
874 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 2, FEBRUARY 2024

Quantitative Photoacoustic Tomography Using
Iteratively Refined Wavefield Reconstruction

Inversion: A Simulation Study
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Stéphane Operto, and Kamran Avanaki

Abstract— The ultimate goal of photoacoustic tomog-
raphy is to accurately map the absorption coefficient
throughout the imaged tissue. Most studies either assume
that acoustic properties of biological tissues such as speed
of sound (SOS) and acoustic attenuation are homoge-
neous or fluence is uniform throughout the entire tissue.
These assumptions reduce the accuracy of estimations of
derived absorption coefficients (DeACs). Our quantitative
photoacoustic tomography (qPAT) method estimates DeACs
using iteratively refined wavefield reconstruction inver-
sion (IR-WRI) which incorporates the alternating direction
method of multipliers to solve the cycle skipping challenge
associated with full wave inversion algorithms. Our method
compensates for SOS inhomogeneity, fluence decay, and
acoustic attenuation. We evaluate the performance of our
method on a neonatal head digital phantom.

Index Terms— Iteratively refined wavefield reconstruc-
tion inversion, alternating direction method of multipliers,
fluence compensation, quantitative photoacoustic tomog-
raphy, speed of sound estimation.

I. INTRODUCTION

PHOTOACOUSTIC imaging (PAI) is an emerging hybrid
imaging modality, combining the advantages of opti-

cal contrast with acoustic penetration. PAI has been used
extensively in preclinical [1], [2], and more recently, clinical
studies [3], [4]. As shown in Figure 1, upon nanosecond
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Fig. 1. In photoacoustic imaging, a pulsed laser illuminates tissue, and
acoustic pressure waves (PA waves) are generated by chromophores
in the tissue. These PA waves propagate through the tissue and are
measured by ultrasound (US) transducers.

laser irradiation of tissue, chromophores such as oxy-
hemoglobin (HbO2) and deoxy-hemoglobin (Hb) absorb
energy and generate photoacoustic waves through the ther-
moelastic effect, if thermal and stress confinements are
met [5], [6]. The generated acoustic waves are detected by
ultrasound (US) transducers and processed by an image
reconstruction algorithm (e.g. back projection, time reversal,
beamforming, Fourier transform [7], [8], [9], [10], [11]) to
restore the induced initial pressure or equivalently, an optical
absorption map.

Generally, photoacoustic (PA) image reconstruction algo-
rithms rely on the assumption that the imaging area is
homogeneous [12], [13], [14], which implies that the speed
of sound (SOS) is constant throughout the imaging region.
This is an invalid assumption in most biological tissue (for
example, brain tissue has many regions with different SOS)
[15], [16], leading to distortion in the received PA signals, and
consequently in reconstructed PA images. There have been
several studies that aim to implement SOS estimation [12],
[14], [17], [18], [19]. Xu and Wang [12] used an iterative
algorithm to compensate for SOS variation in breast tissue.
Deán-Ben et al. [13] used prior information on the position of
acoustic deformities, which is inferred from usual anatomical
data or another imaging method to improve image quality.
Zhang and Wang [19] proposed an algorithm based on the
correlation of PA recorded signals to neutralize heterogeneity
in acoustical properties. Treeby et al. [14] used the autofocus
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strategy to automatically estimate SOS in the medium by
maximizing image sharpness. In Jose et al. [17], the recon-
struction algorithm relies on refracted ray paths rather than
direct ray paths to obtain more realistic SOS maps. Recently,
Yin et al. [18] developed an algorithm that utilizes an iterative
procedure to estimate an SOS map relying on the fact that the
recorded signals by two neighboring ultrasonic transducers are
very similar in the received waveforms. Sun and Sun [20]
developed a method to estimate both the optical absorption
coefficient and the SOS map simultaneously.

In contrast to methods that either use part of the recorded
data, e.g., travel time or amplitude, or make unrealistic
assumptions about the medium (e.g. constant speed of sound,
homogeneity, etc.), full waveform inversion (FWI) exploits
the full information contained in the recorded wavefields
to estimate the constitutive properties of a medium without
any assumption about its level of heterogeneity or require-
ment of a level of homogeneity [21], [22]. This enriched
information guarantees superior performance of wave-based
tomography relative to travel time-based approaches in terms
of ability to estimate several constitutive properties such as
SOS, density, and acoustic attenuation. Considering emerg-
ing high-performance computing facilities and the current
state of theoretical understanding of this methodology, it is
reasonable to anticipate that wave-based tomography will
rapidly become the preferred method to perform accurate
tomography [7]. Algorithms using full waveform information
are capable of producing images with higher resolution (on
the order of one wavelength) than algorithms using ray-based
methods [23].

FWI for brain imaging is challenging due to both large
variability in SOS within the brain tissue and the high SOS dif-
ference between the soft brain tissue and the surrounding skull.
Classical FWI, which is based on the iterative least-squares
minimization of the differences between the measured data
and the numerically simulated counterparts, requires prior
information about the skull to reconstruct an accurate SOS
map of the brain. To relax this requirement, several approaches
extend the search space of classical FWI by incorporating
more convex distances between the recorded and simulated
data. One such approach is a so-called adaptive waveform
inversion (AWI) which has been used to reconstruct the SOS
map of the human brain without resorting to prior information
about the skull [24].

There have been several attempts to use FWI in PA imaging
to compute PA image or the absorption coefficient (referred
to in this study as derived absorption coefficient or DeAC)
[25], [26], [27], [28], [29]. Computing the DeAC (referred
to as quantitative photoacoustic tomography or qPAT) is
challenging, particularly for biological tissues where optical
fluence distribution is unknown [30], [31], [32]. In qPAT,
the optical inverse problem needs to be addressed [33], [34].
This problem is typically tackled using iterative approaches
based on mathematical models, as described in [35], [36],
[37], [38], [39], [40], and [41]. The model employed in these
approaches is based on the radiative transfer equation (RTE),
which accurately simulates the propagation of light to calculate
optical fluence [37], [42], [43]. The optical fluence distribution

throughout the tissue is calculated based on optical properties
of different tissue regions as well as specifications and geomet-
rical characteristics of the laser [44], [45], [46]. In some qPAT
studies, a simplified version of the RTE called the diffusion
approximation is applied [35], [36], [37], [47], [48], [49].
This approximation is generally satisfactory when dealing with
highly scattering media and nearly uniform scattering in all
directions [50]. However, these assumptions are not applicable
to studies involving the human head. To ensure uniqueness in
the inversion process, three different approaches are commonly
utilized [48]: solving for multiple optical wavelengths [47],
[51], [52], assuming prior knowledge of the scattering coef-
ficient [38], [53], [54], or employing multiple optical sources
[36], [55], [56]. In the current study, we assume knowledge
of the scattering coefficients and anisotropy factors are avail-
able. Testing several fluence compensation methods [34], [57],
we observed that the correction works only at shallow depths,
i.e., superficial layers of the target.

In this paper, we propose a qPAT method that calculates
DeACs by estimating SOS, acoustic attenuation, and flu-
ence maps. Our method uses iteratively refined wavefield
reconstruction inversion (IR-WRI), which incorporates the
alternating direction method of multipliers (ADMM) to solve
the cycle skipping challenge associated with FWI algorithms.
We evaluate the performance of our qPAT method on a digital
phantom of a neonatal head.

II. NOTATION

The mathematical symbols adopted in this paper are as
follows. We use italics for scalar quantities, boldface lowercase
letters for vectors, and boldface capital letters for matrices
and tensors. We use the superscript T to denote the adjoint
of an operator. The i th component of the column vector x
is shown by xi and its absolute value is returned by |xi |.
For the real-valued n-length column vectors x and y, the dot
product is defined by ⟨x, y⟩ = xT y =

∑n
i=1 xi yi and their

Hadamard product, denoted by x ◦ y, is another vector made
up of their component-wise products, i.e. (x ◦ y)i =xi yi . The
ℓ2-and ℓ1-norms of x are, respectively, defined by ||x||2 =
√

⟨x, x⟩ =

√∑n
i=1 x2

i and ||x||1 =
∑n

i=1 |xi |, and, || · ||F
denotes the Frobenius norm. Finally, for a complex number
z = ℜ(z) + iℑ(z), ℜ(z) and ℑ(z) refer to the real and
imaginary parts, and i =

√
−1.

III. METHOD

A. Digital Phantom of Neonate Head and
Simulation Setup

We created a digital phantom of a 30-week-old
neonatal head by averaging 324 MRI atlases made by
Brigadoi et al. [58]. The model is composed of extra-cranial
tissue (ECT), cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM). Assigned optical properties for all
layers were taken from the literature [59], [60], [61]. ECT
includes scalp and skull; the averaged optical properties of
scalp and skull were assigned to this layer. To fully mimic the
neonatal head, we included complex vasculature as the primary
imaging target of the phantom. The size of the computational
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Fig. 2. Configuration of the simulated US/PA tomography system.
US data collection proceeds as follows. Each of the 128 transducers
is activated singly, with the other 127 transducers in receive mode. ECT:
extra-cranial tissue, CSF: cerebrospinal fluid, GM: gray matter, WM: white
matter.

grid for this head model is 1000 × 1000 pixels, in which
pixel size is 120 microns. In this work, 64 optical fibers with
size of 0.6 mm are equally interspersed between 128 US
transducers (active aperture = 1 mm) to form a ring (diameter
of 120 mm) around the digital phantom. Fig. 2 shows the
regions in the digital phantom of the neonatal head as well
as the locations and arrangement of the optical fibers and US
transducers.

B. SOS and Acoustic Attenuation Estimation
We implemented FWI in the frequency domain as opposed

to the more conventional time domain formulation. The fre-
quency domain decreases the nonlinearity of the problem,
which helps to bypass the local minima (cycle-skipping)
problem. It is also computationally efficient when the inver-
sion can be limited to a few discrete frequencies. This
is the case when the acquisition device (in our case,
a ring array) provides a redundancy of information due to
abundant illumination of the target in both the US and
PA setups. The frequency domain FWI can be formu-
lated as the following multivariate constrained optimization
problem [62]

minimizeR(m)

subject to

{
A(m, ω)U(ω) = B(ω),

PU(ω) = D(ω),

U(ω), m ∈M ω = ω1, ω2, . . . , ωn f (1)

where R(m) is a regularization function and the constraints
are the wave equation A(m, ω)U(ω) = B(ω) and the obser-
vation equation PU(ω) = D(ω). Moreover, m ∈ CN×1

denotes complex-valued model parameters, constructed by a
mapping between SOS and acoustic attenuation. The math-
ematical model describing the attenuating medium is given
in Appendix A. In addition, N is the number of discretized
points of the medium, ω is the angular frequency, n f is the
number of frequencies, U(ω) = [u1(ω), u2(ω), . . . , uns (ω)] ∈

CN×ns is a matrix, whose columns represent the wavefields

triggered by each source, A(m, ω) = 1 + ω2diag(m)∈
CN×N is the impedance matrix in the acoustic environ-
ment, 1 is the discretized Laplace matrix, and diag (•)
is a diagonal matrix with • in its diagonal. In addition,
B(ω) =

[
b1(ω), b2(ω), . . . , bns (ω)

]
∈ CN×ns is a matrix,

the columns of which contain the ns sources, D(ω) =[
d1(ω), d2(ω), . . . , dns (ω)

]
∈ Cnr ×ns is the matrix of recorded

data, nr is the number of receivers and P ∈ Rnr ×N is
the linear observation (sampling) operator that samples the
wavefields U at receiver positions. Finally, M is a convex
set defined according to our prior knowledge of m. For
example, if we know the lower and upper bounds on m
then

M = {m | mmin ≤ m ≤ mmax } . (2)

The level of non-linearity of FWI in the optimization
problem (1) is moderate [63], which means that local optimiza-
tion methods, like Newton-family solvers [64] even with an
inaccurate starting model, converge to a reasonable solution.
To solve the optimization problem (1) in the full parameter
space, we should deal simultaneously with all the optimiza-
tion variables (U(ω), m). This approach which is called
all-at-once [65] is not feasible for practical applications of
FWI because of massive computational burden and memory
requirements. The classical formulation of FWI was imple-
mented on the reduced parameter space to keep the computa-
tional burden and memory requirements reasonable [22], [66].
In classical FWI, the wave-equation constraint is solved
for U(ω), i.e. U(ω) = A(m, ω)−1B(ω), and implemented in
the second constraint, i.e. PA(m, ω)−1B(ω) = D(ω), which
implies that the optimization variables reduce down to the
constitutive parameters of the medium. In this case, the inverse
problem is highly nonlinear due to dependency on A(m, ω)−1,
meaning that local optimization methods require a good start-
ing model to converge to the global minimum. Without a good
starting model, the problem is trapped in a local minimum,
a process which is called cycle skipping [67]. In order to
solve the cycle skipping challenge of FWI, we recently pro-
posed IR-WRI [68], [69] which uses an all-at-once approach
for (1) in which the optimization variables are updated in an
alternating mode based on ADMM [70] instead of simulta-
neous update of all optimization variables. IR-WRI mitigates
cycle skipping by keeping the wavefield as an independent
optimization variable. In this method, first the wavefields that
jointly satisfy the observation equation and the wave equation
are computed in a least-squares sense. Then, the constitutive
parameters of the medium are updated by minimizing the
wave-equation errors. Then, the Lagrange multipliers, which
are required for solving a constraint optimization, are updated.
We solve (1) with an augmented Lagrangian method [64]
whose objective function is given by:

LA(m, U(ω), V(ω), W(ω))

= R(m) −

ωn f∑
ω=ω1

〈
V (ω)T ,A(m, ω)U(ω) − B(ω)

〉

−

ωn f∑
ω=ω1

〈
W(ω)T ,PU(ω) − D(ω)

〉
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+
λ1

2

ωn f∑
ω=ω1

||A(m, ω)U(ω) − B(ω)||2F

+
λ2

2

ωn f∑
ω=ω1

||PU(ω) − D(ω)||2F, (3)

where V(ω) ∈ CN×ns and W(ω) ∈ Cnr ×ns are Lagrange mul-
tipliers and the scalars λ1, λ2 > 0 are the penalty parameters
assigned to the wave equation and the observation equation
constraints, respectively. The primal variables m and U(ω)

and the dual variables (i.e., the Lagrange multipliers) V(ω)

and W(ω) can be updated in alternating mode within the
framework of ADMM to break the full multivariate problem
into several manageable subproblems [68]. The stationary
point of (3) is determined iteratively as

U(ω)k+1
= arg min

U(ω)
LA(mk, U(ω), V(ω)k, W(ω)k), (4a)

mk+1
= arg min

m

∑
ω

LA(m, U(ω)k+1, V(ω)k, W(ω)k),

(4b)

V(ω)k+1
= V(ω)k

+ λ1[B(ω) − A(mk+1, ω)U(ω)k+1
],

(4c)

W(ω)k+1
= W(ω)k

+ λ2[D(ω) − PU(ω)k+1
], (4d)

where ω = ω1, ω2, . . . , ωn f . The wavefield U(ω)k+1 in (4a)
can be obtained in a closed-form expression as given in [68].
Once the wavefields are reconstructed, the model param-
eters are updated by minimizing the wave-equation errors
keeping the wavefields fixed (4b). The ill-posedness of any
FWI method, including IR-WRI, also requires regulariza-
tion to remove the undesired features in the reconstructed
model that may be due to inhomogeneous illumination, sparse
acquisition, or parameter cross-talk during multiparameter
reconstruction [71].

A suitable regularization renders the solution unique,
increases its stability, and prevents data over-fitting that may
cause coherent noise in the reconstructed model. The reg-
ularization should be able to (mathematically) describe the
solution while being easy to implement [72]. Conventional reg-
ularizations such as those promoting smoothness, sparseness,
and blockiness are derived according to some prior assump-
tions about the targeted model and are independent of the
data. In contrast, plug-and-play regularizations (such as those
based on nonlocal means filters and block matching 3D filters
(BM3D) [73]) are more flexible for regularizing complex
models. Another rationale for using BM3D is that proximal
methods, such as ADMM [70], provide a versatile and com-
putationally efficient approach to implement non-differentiable
and hybrid regularization functions (such as BM3D) through
variable splitting, as reviewed in [71]. Here, we use BM3D
regularization for SOS and acoustic attenuation estimation.
SOS and acoustic attenuation can be easily represented by one
complex-valued frequency-dependent term (see Appendix A).
In [69], Aghamiry et al. presents a method to process this
complex-valued parameter as the optimization variable in
IR-WRI, instead of processing SOS and attenuation as two

TABLE I
INPUT PARAMETERS FOR MCX SIMULATION

real optimization variables (as is typically implemented in
conventional methods).

C. Derived Absorption Coefficient Calculations
1) Image Segmentation: In order to calculate the fluence

map and the DeACs inside a neonate head, we start by
identifying the topological structure including the boundaries
of the ECT, CSF, GM, WM, and the vessel regions. These
regions are specified by applying a segmentation method, the
nearest neighbor algorithm described in [74], on the IR-WRI
derived SOS map. As published in the literature [75] and
data available on the website (https://itis.swiss), the following
reference SOS values are used: 2300 m/s, 1600 m/s, 1650 m/s,
1700 m/s, 1510 m/s for ECT, CSF, GM, WM, and vessel
regions, respectively. With the segmentation algorithm, each
pixel is assigned to the closest reference SOS. This results in
identification of five segmented regions. As an example, if one
pixel of the estimated SOS was 1655m/s, the reference value
of 1650m/s is the closest value and therefore GM is assigned
to that pixel. IR-WRI could theoretically estimate a DeAC for
each of the segments described above. However, in reality,
the tissue is optically heterogeneous. Determining only five
DeACs, one for each of the five segmented head regions, is a
rough estimation. To better estimate a real-life scenario of
varying DeAC in the brain tissue, we further divide the main
regions (i.e., ECT, CSF, GM, WM, and vessel regions) into
subregions (ng = total number of subregions or segments)
by overlaying a grid structure and using regional divisions
to subdivide each gridded square (see Fig. 5(b)). We then
determine DeAC for each subregion separately.

2) Fluence Calculation: Fluence refers to the amount of opti-
cal energy delivered to tissue per unit area. MCX, also known
as Monte Carlo eXtreme, is a software specifically developed
for simulating the transport of photons in turbid media using
the Monte Carlo method. It specializes in time-resolved photon
transport simulations [76]. In our study, we used MCX (with
the input parameters in Table I) to calculate fluence. Iteratively,
fluence was calculated based on scattering coefficients (µs)

and anisotropy values (g) extracted from literature (referenced
as [77] and listed in Table II), and DeACs (generated by
IR-WRI in each iteration) for various subregions. The simu-
lation involved 640 million photon packets and utilized a grid
size of 120 microns.

3) DeAC Estimation: Generally, the imaging problem is very
sensitive to variations in the source term b, which is the
element-wise product of fluence and DeAC as defined in (5).
However, there is a significant trade-off between b and the
properties of the medium when both quantities need to be
estimated. This ill-posedness prevents assignment of a degree
of freedom to each sample of the medium for DeAC. Instead,
a parsimonious parametrization of DeAC is preferred. Thus,
in order to reduce the dimensionality of search space, we use
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TABLE II
OPTICAL SCATTERING COEFFICIENT (µs) AND ANISOTROPY

FACTOR (g) OF THE NEONATE’S HEAD AT 800 NM [77]

the segmented image (section III-C.1) based on the SOS map
obtained from IR-WRI (section III-B). The PA source or initial
pressure b ∈ CN×1 can be decomposed as

b = FMx, (5)

where F ∈ RN×N is the diagonal form of the fluence that was
estimated in section III-C.2, and the columns of M ∈ RN×ng

contain the location of the segments according to the infor-
mation extracted in section III-C.1. Also, x ∈ Rng×1 is a
vector of attenuation coefficient values for different segments.
We direct interested readers to [78], [79], and [80] for further
information on the discretized Helmholtz equation (1) and
source model (5). Next, we demonstrate the IR-WRI method to
extract values of DeACs in this parsimonious parametrization.
Frequency-domain FWI with known model parameters m0 and
unknown PA source b can be written as:

minimizeR(x)

subject to

{
A(ω)u(ω)−FMx = 0,

Pu(ω) = d(ω),

u(ω), x ω̃ = ω̃1, ω̃2, . . . , ω̃n f (6)

where R(x) is an appropriate regularization function of x,
u(ω) ∈ CN×1 and d(ω) ∈ CN×1 denote the wavefield and
the recorded data for frequency ω, respectively, and ω̃1,
ω̃2, . . . , ω̃n f indicate the frequency content of the PA signal.
Also, A(ω) ≡ A(m0, ω), and the dependency to the passive
SOS model is removed (for the sake of simplicity). Determi-
nation of the optimum solution of (6) is extremely difficult and
ill-posed, requiring sophisticated regularizations. In this study,
we have used the total variation (TV) regularization [81] for x,
i.e. R(x) = ∥ ∇x ∥1 where ∇ is the first-order difference
operator. The augmented Lagrangian function associated with
the problem in (6) is given by

L̃A(u(ω), x, v(ω), w(ω))

= ||∇x||1 −

ωn f∑
ω=ω1

〈
v(ω)T , A(ω)u(ω) − FMx|

〉

−

ωn f∑
ω=ω1

〈
w(ω)T , Pu(ω) − d(ω)

〉

+
γ1

2

ωn f∑
ω=ω1

||A(ω)u(ω) − FMx||
2
F

+
γ2

2

ωn f∑
ω=ω1

||Pu(ω) − d(ω)||2F, (7)

where the scalars γ1, γ2 > 0 are the penalty parameters
assigned to the wave equation and the observation equation
constraints, respectively, and v(ω) ∈ CN×1 and w(ω) ∈ Cnr×1

are the Lagrange multipliers. Beginning with the model m0

obtained in section III-B, v0(ω) = 0, w0(ω) = 0 ∀ω and
initial value of absorption coefficients x0, ADMM solves the
multivariate optimization problem (7) iteratively as follows:

u(ω)k+1
= arg min

u(ω)
L̃A(u(ω), xk, v(ω)k, w(ω)k), (8a)

xk+1
= arg min

x
L̃A(u(ω)k+1, x, v(ω)k, w(ω)k), (8b)

v(ω)k+1
= v(ω)k

+ γ1[FMxk+1
− A(ω)u(ω)k+1

], (8c)

w(ω)k+1
= w(ω)k

+ γ2[d(ω) − Pu(ω)k+1
], (8d)

where ω = ω̃1, ω̃2, . . . , ω̃n f .
Problem (8a) is another wavefield reconstruction problem

(a problem that jointly satisfies the wave equation and the
observation equation in a least-squares sense), whose solution
can be obtained in a closed form similar to the one of (4a).
The optimization problem (8b) reads

xk+1
= arg min

x
||∇x||1

+

ω̃n f∑
ω=ω̃1

〈
w(ω)k, A(ω)u(ω)k

− FMx
〉

+
γ1

2

ω̃n f∑
ω=ω̃1

||A(ω)u(ω)k
− FMx||

2
2. (9)

By adding and subtracting the term ||w(ω)k
||

2
2 to (9), we have

xk+1
= arg min

x
||∇x||1 +

γ1

2

ω̃n f∑
ω=ω̃1

||A(ω)u(ω)k

− FMx +
1
γ1

w(ω)k
||

2
2. (10)

where we have ignored the −||w(ω)k
||

2
2-term as it does not

impact the optimization result. Equation (10) is a one dimen-
sion TV regularization and thus can be solved efficiently [82].
TV regularization has been used to control the large null
space of the inversion. As previously mentioned, this algorithm
requires an initial guess of DeACs (x0). It is estimated jointly
with a set of monochromatic wavefields u0(ω). To this end,
we may neglect the regularization term in (7) and solve
the optimization problem jointly for u(ω) and xfor a few
frequencies. The closed-form expression of this system for r
frequencies, i.e., ω̃1, . . . , ω̃r can be written as:

√
γ1A (ω̃1) 0 0 0 −FM

0
√

γ1A (ω̃2) 0 0 −FM
0 0 . . . 0 −FM
0 0 0

√
γ1A (ω̃r ) −FM

√
γ2P 0 0 0 0
0

√
γ2P 0 0 0

0 0 . . . 0
...

0 0 0
√

γ2P 0





RANJBARAN et al.: qPAT USING IR-WRI: A SIMULATION STUDY 879

Fig. 3. Block diagram of our qPAT method.


u(ω̃1)

0

u(ω̃2)
0

...

u(ω̃r )
0

x0

 =



0
0
...

0
√

γ2d(ω̃1)
√

γ2d(ω̃2)
...

√
γ2d(ω̃r )


. (11)

After solving (11) for x0, it, along with the extracted SOS and
acoustic attenuation from section III-B can be used as inputs
to subproblems (8) to extract accurate DeACs. In summary,
our method involves the following steps:

• IR-WRI [68] is employed to find the SOS and acoustic
attenuation maps based on US data.

• Pixels of the estimated SOS map are segmented into five
major regions of the head.

• Finally, IR-WRI is employed to estimate DeAC from the
MCX-updated fluence map and the acquired PA data in
which the SOS and acoustic attenuation maps.

Fig. 3 shows the block diagram explaining the methodology
we have used.

IV. RESULTS

For all of the numerical computations, a computer with an
Intel Xeon Platinum 8260 24C/35.75M/2.40G/165W as a CPU
and 16x 64GB DDR4-2933 RDIMM as RAM was used. Also,
the coefficients optimized nine-point stencil finite-difference
method implemented with anti-lumped mass and perfectly
matched layer (PML) absorbing boundary conditions [78] was
used to perform forward modeling for all the tests.

A. Estimation of SOS and Acoustic Attenuation

The acquisition device is comprised of 128 single element
transducers of size 1 mm which collect data in the frequency
band from 0.3 to 1 MHz. The direction of each transducer

Fig. 4. SOS and acoustic attenuation estimation by IR-WRI. (a) True
SOS map, (b) initial guess for the SOS map, (c) estimated SOS map,
(d-f), same as (a-c) but for acoustic attenuation, (g) cross sections of the
SOS maps in a, b, and c at the location of the dashed line, (h) error graph
for the SOS map (blue) and acoustic attenuation map (red).

points towards the center of the ring. We use a set of
frequencies, f = [0.3 0.4 0.7 0.8 1] MHz, for mono-frequency
IR-WRI followed by a multiscale frequency continuation strat-
egy. We perform three passes through the frequencies, using
the final model of one pass as the initial model for the next
one. The starting and finishing frequencies of the three passes
are [0.3, 0.4], [0.3, 0.4], and [0.3, 1] MHz, respectively. The
stopping criterion with respect to iterations is IR-WRI must
stop after a maximum of 30, 25, and 15 iterations for the first,
second, and third passes, respectively. The hyperparameters
(λ1 and λ2) are tuned based on a small fraction, e.g. 0.001,
of the highest eigenvalue of A(m0, ω1)

−T P−T PA(m0, ω1).
The readers can refer to appendix C of [71] for more details.
Fig. 4(a) shows the true SOS model. Figs. 4(b) and 4(c) show
the initial guess and estimated SOS maps after 185 iterations,
respectively. Figs. 4(d)-4(f) are the same as Figs. 4(a)-4(c),
but for acoustic attenuation. Cross-section profiles of the true,
initial, and estimated SOS maps at the white dashed lines
shown in Figs. 4(a)-4(c) are plotted in Fig. 4(g). The SOS
percent error (SOS Error) defined as

100
∑
pixel

|true SOS - estimated SOS|

|true SOS|
, (12)
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is shown in Fig. 4(h) at different iterations in blue, and the
same plot for the estimated acoustic attenuation map (Acoustic
Attenuation Error) is shown in red. The computational time
for 185 iterations was 25 hours. As seen, IR-WRI is able to
provide a highly accurate SOS map.

B. DeAC Calculation

1) Image Segmentation: As explained in section III-C.1,
a segmented image of the head was obtained using the SOS
map estimated by IR-WRI. Fig. 5(a) shows the five regions
(ECT, CSF, GM, WM, vessels) extracted from the SOS map.
Fig. 5(b) shows the segmented model described in III-C.1.
Results were used to calculate fluence maps as well as DeACs.

2) Fluence Calculation: The fluence map was calculated
iteratively based on the specifications of the optical fibers
and the optical properties of the neonatal head phantom at a
wavelength of 800 nm (refer to Tables I and II in the Methods
section) and the DeAC values were acquired from IR-WRI.
Fig. 5(c) illustrates the calculated fluence map at the first
iteration, while Fig. 5(e) represents the fluence map at the
final iteration. It is evident from these figures that the optical
scattering effect in biological tissue results in a significant
decrease in the optical energy deposited in the central part
of the head. To provide a clearer visualization of the fluence
distribution, particularly in deeper areas, Fig. 5(d) and 5(f)
display the logarithmic scale representation of the fluence map
at the first and last iterations, respectively.

3) DeAC Estimation of Subregions: One hundred frequencies
selected evenly over 0.3 to 1 MHz are used. To begin, the first
20 frequencies are used to solve (11) for extracting an initial
DeAC (x0). Then, all 100 frequencies are used simultaneously
for solving subproblems (8) using the SOS and acoustic
attenuation estimation maps shown in Fig. 4(c) and 4(f)
and the fluence map estimation shown in Fig. 5(c). Tuning
hyperparameters like γ1 and γ2 in (7) were challenging. We set
them according to the following recipe, but of note, it is not
the optimal one. The hyperparameter γ1 is tuned as a small
fraction, e.g. 0.001, of the highest eigenvalue of MT FT FM.
Then γ2 is tuned such that γ = γ1/γ2 will be a small fraction
of the highest eigenvalue ξ of A(ω̃1)

−T PT PA(ω̃1). We set
γ = 10−4ξ for noiseless data and increase it when analyzing
noisy data to prevent data overfitting. For example, we used
γ = 0.01ξ for the noisy data.

The true DeAC map used in the simulation is shown
in Fig. 5(g). Next, an estimated DeAC map based on the SOS,
acoustic attenuation and fluence maps that undergoes updates
in each iteration is computed. Since the model we used in this
study had only 5 regions with different DeACs, and real-case
scenarios, because of the heterogeneity of tissue, will contain
more regions, we decided to initially assume the possibility
of the existence of up to 200 different DeACs and test to
see if this process will correctly converge on the five DeACs
in the true DeAC map. In order to quantify the accuracy
of the reconstructed DeACs, we define DeAC percentage
error.

100
∑
pixel

|true DeAC - estimated DeAC|

|true DeAC|
, (13)

Fig. 5. (a)-(b) Segmentation of the estimated SOS map with: (a) five
regions, and (b) 200 regions (example regions are shown with r1, r2, . . . ,
and r7). (c)-(f) Fluence map estimation in: (c) linear scale at 1st iteration,
and (d) logarithmic scale at 1st iteration, (e) linear scale at 252th iteration,
and (f) logarithmic scale at 252th iteration. (g)-(j) DeACs estimation by
IR-WRI. (g) True DeAC, (h) DeACs at the 1st iteration with 200 regions,
(i) DeACs at 252th iteration, and (j) Error graph for the DeAC map.

The DeAC percentage error for the full image is 9.41% and it
is shown for each iteration in fig. 5(j). The DeAC percentage
error for each of the five regions is ECT=9.81%, CSF=9.62%,
GM=9.01%, WM=10.40%, and vessel=10.25%. The results
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Fig. 6. DeACs obtained from iterative time reversal (100 iterations).
(a) With homogeneous SOS equal to 1500 m/s. (b) with SOS and
acoustic attenuation maps extracted using IR-WRI (Figs. 4(c) and 4(f)).

were obtained by running iterations until the rate of change in
the error was < 1%: these conditions were satisfied beyond the
252nd iteration. The results for the 1st and 252nd iterations are
shown in Figs. 5(h)-5(i). The computational time for DeAC
calculation for 450 iterations was ∼49 hours.

For further assessment of the proposed method, we compare
our results with the least squares (iterative) time reversal
reconstruction algorithm [83], [84] which selected for compar-
ison because it and the IR-WRI algorithms use the same wave
equations and similar starting data. The time reversal algorithm
was run for 100 iterations and stopped when the error did not
decrease. We reconstructed the PA image and then divided it
by the fluence map to generate a time-reversal (TR) DeAC
map. Fig. 6(a) utilizes a homogeneous SOS = 1500 m/s
and there is no adjustment for acoustic attenuation. Fig. 6(b)
utilizes the SOS and acoustic attenuation maps derived pre-
viously using IR-WRI (Figs. 4(c) and 4(f)). The TR DeAC
percentage error for the model shown in Fig. 6(b) is 71.98%
and for each of the five regions is ECT=82.51%, CSF=86.3%,
GM=80.6%, WM=70.3%, and vessel=40.2%.

Comparing the DeAC map from our proposed algorithm
(Fig. 5(i)) and those extracted using the iterative time reversal
algorithm (Fig. 6(b)), shows our proposed algorithm can
recover the DeAC map nearly perfectly, while the iterative time
reversal algorithm, using nearly the same starting information,
poorly recovers the DeAC map, especially in deeper regions.

We next assess the robustness of our method against random
noise in the data. We added different amounts of noise level to
the raw PA data (noise level =1 to 5 (Fig. 7(d)) where noise
level 5 represents similar amplitude for noise and signal, and
noise levels 1-4 represent 20% to 80% the amplitude of noise
level 5. We next performed IR-WRI, and DeAC error varied
from 11.6% to 56.1% (Fig. 7(c)). The DeAC maps for noise
level 1 and noise level 5 are shown in Fig. 7(a) and 7(b).

V. DISCUSSION

Many commonly-used ray-based PA image reconstruction
algorithms (e.g., universal back-projection [85], delay and
sum [86] and multiply delay and sum [9]) assume that SOS
and fluence maps are homogeneous across the entire imaging
area and there is no acoustic attenuation. Therefore, to estimate
DeACs, insufficient information is available, leading to large

Fig. 7. DeACs estimation for (a) noise level 1, (b) noise level 5, (c) DeAC
error for different noise levels.

error. Prior information from a different imaging modality can
be used to decrease DeAC estimation error [30], [87], [88].
Because of the use of US transducers in PA data collection,
US-PA dual modality is a natural choice to obtain such
prior information. On the other hand, in wave-based methods,
the full information contained in the recorded wavefields,
i.e., amplitudes and phases, is considered without any assump-
tion about level of heterogeneity [21], [22]. Therefore, these
techniques can be effective for estimating accurate SOS and
acoustic attenuation maps from US data. Several algorithms
have been proposed for this very purpose [89], [90], [91].
Some limitations of these US methods are sensitivity to the
selection of the initial model [90], massive computational
burden [92], and suboptimal reconstruction of the acoustic
attenuation map [93].

Several studies have attempted to estimate the SOS, the
DeAC, or optical absorbance density [94], [95], [96], [97],
[98], [99]. However, a few limitations associated with these
methods (but more recently resolved) are: utilizing the
Born approximation implies assuming SOS(x) = SOS0(x) +

SOSperturbation(x), where the magnitude of SOSperturbation/
SOS0 is significantly smaller than 1 [97]. However, this
assumption does not hold in our case due to the presence
of the skull, where the SOS is approximately 2400 m/s while
SOS0 is around 1500 m/s. Another limitation is a requirement
for incorporating prior knowledge about the geometry of the
SOS map [99].

To estimate DeACs, several qPAT algorithms have been pro-
posed [38], [40], [41], [43], [53], [100], [101]. Some historical
limitations of these qPAT methods are: The assumption that
the transducers have a point-like nature and lack directivity,
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with a constrained aperture size [40]; uniform distribution of
acoustic properties within the tissue, which may not always
be the case in practice [38]; prior knowledge of the speed
of sound in the medium is required [43]; use of diffusion
approximation [100] to calculate fluence, which is not a
correct approximation in the head due to the presence of cere-
brospinal fluid (CSF) region, which acts as a non-scattering
medium and poses a challenge for this approach. In fact, some
older qPAT methods eschew fluence modeling entirely, and
assume that the fluence is uniform throughout the tissue [7],
[27], [29]. Moreover, recently, several research studies have
made use of minimization-based methods [38], [39], [40],
[101], [102], [103]. Nonetheless, the primary drawback associ-
ated with these newer approaches is their tendency to exhibit
escalating computational complexity, ultimately resulting in
substantial computation time requirements [104]. The time it
takes for calculations depends on various factors, including
the number of photon packets traced, the specifications of
the hardware used, the size of the computational area, the
quantity of transducers, and the complexity of the phantom
being studied. For example, in [38], during the inversion
process, 107 photon packets were utilized to compute radi-
ance and fluence, while 5 × 106 photons were employed
to calculate the corresponding adjoint quantities. On a high-
end consumer GPU such as the NVIDIA GeForce Titan X
Pascal, a single iteration of the inversion process, including the
adjoint model, took approximately 84 seconds. On a different
note, as described in [40], computations were performed
on a computer equipped with two Intel(R) Xenon(R) Gold
6136 processors, possessing a total of 24 cores and 256 GB
of memory. Each reconstruction step took around 150 minutes,
with approximately 20 to 30 minutes allocated for tasks other
than the primary computation.

Classical FWI can also be used for DeAC estimation. In this
case the wave-equation constraint in (6) is solved for u(ω),
i.e. u(ω) = A(ω)−1FMx, and substituted into the second
constraint in (1). The resulting optimization problem will be
a regularized least-squares time-reversal. This optimization
problem cannot be solved easily because of the presence
of A(ω)−1, which is a very large and dense matrix that cannot
be stored or directly inverted to extract x [105]. Using the
second IR-WRI algorithm to iteratively optimize parameters
to include for fluence correction can be implemented with
no initial guess or boundary assumption for the fluence,
or preconceptions for the iteration process. This task would
be infeasible for existing FWI-based methods because the
nonlinearity of fluence compensation would set up another
requirement for inverting a large and dense matrix.

In this paper we describe a qPAT framework to estimate
DeACs. The requirements for this method are as follows:

• US data acquired by a ring of transducers when each
transducer is activated as a transmitter in turn,

• Optical source locations and specifications, and
• PA data acquired by all transducers when the imaging

target is irradiated by a laser beam.
The method operates by first calculating the SOS and acoustic
attenuation maps using the acquired US data through the
IR-WRI algorithm (with BM3D regularization).

It should be noted that the calculated acoustic attenuation
map (error < 14%) is less accurate than the calculated SOS
map (error < 5%). This is because the US recorded data
is less responsive to acoustic attenuation compared to SOS.
Subsequently, the IR-WRI algorithm is used again (with
TV regularization) to solve a source estimation problem on
the PA data (using the obtained SOS, acoustic attenuation and
fluence maps). The PA problem is then solved by segmenting
the SOS map to compensate for the trade-off between not
knowing the pixelwise DeACs and the reduced size of the null
space (11).

Some of the limitations of the proposed method are as
follows. First, the segmentation method used is simplistic.
Although the starting penalties used in conjunction (4) and (8)
ultimately worked, these need to be optimized. The method
could also be made more robust by making the DeAC estima-
tion step less sensitive to the quality of the SOS map. Finally,
computation time needs to be reduced either by more efficient
coding or use of GPU.

VI. CONCLUSION

In this paper we describe a qPAT framework to estimate
DeACs. A key advantage of our qPAT method is its accu-
racy throughout a large imaging target due to the combined
use of full wave inversion with fluence decay compensation
delivered by the MCX toolbox: the estimated DeAC map
is within 12% of the actual absorption map on which the
simulation was based. Our results demonstrate the potential
use of qPAT for transcranial imaging of neonatal brains which
could be developed, for example, to detect conditions such as
hemorrhage and hypoxia. Our method suffers from expensive
computations; we plan to overcome this to some extent by
implementing it on GPU.

APPENDIX

A. Standard Linear Solid (SLS) Attenuation Mechanism
Basically, m is a frequency-dependent non-linear mapping

between SOS and attenuation factor at the reference frequency.
[106] have compiled eight different models related to some
empirical attenuation mechanisms. In this paper, we use SLS
mechanism defined as

m =
1
υ2 ℜ

(√
1 + iωrτσ

1 + iωrτε

)−2
1 + iωτσ

1 + iωτε

, (14)

where ωr is a reference frequency, ν is SOS, τε and τσ are
relaxation times related to the constants of the effective springs
and dash-pot of the model [107] and defined as

τε =
1
ωr

(√
1 + α2 + α

)
, (15)

τσ =
1
ωr

(√
1 + α2 − α

)
, (16)

where α is the acoustic attenuation. Also, by having complex
valued m, one can extract acoustic attenuation as

α =
ω2

+ ω2
r

2ωωr
ℜ(1/m)
ℑ(1/m)

(17)
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After extracting τε and τσ using (15) and (16), SOS will be

υ =

√√√√
ℜ(

1
m

)ℜ(

√
1 + iωrτσ

1 + iωrτε

)−2 1 + ω2τ 2
σ

1 + ω2τσ τε

. (18)
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