time-points in Table V. All differences were statistically
significant. Overall, finetuning improves performance over
frozen weights for all SSL methods except for Model-Genesis
at t = 0, 18 and Barlow Twins at t = 0, 6.

Entire Training Data: In the Freeze setup, again Morph-
SSL outperforms all benchmark methods in terms of AUC
with a statistically significant difference across all 4 time-
points. In the fine-tuning setup, Morph-SSL still clearly
outperforms time-interval prediction [14], Barlow twins [10]
and VICReg [9] across all time-points. Although Morph-SSL
outperformed Model-Genesis at t = 0, 6, the AUC difference
was not statistically significant for t = 12 (p-value 0.43), while
Model-Genesis performed better at t = 18.

Overall, Morph-SSL shows better performance than other
methods, particularly in scenarios where features are used off-
the-shelf or in a small data regime with limited labeled data
for fine-tuning. When trained on the entire dataset, Morph-SSL
was found to learn strong features with good performance on
the TTC task with minimal effect of further fine-tuning.

B. Risk Score for Progression to nAMD

As part of current clinical practice, patients with iAMD
undergo regular eye examinations and nAMD must be treated
at the earliest sign of onset to prevent vision loss. However,
biomarkers such as drusen volume and hyper-reflective foci
(HRF) are insufficient to reliably identify the patients at a
higher risk of conversion. As a result, an automated method
to stratify iAMD eyes into low and high risk groups for
future conversion to nAMD can help clinicians prioritize
patients in the high risk group for early treatment and frequent
monitoring. An ideal risk score should a) be a single time-
independent scalar value; b) be bounded in the range [0, 1]; c)
be inversely proportional to the predicted time to conversion
b. We formulate such a risk score by modifying Eq. 4 as
r = 2/

[
1 + exp

{
b

a+0.05

}]
. The test predictions for a and b

were obtained from the five folds to compute r for each OCT
scan. The scans were then stratified into 3 groups with low risk
(0 ≤ r ≤ 0.33), moderate risk (0.33 < r ≤ 0.67) and high risk
(0.67 < r ≤ 1). A population-level survival function for these
groups is plotted in Fig. 6 using the Kaplan–Meier estimator

on the GT conversion time. It depicts the mean and standard
deviation of the survival probability for each group, computed
across 1000 re-samplings using eye-level bootstrapping. Each
scan within a re-sampling was independent and came from a
different eye as only one OCT scan (from a random visit)
was selected per eye during bootstrapping. A log-rank t-
test between the curves was performed in a pairwise manner
among the three risk groups and the median p-value across all
bootstrap re-samplings was used to determine the statistical
significance. The difference between the survival curves of
the low-risk and the high-risk groups was found to be highly
statistically significant with a p-value of 0.007. The difference
between the medium-risk vs. the high-risk group was not
significant (p-value= 0.263) while the difference between the
low-risk and the medium-risk groups was also significant with
a p-value< 0.05 (p-value= 0.034). Overall, r is effective in
stratifying eyes coming from low and high risk groups.

1) Intra-Eye Consistency: AMD is a degenerative disease
where the retinal tissue progressively deteriorates, so the
predicted risk scores from scans across multiple visits of
the same patient should be monotonically increasing over
time. However, this consistency is not explicitly enforced
by the downstream classifier for conversion prediction which
uses single OCT scans as input and treats each image as
an independent sample (although the Morph-SSL pretraining
employs pairs of visits to learn the feature embedding).
Therefore to quantitatively assess the intra-eye consistency in
predicted risk scores, we computed the eye-level concordance
index (eCI). It involved constructing a set of all possible pairs
of visits (It , It+k) for each eye. Each scan was independently
fed into our trained model to derive the corresponding pair
of risk scores (rt , rt+k). The eCI was then calculated as
the fraction of the visit pairs (out of the total number of
all possible pairs for the eye), in which the predicted risk
scores adhered to the desired ordering rt+k ≥ rt . Despite that
the classifier treated each eye as an independent sample, the
average eCI across all eyes in all folds was 0.73, indicating a
moderately good consistency in the risk score predictions.

C. Interpolation in the Morph-SSL Feature Space

Given a pair of scans It , It+k from two visits of the same
eye, we extract their features Ft and Ft+k , and generate an
intermediate feature through linear interpolation as F′

ρ =

Ft + ρ.(Ft+1 − Ft ), where ρ ∈ [0, 1]. By using Ft and F′
ρ

(instead of Ft+k) as inputs to the Morph-SSL trained Decoder,
we can predict the transformation that morphs It to artificially
generate the intermediate OCT scan for F′

ρ (see Fig. 1(c)).
The qualitative results in Fig. 5 depict four intermediate scans
(along each column) by varying ρ. A gradual smooth transition
between It and It+k is observed with the generated scans.
Such a smooth feature embedding is enforced by our Decoder
architecture which explicitly correlates the direction of the
feature displacement F′

ρ − Ft to the type, and its magnitude
to the amount of the morphing transformation. The magnitude
increases with ρ while the direction remains the same.

This property may be explored in the future for different
applications. Balanced-Mixup [49] generates artificial training
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Fig. 5. Qualitative visualization of the linear interpolation between the features extracted from two OCT volumes It (first row) and It+k of the same
eye (last row). A single B-scan from the 3D volume has been depicted for a different eye in each column. The smooth transition in the generated
intermediate images demonstrates Morph-SSL’s ability to learn a feature representation with a meaningful notion of distance and direction that
correspond to specific morphological changes in the input scan.

Fig. 6. Kaplan-Meier curves for different risk groups.

samples by directly interpolating the voxels between two
training images, which may produce blurry images. Through
small interpolations in our feature embedding instead,
better training samples may be generated. Another potential
application could be to generate approximations of future OCT
scans to visualize disease progression. A Recurrent Neural

Network to predict the features for future visits may be
explored for this task.

VI. CONCLUSION

A vast amount of unlabelled longitudinal OCT scans are
generated in clinics to monitor AMD. To leverage this data,
we have proposed Morph-SSL, a novel SSL method designed
to capture the temporal changes caused by disease progression.
It ensures that the displacement in features between two
OCT scans captures the morphological changes in the retina
between them. With the Morph-SSL trained Encoder, we have
developed a prognostic model for TTC estimation that predicts
the future risk of conversion from iAMD to nAMD from
the current OCT scan. The lack of reliable biomarkers and
wide variability in the rate of AMD progression makes it
a challenging task. We modelled the CDF of TTC with a
sigmoidal function over time. The Morph-SSL features were
found to perform well on the TTC task even without fine-
tuning and showed significant improvements over training
from scratch or fine-tuning standard 3D-CNNs with pre-
trained weights. It also outperformed popular SSL methods
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TABLE VI
SCAN-LEVEL EVALUATION (MEAN±STD. DEVIATION) OF MORPH-SSL PRE-TRAINING AFTER FREEZING WEIGHTS (FR) AND END-TO-END

FINE-TUNING (FN), COMPARED WITH RANDOM NETWORK INITIALIZATION (RI). THE PROPOSED METHOD OF MODELING THE

TIME-TO-CONVERSION IS COMPARED AGAINST REGRESSION IN ROWS 4-5. THE AUC VALUES HIGHLIGHTED WITH
∗ ARE NOT STATISTICALLY DIFFERENT FROM PROPOSED-FR (ROW 1) WITH p > 0.05

TABLE VII
SCAN-LEVEL PERFORMANCE (MEAN ± STD.DEV) FOR ABLATION ON THE ENCODER-DECODER ARCHITECTURE. EACH NETWORK IS

PRE-TRAINED WITH MORPH-SSL AND EVALUATED BY EITHER FREEZING (FR) WEIGHTS OR END-TO-END FINETUNING (FN) ON THE

DOWNSTREAM TASK. THE BEST VALUE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. THE STATISTICAL SIGNIFICANCE OF THE AUC
VALUES IN ROWS 2-4 IS COMPARED WITH ROW 1 AND ROWS 6-8 WITH ROW 5 WITH THE DELONG TEST. THE VALUES

HIGHLIGHTED WITH * ARE NOT STATISTICALLY DIFFERENT WITH p > 0.05

Fig. 7. The alternative architectures with additive skip connections used to replace the proposed Basic Encoder and Decoder Blocks (see Fig. 2(b),
(d)) in the ablation experiments presented in Table II, VII.

TABLE VIII
SCAN-LEVEL PERFORMANCE (MEAN ± STD. DEVIATION) FOR ABLATION ON THE DOWNSTREAM TTC CLASSIFICATION LOSS (ROWS 2-3) AND

THE CLASSIFIER ARCHITECTURE (ROWS 4-5). THE MORPH-SSL PRE-TRAINED ENCODER WEIGHTS ARE FROZEN AND ONLY THE CLASSIFIER IS
TRAINED IN EACH EXPERIMENT. THE BEST VALUE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. THE AUC VALUES IN ROWS 2-5 ARE COMPARED

WITH ROW 1 USING THE DELONG TEST AND THE VALUES WHICH ARE NOT STATISTICALLY SIGNIFICANT (p > 0.05) ARE HIGHLIGHTED WITH *

with significant gains in scenarios where SSL features are used
off-the-shelf or fine-tuned on limited labeled data. We also
derived a risk score that could be used to stratify eyes into low
or high risk categories. Identifying iAMD patients with a high
risk of progressing to nAMD can enable ophthalmologists to

prioritize these cases for closer monitoring. Initiating treatment
at the earliest sign of nAMD onset is crucial to prevent
irreversible vision loss. Thus, our method to forecast the risk
of future AMD progression can play a critical role in enabling
patient-specific disease management and also aid in enriching
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TABLE IX
SCAN-LEVEL PERFORMANCE (MEAN±STD. DEVIATION) TO BENCHMARK THE PROPOSED METHOD (FINE-TUNED FROM MORPH-SSL

PRE-TRAINED WEIGHTS) AGAINST STANDARD 3D NETWORKS (FINE-TUNED FROM THEIR AVAILABLE WEIGHTS PRE-TRAINED ON THE KINETICS

DATASET) AND HANDCRAFTED BIOMARKERS WITH A RANDOM FOREST CLASSIFIER. THE BEST PERFORMANCE IN EACH COLUMN IS
HIGHLIGHTED IN BOLD. THE AUC DIFFERENCE OF ROWS 2-4 COMPARED TO ROW 1 WAS FOUND TO BE STATISTICALLY

SIGNIFICANT (p < 0.05) FOR ALL TIME-POINTS USING THE DELONG TEST

TABLE X
SCAN-LEVEL AREA UNDER THE ROC CURVE (MEAN±STD. DEVIATION) TO COMPARE SSL METHODS UNDER DIFFERENT TRAINING

CONFIGURATIONS BY: EITHER TRAINING ON ONE-THIRD OR THE ENTIRE TRAINING DATASET; EITHER FREEZING SSL-TRAINED

WEIGHTS OR FINETUNING END-TO-END. THE VALUES HIGHLIGHTED WITH ∗ IN EACH COLUMN ARE NOT STATISTICALLY

DIFFERENT (p > 0.05) COMPARED TO THE PROPOSED METHOD TRAINED WITH IDENTICAL DATA (EITHER ONE-THIRD

OR THE ENTIRE DATASET) AND PROTOCOL (EITHER FREEZE SSL WEIGHTS OR FINETUNE). THE BEST

PERFORMANCE IN EACH COLUMN IS HIGHLIGHTED IN BOLD

clinical trial populations through the recruitment of patients at
risk.

A. Limitations and Future Directions
The large amount of time required for training multiple

3D CNN networks prevented an exhaustive search for the
optimal network architecture, the size of Encoder’s output
feature map, and the tunable weights of the loss terms used
during Morph-SSL training, which remains a limitation of
this work. Currently, the classification network for forecasting
the conversion risk treated each scan acquired at different
time-points of the same eye as independent training samples.
Although the current model showed a moderate amount of
consistency between predictions from different visits for the
same future time-point (eCI = 0.73), an alternate approach
for the supervised downstream task training may be explored
in the future to explicitly enforce this consistency constraint.
Finally, although Morph-SSL was primarily developed to
pre-train the Encoder in an unsupervised manner, the
learned Encoder-Decoder network can additionally smoothly
interpolate between the scans from two visits. This offers
promising future research directions for using the interpolated
scans as a data augmentation or to visualize the expected
future morphological changes if a Recurrent Neural Network
could be trained to predict the feature representations of future
visits. Adapting Morph-SSL to other prognostic tasks in the

medical domain, such as forecasting cancer progression from
ultrasound images or predicting the future onset of dementia
from MRI scans, offers important directions for future work.

APPENDIX

See Tables VI–X and Fig. 7.
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