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Accurate Concentration Recovery for
Quantitative Magnetic Particle Imaging

Reconstruction via Nonconvex Regularization
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and Hui Hui , Member, IEEE

Abstract— Magnetic particle imaging (MPI) uses non-
linear response signals to noninvasively detect magnetic
nanoparticles in space, and its quantitative properties
hold promise for future precise quantitative treatments.
In reconstruction, the system matrix based method neces-
sitates suitable regularization terms, such as Tikhonov or
non-negative fused lasso (NFL) regularization, to stabilize
the solution. While NFL regularization offers clearer edge
information than Tikhonov regularization, it carries a biased
estimate of the l1 penalty, leading to an underestimation
of the reconstructed concentration and adversely affecting
the quantitative properties. In this paper, a new noncon-
vex regularization method including min-max concave (MC)
and total variation (TV) regularization is proposed. This
method utilized MC penalty to provide nearly unbiased
sparse constraints and adds the TV penalty to provide
a uniform intensity distribution of images. By combin-
ing the alternating direction multiplication method (ADMM)
and the two-step parameter selection method, a more
accurate quantitative MPI reconstruction was realized. The
performance of the proposed method was verified on the
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simulation data, the Open-MPI dataset, and measured data
from a homemade MPI scanner. The results indicate that the
proposed method achieves better image quality while main-
taining the quantitative properties, thus overcoming the
drawback of intensity underestimation by the NFL method
while providing edge information. In particular, for the mea-
sured data, the proposed method reduced the relative error
in the intensity of the reconstruction results from 28% to 8%.

Index Terms— ADMM, magnetic particle imaging, min-
max concave, nonconvex regularization, quantitative
reconstruction.

I. INTRODUCTION

MAGNETIC particle imaging (MPI) is a novel imaging
modality first introduced by Gleich and Weizenecker

in 2005 [1]. The spatial distribution of superparamagnetic iron
oxide nanoparticles (SPIONs) can be reconstructed by utilizing
the nonlinear magnetization response of SPIONs in alternating
magnetic fields. As a noninvasive imaging method, MPI has
highly sensitive and quantitative characteristics, which makes
it promising for use in biological applications [2], [3], [4],
[5], [6], [7]. Examples include drug delivery [2], visualization
of vascular interventions [3], in vivo tracking of minute
numbers of cells [4], and quantitative monitoring of tumor
immunotherapy [5].

In MPI reconstruction, the spatial distribution of SPIONs
can be decoded using a system-matrix-based approach. How-
ever, because the system matrix-based inverse problem is
ill posed, a direct solution is unstable [8], [9]. Therefore,
regularization, such as the Tikhonov penalty [10], nonnegative
Garrote penalty [11], lasso penalty [12], nonnegative fused
lasso (NFL) regularization [13], and elastic net regulariza-
tion [14], is required to stabilize image reconstruction. Among
these, the Tikhonov penalty is the most widely used regular-
ization approach in MPI reconstruction [8], [10]. Combined
with the Kaczmarz method, this enables a fast solution using
row iterations. However, Tikhonov regularization has a limited
ability to suppress noise and over-smooth images. Considering
the sparse and piecewise constant distribution of magnetic
particles, Storath et al. introduced NFL regularization by com-
bining the l1 and total variation (TV) norms [13]. This method
can effectively suppress noise and maintain edge information
in an image. Although the l1 norm in NFL regularization
is the most effective sparsity-induced term among convex
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regulars, it is a biased estimate that tends to underestimate
the true solution [15], [16]. This reduces the concentration of
magnetic particles in the reconstructed images and weakens
the advantage of MPI in terms of quantitative imaging.

To reduce the bias effect while maintaining sparsity, non-
convex regularizations, such as the smoothly clipped absolute
deviation [17], log sum penalty [18], lq -norm penalty (0 <

q < 1) [19], and min-max concave (MC) penalty [20], have
been introduced. The optimization properties of nonconvex
regularization are more similar to those of the l1-norm penalty
than to those of the ideal l0-norm penalty. Therefore, noncon-
vex regularization can improve the reconstruction accuracy and
suppress the bias effect. Several techniques can be adopted to
solve nonconvex optimization problems, such as the Bayesian
compressive sensing [21], focal underdetermined system solu-
tions [22], and iterative reweighted least squares [23] methods.
However, these methods are not suitable for solving large-scale
problems because of their high computational costs. Selesnick
proved that a nonconvex optimization problem has a simple
closed-form solution for proximal operators when the penalty
satisfies specific conditions (such as the MC penalty) [24],
which can accelerate the solution of nonconvex optimiza-
tion problems. Furthermore, when more than one penalty is
included in the regular term, the alternating direction method
of multipliers (ADMM) is suitable. It simplifies the solution by
decomposing a complex problem into several simple subprob-
lems. Recently, ADMM reconstruction has been applied to
MPI reconstruction and has exhibited good performance [25].

In this paper, we propose a new regularization term for
MPI reconstruction that enables accurate MPI concentration
reconstruction, achieving better image quality while main-
taining the quantitative advantages of MPI. The contributions
of this work are as follows: (i) a regularization that better
matches the quantitative reconstruction of MPI is proposed;
(ii) a suitable solution method and a two-step parameter selec-
tion method are designed, which simplify the selection process
of multiple parameters and realize the fast solution of the
objective function; and (iii) the effectiveness and advantages
of the proposed method are verified through experiments using
Open-MPI data and measured data.

To evaluate the performance of the proposed method,
we used different phantoms, including stenosis, overlapping
ellipses with different intensities, and vascular trees. Nonneg-
ative Tikhonov regularization utilizing the Kaczmarz method
and NFL regularization employing the forward-backward (FB)
method were applied for comparison. The results demon-
strated that the proposed nonconvex regularization solved
with ADMM could provide precise intensity estimation while
maintaining edge information.

II. FORWARD AND RECONSTRUCTION
PROBLEMS IN MPI

A. Forward Problem

The forward problem of MPI involves establishing of a
mathematical model of the process in which the nonlinear
magnetization of SPIONs is excited by an alternating magnetic
field and signal encoding within the signal chain. Assuming

that the particles are always in thermal equilibrium, the non-
linear magnetization properties of SPIONs can be modeled by
the Langevin function L(.), expressed as:

M (r, t) = c (r) M̄ (r, t) = c (r) mL (ξ) eH ,

L (ξ) =

(
coth (ξ) −

1
ξ

)
,

ξ =
µ0m||H(r, t)||2

k BT
, (1)

where c(r) is the concentration of SPIONs at position r , Ms
is the magnetization of the particles at unit concentration, m
is the magnetic moment, and eH = H (r, t) /||H(r, t)||2 is the
normalized direction of the magnetic field strength H (r, t). µ0
denotes the permeability of vacuum, kB denotes the Boltzmann
constant and T is the temperature.

Signal encoding is based on the MPI signal chain. The
relationship between the particle distribution c and the induced
voltage can be expressed as:

u (t) = −µ0

∫
�

∂

∂t
M̄ (r, t) p (r) c (r) dr (2)

where p (r) is the sensitivity of receive coils. Using the Fourier
transform and discretization, the model can be expressed as:

Sc = u (3)

where S ∈ CM×N denotes the system matrix, M is the number
of frequencies, and N is the number of discrete points. c =

[c1, c2, . . . , cN ]
T

∈ RN×1 denotes the particle concentration
at N positions and u = [u1, u2, . . . , uN ]

T
∈ CM×1 denotes

the induced voltage signal in the frequency domain.

B. Reconstruction Methods
The reconstruction problem of the MPI is aimed at solv-

ing the linear problem (3). However, this approach can
only acquire an approximate optimal solution because the
system matrix of the MPI is ill-conditioned, which means
that the singular values decay rapidly, and a small noise
disturbance has a significant impact on the reconstruction
results [26]. Therefore, a regularization term is typically
added when solving an inverse problem. The Tikhonov and
NFL regularization are the two most well-known types of
regularization. The former is the most widely used penalty
in MPI reconstruction, whereas the latter is a state-of-the-art
penalty.

1) Nonnegative Tikhonov Regularization: The objective func-
tion of the nonnegative Tikhonov regularization is:

min
c≥0

1
2

∥∥Sc − u
∥∥2

2 + λ
∥∥c

∥∥2
2 (4)

where
∥∥·

∥∥2
2 denotes the Euclidean norm. Equation (4) is a

typical least-squares optimization problem that can be solved
using singular value decomposition [27] and conjugate gra-
dient [28] methods. However, the computational cost is high
when the system matrix is large.

Weizenecker introduced the Kaczmarz method to obtain a
fast solution, which is calculated using row iterations and
requires only a few iterations to reach convergence [29].
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In addition, a weighting matrix was employed to weigh
the rows of the system matrix by utilizing the row energy.
Preprocessing can improve image quality and shorten the
reconstruction time [10]. Because of its short convergence time
and good robustness, nonnegative Tikhonov regularization
based on the Kaczmarz method is popular in practice [8], [30].

2) NFL Regularization: To improve the image quality,
Storath introduced a near-isotropic TV norm to consider prior
neighborhood structures while using the l1-norm to induce
sparsity [13]. The objective function can be expressed as:

min
c≥0

1
2

∥∥Sc − u
∥∥2

2 + λ1
∥∥c

∥∥
1 + λ2T Vnear−iso(c), (5)

where
∥∥·

∥∥
1 denotes the l1-norm of c and T V near−iso(·)

denotes the near-isotropic TV norm regularization. Compared
to nonnegative Tikhonov regularization, this method sup-
presses more noise and preserves better edge information.
Furthermore, the FB algorithm can avoid excessive compu-
tational costs, even if the objective function is complex.

III. PROPOSED MC REGULARIZATION METHOD

The two aforementioned popular MPI reconstruction meth-
ods have their own advantages and disadvantages in terms
of reconstructed image quality. Tikhonov-based reconstruction
can achieve fast and relatively high-quality reconstruction.
However, the l2-norm penalty cannot provide sufficient noise
suppression in the case of high signal noise, and it smooths the
edges of magnetic particles, which is not conducive to obtain
detailed information. The NFL method can achieve stronger
noise suppression and edge recovery. However, its ability
to predict particle concentration is not sufficiently accurate,
which affects the quantitative properties of MPI imaging.
This situation may be caused by the biased effect of the
l1-norm. Accordingly, we propose the use of low-bias sparse
regularization to improve the quality of MPI-reconstructed
images and ensure quantitative accuracy while guaranteeing
reconstruction quality.

A. Nonconvex Hybrid Penalty Combining
MC and TV Regularization

The objective function based on the proposed method is as
follows:

min
c≥0

λT V
∥∥c

∥∥
T V + λMC

∥∥c
∥∥

MC

s.t.
∥∥Sc − u

∥∥2
2 ≤ ε, (6)

where |·|T V denotes the isotropic TV norm, |·|MC denotes the
MC penalty norm, and ε ≥ 0 depends on the noise variance.
λT V and λMC are the regularization parameters. The MC
function used in this study can be expressed as:∥∥x

∥∥
MC =

∥∥x
∥∥ − Sb(x),

Sb (x) = min
v∈R

(∥∥v
∥∥ +

1
2

b2 (x − v)2
)

(7)

where b is the scaling parameter and v is an intermediate
parameter.

The MC regularization-based objective function is given as

min
X

1
2

∥∥Y − X
∥∥2

2 + λ
∥∥X

∥∥
MC , (8)

here, Y = [Y1, . . . , Yi , . . . , Ym]
T

∈ Rm and X =

[X1, . . . , X i , . . . , Xm]
T

∈ Rm . λ is the regularization param-
eter. The objective function can be equally written in element
form as
1
2

(Yi − X i )
2
+ λ |X i |MC

=
1
2

(Yi − X i )
2
+ λ

(
|X i | − min

v

(
|v| +

1
2

b2 (X i − v)

))
=

1
2

(
1 − λb2

)
X2

i + λ |X i |

+ max
v

(
1
2

(
Y 2

i − 2X i Y
)

− λ |v| −
1
2
λb2

(
v2

− 2X iv
))

,

(9)

In this case, the objective function is convex when 1−λb2
≥

0. Let θ = 1/b2. The firm threshold function is given as
follows, with λ > 0 and θ > 0 [24]:

f irm (Yi , λ, θ) =


0, |Yi | ≤ λ

θλ
|Yi | − λ

θλ − λ
sign (Yi ) , λ < |Yi | ≤ θλ

Yi , |Yi | > θλ,

(10)

The l1-norm problem is expressed as:

min
X

1
2

∥∥Y − X
∥∥2

2 + λ
∥∥X

∥∥
1 (11)

The solution can be calculated using the soft-threshold
function:

so f t (Y, λ) =

{
0 , |Yi | < λ

sign (Yi ) (|Yi | − λ) , |Yi | ≥ λ,
(12)

where sign (·) is a symbolic function.
The derivation of the l1-norm and MC penalty is formulated

as:

λ |X i |
′

l1 = λ · sign(X i )

λ |X i |
′

MC =

 λ(sign(X i ) −
X i

θ
), |X i | ≤ θ

0, |X i | > θ,
(13)

A comparison of the l0-norm, l1-norm and MC penalty
demonstrates the rationale for using the MC penalty (see
Fig. 1). As shown in Fig. 1(a), a comparison of the penalties
and threshold functions reveals that that the MC penalty is
a more accurate estimator of the ideal l0-norm penalty than
other penalties. In addition, a comparison of the derivatives
shows that the MC penalty begins penalizing by applying
the same rate as the l1-norm penalty. However, the l1-norm
penalty tends to over-penalize which introduces estimation
bias when it deviates from zero. In contrast, the MC penalty
relaxes the penalization rate to zero and reduces the bias.
Therefore, the reconstruction results obtained using the MC
penalty can suppress the bias existing in the l1-norm penalty.
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Fig. 1. Comparison of the l0-norm, l1-norm, and MC penalty functions. (a) Comparison of the l0-norm, l1-norm, and MC penalty; (b) comparison of
the 1D reconstruction results for l1, the MC and the corresponding TV hybrid penalty. The simulated data were used in experiments and the phantom
have concentration varied in the middle region. The ordinate indicates the particle concentration in linear and arbitrary scales. The reconstruction
results show that the MC penalty is effective at suppressing the bias introduced by the l1 penalty. Furthermore, by adding TV regularization, the
concentration distribution of the results becomes more uniform. For both hybrid reconstructions in (b), the parameter of the TV regularization is 0.02.

Moreover, considering the continuity and uniformity of the
SPION distribution in MPI images, TV regularization is also
applied in our method to ensure a uniformly distributed
intensity in the reconstructed results (see Fig. 1(b)). Based on
the above prior knowledge, the proposed optimization method
involving MC and TV regularization is reasonable.

B. Nonconvex Hybrid Penalty Based on the ADMM
Considering the advantages of the ADMM in solving

large-scale sparse models, we apply the ADMM to solve the
function (6) while utilizing the hybrid cost function form,
LU decomposition, firm threshold, and Chambolle projections
to speed up convergence. The detailed derivation process is as
follows.

To solve the optimization problem of the two separable
objective functions, we employ an ADMM with a hybrid cost
function. The variable splitting scheme [31], [32] is employed
to convert the function (6) into the following form:

min
x

f1(c) + f2(z)

s.t. Pc + Qz − s = 0,

f1(c) = 0,

f2(z) = ιE(ε,I,u)

(
z0

)
+ λT V

∥∥c
∥∥

T V + λMC
∥∥c

∥∥
MC . (14)

Here, z = [z0, z1, z2
]

H , P = [SH I I]H , Q = −I and s =

0 are the introduced variables. [·]
H is the conjugate transpose

of the matrix, ιE(ε,I,u)

(
z0) accounts for the indicator function

associated with the data fidelity constraint
∥∥Sc − u

∥∥
2 ≤ ε, and

I is an identity matrix.

To improve the robustness of the algorithm, the augmented
Lagrangian method is adopted. This method does not require
strict convexity or finiteness of the objective function and
can realize fast iterative convergence of the ADMM. The
ADMM steps include the updating of variables c, z, and the
Lagrange multiplier d = [d0, d1, d2

]
T , as shown in (15)–(21).

Parameter β is the penalty coefficient of the Lagrange
function [33].

ck+1 =

(
2I + SH S

)−1
[ 2∑

i=1

(
d i

k + zi
k

)
+ SH

(
d0

k + z0
k

)]
(15)

z0
k+1 = arg min

z0
ιE(ε,I,u)

(
z0

)
+

β

2

∥∥∥∥Sck+1 − z0
− d0

k

∥∥∥∥2

2
(16)

z1
k+1 = arg min

z1

∥∥zk+1
∥∥

T V +
β

2λT V

∥∥∥∥ck+1 − z1
− d1

k

∥∥∥∥2

2
(17)

z2
k+1 = arg min

z2

∥∥zk+1
∥∥

MC +
β

2λMC

∥∥∥∥ck+1 − z2
− d2

k

∥∥∥∥2

2
(18)

d0
k+1 = dk − Sck+1 + z0

k+1 (19)

d1
k+1 = dk − Sck+1 + z1

k+1 (20)

d2
k+1 = dk − ck+1 + z2

k+1 (21)

By solving the above ADMM subproblems, (14) can be
calculated.

C. Fast Solution of Subproblems
In (15), the direct calculation of the inversion term(

2I + SH S
)−1 may be time- and memory-consuming owing
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to the high matrix dimension. In particular, for 3D-MPI
reconstruction, the number of pixels N is usually much greater
than the frequency number M . Therefore, we adopted the LU
decomposition scheme prior to inversion to avoid the direct
inversion operation as:

c =

 U−1
1 L−1

1 q , M ≤ N
q
2

−
SH U−1

2 L−1
2 Sq

4
, M > N ,

(22)

here L1, L2 ∈ CN×N is a lower triangular matrix and U1, U2 ∈

∈ CN×N is an upper triangular matrix. L1U1 = 2I + SH S,

L2U2 = SSH /2 + I , and q1 =

2∑
i=1

(
d i

k + zi
k
)
+ SH (

d0
k + z0

k
)
.

Equation (16) can be solved using the Moreau proximal map
9ιE(ε,I,u)

(Sck+1 − d0
k ), and it can be easily calculated by the

orthogonal projection of Gck+1 − d0
k on the closed ε-radius

ball centered at u. The solution is as follows [33]:

9ιE(ε,I,u)
(δ) = u +

 ε
δ − u∥∥δ − u

∥∥
2

, i f
∥∥δ − u

∥∥
2 > ε

δ − u, i f
∥∥δ − u

∥∥
2 ≤ ε

δ = Sck − d0
k , (23)

Similarly, the Moreau proximal form of (17) can be
described as 9∥·∥T V (ck+1 − d1

k ,
λT V
µ

) and the optimization
function is

min
z

1
2

∥∥(c − d) − z
∥∥2

2 +
λT V

β

∥∥X
∥∥

T V , (24)

Here, we adopt an isotropic TV norm that can be quickly
calculated using Chambolle projections as follows [34]:

z = sign (c − d)

(
|c − d| −

λT V

β
div

(
pt+1

))

pt+1
=

pt
+ τ

(
∇

(
div pt

−
|c−d|

λT V /β

))
max

{
1,

∣∣∣pt + τ
(
∇

(
div pt −

|c−d|

λT V /β

))∣∣∣} , (25)

where p =
(

p1, p2) is the dual variable of z, ∇ denotes the
gradient operator, div denotes the divergence operator, and
τ represents the iteration step size, which is usually set to
τ =0.248 [34].

Equation (18) can be formulated as an MC-based optimiza-
tion problem:

min
z

1
2

∥∥(c − d) − z
∥∥2

2 +
λMC

β

∥∥X
∥∥

MC , (26)

To maintain the convexity of the subproblem, λMC ≤ βθ is
needed, and it can be solved using (10).

D. Parameter Selection
The complete procedure is shown in Algorithm 1. In the

ADMM solution, five parameters exist: ε, β, θ, λT V ,and λMC .
It is unrealistic to search for the optimal parameters directly;
therefore, some simplifications are used in the selection of the
parameters. Here, the parameter θ is set to 2 to maintain the
convexity of the MC constrained subproblem and to enable
the firm threshold function (10) to realize the fast solution.
The data fidelity term ε is related to the noise level during
scanning. The higher the noise, the larger ε should be set to
provide greater noise suppression. The penalty parameter β

Algorithm 1 ADMM with minimax concave & TV regular-
ization for MPI
1: Input: Measured data u ∈ CM×1, system matrix

S ∈ CM×N , multiplier d =
[
d0, d1, d2]

∈ CM×3,
regularization parameters λT V , λMC , ε, β ≥ 0
and maximum iterations KM AX .

2: Output: Reconstructed data c ∈ CN×1.
3: Repeat:
4: Calculate ck+1 by (21);
5: z0

k+1 = 9ιE(ε,I,u)
(Sck+1 − d0

k ) ;
6: d0

k+1 = d0
k − Sck+1 + z0

k+1 ;
7: z1

k+1 = 9∥·∥T V (ck+1 − d1
k ,

λT V
β

);
8: d1

k+1 = d1
k − ck+1 + z1

k+1 ;
9: z2

k+1 = 9∥·∥MC (ck+1 − d2
k ,

λMC
β

) ;
10: d2

k+1 = d2
k − ck+1 + z2

k+1 ;
11: k = k + 1;
12: Until stop criterion reachedor k > KM AX ;
13: Return c

affects the convergence speed, and a proper β can reduce the
solution time, which is detrimental to the fast convergence of
the algorithm. The parameters λT V > 0 and λMC > 0 are the
coefficients of the two regularizations used.

The parameter ε can be selected roughly based on the
standard deviation (STD) of the noise by ε = γ · ST D,
γ > 0. For the parameter β, without the support of a priori
information, a suitable value for the parameter is difficult to
set before iteration. Therefore, based on the residual balancing
strategy [35], we use an adaptive method to automatically
update β in iterations and adaptively select the appropriate
β value:

βk+1 =


τincrβk ,

∥∥∥∥rk
p

∥∥∥∥
2

> κ

∥∥∥∥rk
d

∥∥∥∥
2

βk/τdecr ,

∥∥∥∥rk
d

∥∥∥∥
2

> κ

∥∥∥∥rk
p

∥∥∥∥
2

βk , otherwise,

(27)

here, τincr > 1, τdecr > 1 and κ > 1 are parameters.
rk

p = Pc + Qz − c and rk
d = β PT Q(zk

− zk−1) are refer
to the primal and dual residuals, respectively at iteration k.
In general, the selection of multiple parameters is simplified
into two steps in our work. First, the ε is selected accord-
ing to the standard deviation of the noise, and the penalty
parameter β is selected with the adaptive method as shown
in (27). Second, λT V and λMC are screened in (0, 1), where
λT V +λMC = 1 is satisfied. The algorithm is terminated when
the maximum number of iterations or the stopping condition
is reached. We set the stop condition as the relative change
in the result between two iterations that was lower than the
tolerance, described as

∥∥ck+1 − ck
∥∥/

∥∥ck
∥∥ + 10−4 < tol. All

the aforementioned parameters were chosen to achieve the set
tolerance or maximum number of iterations.

IV. EXPERIMENT AND RESULTS

A. Simulation Experiment Setup
We implemented all the algorithms in MATLAB R2018b

and simulated the data according to u = Sc + η, where c
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Fig. 2. Phantoms used in our study. (a) Phantoms used in the simulation
study, including the stenosis phantom (left), the vessel phantom with
a plaque in the main vessel (middle), and the ellipses with different
intensities (right, and the intensity in A1:1; A2:0.8; A3:0.6). (b) Phantom
used in the real-world experiment. Bar phantom (left) and its schematic
(right) used for the measurements (unit: mm).

denotes the ground truth of size N = 51 × 51, M = 9900 is
the number of frequency points, and η is Gaussian noise. Three
different phantoms were built in the simulation: a stenosis
phantom, a vessel phantom with plaque in the main vessel,
and an overlapping elliptical phantom with multiple intensi-
ties [13] (see Fig. 2(a)). The stenosis phantom has a simple
structure, whereas the vascular and elliptical models are more
complex. Additionally, the overlapping elliptical phantom has
a more complex concentration distribution. Considering the
reconstruction and time consumption, we preset the stop
condition for the methods used. For the nonnegative Tikhonov
regularization method, we performed 10 iterations. For the
NFL and proposed methods, we stopped the iterations when
the tolerance was less than 1×10−3 or the number of iterations
reached 40. The NFL method used the same parameter settings
as those in the original study [13].

First, in order to verify the effectiveness of the proposed
method under different structural complexity and concentra-
tion distribution complexity phantoms, reconstruction exper-
iments were performed using the three designed phantoms
and compared with the non-negative Tikhonov regularization
and the NFL method. The data were corrupted by Gaussian
noise with a 30dB signal-to-noise ratio (SNR) Subsequently,
the profiles across the reconstructed results were extracted to
compare the intensity distribution along the profiles.

Furthermore, for the quantitative reconstruction target in
the paper, we focused on the overlapping elliptical phantom
with multiple intensities. To compare the robustness of the
algorithm under different noise levels, corrupted signals with
SNR of 25 dB, 20 dB, and 15 dB were used. Error maps were
used to visualize overall error, and the relative error between
the reconstruction results and the ground truth in regions A1,
A2, and A3 were calculated for quantitative comparison.

B. Open-MPI Dataset

To verify the feasibility of the proposed algorithm for the
measured data, the system matrix and signal of phantoms in

the Open-MPI dataset were used to verify our method [36].
We selected a 2D MPI system matrix with 193 voxel scans
using a 2D Lissajous trajectory. Because the measurements
of the 19 planes are stitched together in the Open-MPI
dataset, preprocessing is required when 2D sliced data are
necessary. During data processing, frequency data with an
SNR lower than three were discarded to obtain a system matrix
of dimensions 824×193. The image was then sliced into 19 2D
system matrices of dimensions 824×193, corresponding to the
19 planes scanned using a 2D Lissajous trajectory. Similarly,
we sliced the measurement data to a size of 19,000 every
1000 times to obtain 19 signals, corresponding to 19 planes
of data. Subsequently, a 2D system matrix of each plane with
the corresponding phantom signals was obtained.

Experiments were conducted using shape and concentration
phantoms from the dataset. After reconstruction using different
methods, the absolute reconstructed intensities were compared
using a shape phantom, and the accuracy of the concentration
gradient was compared when multiple concentrations of par-
ticles were present in the field of view.

C. Measured Data
Furthermore, we validated the proposed algorithm by uti-

lizing data measured using a prototype MPI scanner built
in our laboratory [37]. The scanner was encoded based on
the field-free point, and the Cartesian trajectory was used to
construct a 2D measurement sequence (selection field gradient:
1.5 T m−1µ−1

0 in the x and y directions, drive field amplitude:
27 T m−1µ−1

0 in the x and y directions, excitation frequency:
25 kHz, scanning frequency: 20 Hz). A delta sample with
dimensions of 2×2×1 mm3 was used to measure the system
matrix S ∈ CM×N (frequency component M = 1.25 × 106,
position N = 121). The background signal was measured at
each position to reduce the effect of dynamic noise and was
utilized for frequency selection. A bar phantom containing
two rectangular cavities was employed for the measurements
and imaging tests. The edge-to-edge distance between the two
cavities was 4 mm. A schematic diagram and the dimensional
size are shown in Fig. 2(b). As mentioned above, Tikhonov
regularization, NFL regularization and the proposed method
were utilized to reconstruct the images, and the results were
compared using qualitative and quantitative metrics.

D. Evaluation Indices
We used the normalized root mean square error (NRMSE),

peak signal-to-noise ratio (PSNR), and structural similarity
index (SSIM) to evaluate the reconstruction quality, and the
reconstruction time were recorded.

The NRMSE is used to scale the RMSE to the range of
(0, 1) and indicates the difference between the reconstructed
image and the ground truth. The RMSE is defined as follows:

N RM SE =

√
1

M×N

M∑
i=1

N∑
j=1

(IR (i, j) − IG (i, j))2

max (IR (i, j)) − min(IR (i, j))
, (28)

IR and IG denote the reconstructed and ground-truth
images, respectively. N RM SE ∈ [0, 1]. A smaller value
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Fig. 3. Reconstruction results for phantoms. (a) Reconstructed images of the stenosis phantom (top), vessel phantom (middle), and elliptical phantom
(bottom). (b) Intensity distribution along the profile. The profile of the stenosis phantom is column25, that of the vessel phantom in column10, and
that of the elliptical phantom in column 21. (See Table I for a quantitative comparison, Table V for regularization parameters and Table VI for the
computation time.)

TABLE I
QUANTITATIVE RESULTS OF THE PHANTOMS USED

indicates better image quality. The PSNR is described as

P SN R = 10 · log10(
M AX2

I
M SE

), (29)

M AX I denotes the maximum intensity of the image.
The SSIM, which considers brightness, contrast, and struc-

ture, was used to evaluate the similarity between two images
and was calculated as follows:

SSI M(IR, IG) =
(2µIR µIG + c1)(2σIR IG + c2)

(µ2
IR

+ µ2
IG

+ c1)(σ
2
IR

+ σ 2
IG

+ c2)
, (30)

Here, µI and σ 2
I are the mean and variance of an image,

respectively. σIR and σIG are the covariance of IR and IG ,
respectively.

V. RESULTS

A. Reconstruction Comparison
The reconstruction results for the simulated phantoms are

shown in Fig. 3, and the corresponding quantitative results
are listed in Table I. Considerable background noise exists
in the reconstruction results of the Tikhonov regularization.
Moreover, the edges of the phantom were blurred, making it
difficult to identify sharp edges.

For the NFL and proposed methods, the edges in the
reconstructed images were sharper, and the intensity distri-
bution inside the phantom was more uniform because of the
TV norm. However, our proposed method can achieve better

Fig. 4. Visualization reconstructions and error maps of the elliptical
phantom with different intensities. (See Table II for a quantitative com-
parison, Table V for the regularization parameters and Table VI for the
computation time.)

reconstruction than the other methods, and it yields the most
accurate recovery of the shape of the phantom among the three
methods. Furthermore, as shown in Table I, the SSIM, PSNR,
and NRSME of the reconstructed results obtained using the
proposed method are superior to those of the results acquired
by utilizing other methods. In addition, the comparison of
the intensity distributions on the profile shows that the NFL
regularization clearly underestimates the intensity compared
to the ground truth, whereas the proposed method can could
compensate for this drawback better, as shown in Fig. 3(b).

B. Error Comparison
To assess the ability to recover the intensity more accurately,

we also reconstructed a multigray elliptical phantom with
different intensities in each elliptical region, as shown in
Fig. 2. The results are presented in Fig. 4 and Table II.
In Fig. 4, the NFL method and proposed method both maintain
the edges clearly. However, the error map in Fig. 4 reveals
the inferiority of the NFL method. The intensity inside the
ellipses is underestimated owing to the bias effect of the
l1-norm. A clearer error map obtained using the proposed
method indicates that this approach can provide a more
accurate reconstruction. The relative errors of the reconstructed
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TABLE II
MEAN VALUE AND RELATIVE ERROR OF THE DIFFERENT

AREAS IN THE ELLIPTICAL PHANTOM

results and ground truths were calculated and are presented in
Table II. The error values were reduced to within 5%.

To evaluate the ability to recover the grayscale values more
accurately, we focused on an elliptical phantom with different
intensities. With SNR of 25 dB, 20 dB, and 15 dB, we used
Tikhonov, NFL, and the proposed regularization to reconstruct
the signal and plot the error map, as depicted in Fig. 4.
In addition, the average intensity in each elliptical region
and the relative error were calculated and are presented in
Table II. The error maps and the results in Table II reveal that
although the NFL method can reconstruct the edge information
more clearly, it underestimates the value inside each ellipse,
which undermines the quantitative nature of MPI imaging, and
its relative error is even greater than that of the Tikhonov
method. The clearer error maps of the proposed method show
that our method can provide more accurate reconstructions.
The error can be suppressed to within 5%, thereby maintaining
better quantitative properties.

C. Open-MPI Data Experiment
According to the results of our simulation experiments

(Fig. 3 and Fig. 4), although the reconstruction results based
on the Tikhonov penalty have the problem of over-smoothing,
the intensity recovery is relatively accurate. Therefore, the
intensity reconstructed using the Tikhonov penalty was used
as a reference.

Fig. 5(a) shows the reconstruction results for the shape
phantom in the Open-MPI dataset, and Fig. 5(b) displays
the intensity distribution along the profile. For the Tikhonov
regularization, the reconstruction results tend to converge to a
maximum intensity of a few pixels and then become smooth
(particularly in Profile 2 in Fig. 5(b)), which does not corre-
spond to a uniform distribution of magnetic particles in the
actual phantom cavity. For the NFL and proposed regulariza-
tion method, as shown in Fig. 5(b), a stable region of intensity
exists in the middle part along profile 2, which matches the
actual situation. However, if the Tikhonov-based reconstruc-
tion results are taken as an approximation of the ground
truth, Fig. 5(b) clearly shows that NFL regularization provides
images with a significant intensity underestimation problem.

Fig. 5. Reconstruction of phantom shape using Open-MPI data.
(a) Visualization results of the phantom shape and (b) intensity distribu-
tion along the profile given in (a). The data in (b) were interpolated. (See
Table V for the regularization parameters and Table VI for the computation
time.)

Fig. 6. Reconstruction of the concentration phantom in the Open-MPI
dataset. (a) Visualization results. (b) Normalized intensity distribution
along the profile (the profile is denoted by the red line in(a), and the
arrow indicates the direction). And the data in (b) were interpolated.
(See Table III for the quantitative results, Table V for the regularization
parameters and Table VI for the computation time).

Furthermore, although NFL regularization provides clear
edges, the reconstructed image has only a central part, with
the pixels filled by particles. Pixels that were not completely
filled with particles were discarded during reconstruction. Our
proposed regularization can suppress the intensity underes-
timation problem and reduce the over-sparsity problem of
NFL regularization. Moreover, the central part of the results
reconstructed using our regularization method exhibited a
uniform intensity distribution (Profile 2 in Fig. 5(b)).

Fig. 6(a) shows the reconstruction results of the concentra-
tion phantom in the Open-MPI dataset, and Fig. 6(b) displays
the intensity distribution along the profile that passes through
four different concentrations (P1, P2, P3, and P4). To com-
pare the concentration gradients reconstructed using different
penalties more clearly, the intensity along the profiles was
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Fig. 7. Reconstruction was performed the data measured by a
homemade MPI scanner. The intensity of the reconstructed images
was normalized to [0,1]. (a) Reconstructed results, where the dashed
red boxes in the images indicate the reconstructed rods (b) Intensity
distribution along the profile given in (a), where the arrow shows the
direction. (See Table IV for the quantitative comparison, Table V for the
parameters used and Table VI for the computation time).

TABLE III
QUANTITATIVE RESULTS OF THE CONCENTRATION PHANTOM

normalized to [0,1]. Fig. 6(b) shows that the reconstruction
results of the NFL method significantly underestimate the
reconstruction intensity at points P2 - P4. And, as shown in
Table III, the signal intensities of P2 and P3 in the results of the
NFL method are close, which does not match the concentration
ratios in the Open-MPI dataset. In contrast, the results of the
proposed method reduce the relative error (shown in Table III),
and the concentrations of the P2 and P3 points show a gradient
decreasing trend, which is consistent with the setup in the
Open-MPI dataset.

D. Measurement Data Experiment
For the data measured by the homemade MPI scanner,

frequency points were selected using the SNR of each fre-
quency [38]. Frequency points with an SNR > 10 dB were
selected, and the number of filtered frequencies was 29. The
images reconstructed using different regularizations are shown
in Fig. 7(a). For Tikhonov regularization, the noise suppression
is insufficient, leading to unclear reconstruction results. For the
NFL and proposed regularization methods, two stripe distri-
butions of magnetic particles can be clearly distinguished in
the image. However, in the quantitative comparisons shown in
Table IV, the concentration ratios of the two bars reconstructed
by the NFL method deviate from the Ref value, whereas the
ratios of the proposed method are closer to the Ref value

TABLE IV
QUANTITATIVE RESULTS OF THE BAR PHANTOM

TABLE V
REGULARIZATION PARAMETERS FOR THE RECONSTRUCTED RESULTS

and the Tikhonov reconstruction results, which illustrate that
the proposed method enables quantitative reconstruction with
better noise suppression and shape recovery.

VI. DISCUSSION

The ill condition of the system matrix of the MPI system
renders the direct inverse of the linear equation unstable,
and several regularizations have been proposed to solve this
problem. The commonly used regularization approach, the
Tikhonov penalty, provides a fast solution but leads to an over-
smoothing problem. NFL regularization provides clear edge
information; however, the l1-norm and l1-based near-isotropic
TV norm used in NFL are biased estimates. Our experi-
mental findings demonstrate that the reconstruction results
obtained using NFL regularization significantly underestimate
the intensity.

We propose a novel, nonconvex regularization method that
can compensate for the concentration underestimation caused
by NFL regularization and can precisely recover the intensity
of a reconstructed image. In the proposed hybrid regulariza-
tion, the nonconvex MC penalty was used to suppress the
intensity bias produced by the l1 penalty, and the TV penalty
was added to ensure that the concentration distribution in the
results was uniform. To avoid complex nonconvex objective
problems, we chose MC regularization, which can be solved
quickly using the firm threshold when the convexity condition
is satisfied. Faced with the hybrid regularization of nonconvex
MC and the isotropic TV penalty, the ADMM algorithm was
employed to solve the problem; this algorithm transformed
the problem into several simple subproblems for iteration.
LU decomposition and the Chambolle projection method were
adopted for acceleration in the subproblem solving.
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We verified the validity of our proposed regularization
method using simulated data, Open-MPI data, and homemade
MPI data. A stenosis phantom, a vessel phantom with plaque
in the main vessel, and overlapping ellipses of different
intensities were used in the simulation. Reconstruction exper-
iments were conducted using three phantoms with an SNR of
30 dB. The effectiveness of the method was verified through
qualitative and quantitative comparisons. The accuracy and
stability of the intensity recovery method were verified using
overlapping elliptical phantom signals at different noise levels.
The phantoms in the Open-MPI dataset and the data measured
by a homemade MPI scanner were utilized to verify the
generality of the proposed regularization on real-world data.

Although the proposed method enables more accurate image
reconstruction, it may also introduce larger errors at the edges
(see the error maps in Fig. 4). This may be due to the greater
sparsity of the MC regularization we used, which is similar to
concentrating a large range of errors into some pixel points at
the edges.

The two-step method was used in our approach to simplify
the selection of multiple parameters for the objective function
with hybrid constraints. The noise related parameter ε was
selected first, while β was selected using the adaptive updating
strategy [35]. In the update strategy shown in (27), the smaller
the update threshold κ , the smaller the value of β. In our
experiments, the data acquired under the same conditions used
the same κ: κ was set to 10 for the simulation data, and κ was
set to 80 for the Open-MPI data. This non-specific setting may
lead to the selection of non-optimal parameters and adversely
affect the reconstruction results, such as the larger error at
the edge pixels in Fig. 4 and the reconstruction results of
the proposed method in Fig. 6, where some background noise
exists near P1. While the quality of the reconstruction results
can be improved by fine tuning, this approach is incompatible
with the intent of simplifying the selection of parameters.
A more refined multiparameter selection method may optimize
this contradiction.

The point P4 in Fig. 6, which has the lowest concentration,
cannot be reconstructed by either the proposed method or
the NFL method. The proposed method suppresses the weak
signals from low-concentration points while providing suffi-
cient noise suppression, reducing the dynamic range of the
reconstruction method. Therefore, in practice, the appropriate
regularization term and reconstruction method need to be
selected according to the specific needs. Meanwhile, high-
quality reconstruction optimization methods that incorporate
existing high dynamic range reconstruction methods remain
to be investigated [39].

In Table VI, a comparison of the reconstruction times
shows that although the proposed method achieved high-
quality reconstruction, the reconstruction speed is still slower
than that of the NFL method, which is a limitation of the
proposed method. We consider that the NFL method achieves
faster reconstruction because it converts the 2D problem into
a 1D problem when solving the objective function [13]. How-
ever, we consider the runtime of the proposed method to be
acceptable in non-real-time reconstruction scenarios. In addi-
tion, the current work is applicable to 2D reconstruction.
In future research, the proposed method can be extended

TABLE VI
COMPUTATION TIME FOR THE RECONSTRUCTION

EXPERIMENTS (UNIT: S)

to 3D conditions, which will mainly involve improving the
Chambolle projection algorithm presented in (25). Hence, the
proposed methodology still needs to be optimized.

Recently, deep learning-based methods have made progress
in MPI imaging [40], [41], [42], [43], [44], [45], [46], [47].
Through the use of substantial volumes of training data,
learning-based methods can obtain accurate data distributions
and priori information to achieve high-quality signal denois-
ing [44], [47], system matrix optimization [42], [45], and
image reconstruction [41], [46]. The design of regularizations
in physics-driven reconstruction can optimize the loss function
via deep learning methods [48]. Therefore, in future work, the
proposed nonconvex regularization can be applied to optimize
the reconstruction results of deep learning methods. In addi-
tion, direct comparisons between deep learning methods and
physics-driven methods have yet to be performed, including
the quality of the reconstruction results, the computation time,
and the generalizability and robustness of the algorithms.

VII. CONCLUSION

In this study, we propose a regularization method that con-
tains a nonconvex MC function and uses the ADMM algorithm
to solve the optimization problem. During the iterative solution
process, a subproblem containing nonconvex functions can
maintain convexity and can be solved quickly by employ-
ing a threshold function. Reconstruction experiments on the
simulated data, Open-MPI dataset, and the data measured by
the homemade MPI scanner show that the proposed method
outperforms the traditional Tikhonov and NFL regularizations
and can alleviate the intensity underestimation problem exist-
ing in NFL regularization. The results demonstrate that the
developed approach can achieve superior image quality while
maintaining the quantitative advantages of MPI.
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