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Deep Learning for Retrospective Motion
Correction in MRI: A Comprehensive Review
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Abstract— Motion represents one of the major challenges
in magnetic resonance imaging (MRI). Since the MR signal
is acquired in frequency space, any motion of the imaged
object leads to complex artefacts in the reconstructed image
in addition to other MR imaging artefacts. Deep learning
has been frequently proposed for motion correction at
several stages of the reconstruction process. The wide
range of MR acquisition sequences, anatomies and patholo-
gies of interest, and motion patterns (rigid vs. deformable
and random vs. regular) makes a comprehensive solution
unlikely. To facilitate the transfer of ideas between different
applications, this review provides a detailed overview of pro-
posed methods for learning-based motion correction in MRI
together with their common challenges and potentials. This
review identifies differences and synergies in underlying
data usage, architectures, training and evaluation strate-
gies. We critically discuss general trends and outline future
directions, with the aim to enhance interaction between
different application areas and research fields.
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I. INTRODUCTION

MOTION remains a major challenge for fully exploiting
the diagnostic potential of magnetic resonance imaging

(MRI). Whereas MRI stands out as a non-invasive medical
imaging modality with excellent soft tissue contrast, its intrin-
sically long acquisition times make it more susceptible to
motion than most other modalities. However, with the fast
development of deep learning in recent years, many learning-
based motion correction (MoCo) methods have been proposed
to tackle this challenge in a retrospective, data-driven manner.

Despite the existence of reviews on motion artefacts and
classical MoCo [1], [2], no comprehensive overview of
learning-based methods for MR motion correction exists so
far. Especially an overview of the increasingly popular field of
combined MoCo and image reconstruction is missing, which
could foster the transfer of deep learning models between
applications. Whereas differences in region of interests, acqui-
sition schemes and motion types intrinsically affect data-driven
approaches, synergies in underlying models and overall meth-
ods need to be identified. In this review, we highlight such
differences and synergies at all stages of learning-based motion
correction by analysing data usage, architectures, training
and evaluation strategies. Furthermore, we intend to gener-
ate a general understanding of recent learning-based MoCo
approaches in MRI by outlining respective obstacles and
potentials and aim to enhance interaction between the fields
of machine learning and MRI.

We review published articles that present methodological
contributions for learning-based retrospective MoCo in MRI.
We searched for articles on PubMed and GoogleScholar until
August 2023, using combinations of the keywords “Motion
Correction”, “Motion Compensation”, “Deep Learning” and
“Magnetic Resonance Imaging”, from which we selected the
most relevant ones.
The remaining review is structured as follows:

II Background: MR motion artifacts and classical MoCo
III Data Availability & Motion Simulation: Common brain

and cardiac/abdominal data strategies
IV Architectures: Image- & k-space-based MoCo methods
V Training Objectives: Training strategies and losses

VI Evaluation Metrics: Image Quality, Motion Detection &
Estimation and Downstream Tasks
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VII Discussion of sections III, IV, V and VI
VIII Conclusion & Outlook.

II. BACKGROUND

As a basis for understanding learning-based MoCo
approaches, we summarize the fundamental principles of MR
motion artefacts and classical motion correction in the fol-
lowing section. Please refer to [1] and [2] for more detailed
overviews.

Relevant motion during MR image acquisition comprises
both moving organs - e.g. due to cardiac motion or respiration
- and conscious or unconscious movement of body parts -
e.g. due to patient discomfort. Different motion patterns can
be observed when imaging different body regions: For brain
imaging, the movement of the head is usually assumed to be
random and characterized by six rigid-body motion parameters
(three rotational and three translational components), com-
monly neglecting small deformable motion, e.g. due to brain
pulsation. In contrast, for abdominal and cardiac imaging the
intrinsic movement of organs due to breathing and heartbeat
leads to quasi-periodic patterns and deformable, non-rigid
motion with significantly more degrees of freedom. For fetal
body imaging, next to quasi-periodic motion from the fetus
and mother, further vast and unpredictable sudden (non-)rigid
motion may occur due to sudden movement of the fetus.
Regardless of the exact pattern, motion of the imaged object
affects the MR signal, which is acquired in frequency space
(or k-space). On the one hand, changes in position disrupt
the capability to encode spatial information in the acquired
signal. On the other hand, physical MR signal properties
are negatively influenced by second-order motion effects, e.g.
due to motion-induced magnetic field inhomogeneities or spin
history effects. Thus, after reconstructing motion-corrupted
data from frequency to image space, complex artefacts may
arise, which cannot be corrected in a straightforward pro-
cess [1]. Exemplary motion-corrupted images for brain and
abdominal imaging in Fig. 1A illustrate that motion may
hinder successful diagnoses. The versatility of MRI protocols
and motion types makes a comprehensive solution unlikely.

Several strategies have been proposed to mitigate motion
artefacts. First, subject motion can be constrained physically,
for instance by acquiring abdominal scans only during breath
hold [4] or using sedation or general anaesthesia when imaging
young children [5], [6]. Second, image acquisition schemes
have been designed to be more robust towards motion, either
by selectively acquiring data in certain motion states or using
advanced sampling patterns [7], [8], [9]. Third, accelerated and
parallel imaging methods have been introduced, which offer
the advantage of shorter acquisition times corresponding to
less opportunity for motion events [10], [11].

Next to these mitigation strategies, which are still sus-
ceptible to motion artefacts, another group of approaches
have been proposed to directly perform motion correction by
explicitly removing motion artefacts, and motion compensation
by leveraging the regularity of motion patterns for a better
reconstruction. These approaches include prospective methods,
which are applied during image acquisition [12], [13], [14],
and retrospective methods, which are applied after image
acquisition at various points in the reconstruction pipeline [15],

[16]. Retrospective methods must cope with motion-induced
image information loss, e.g. due to data inconsistencies in
k-space [2]. For this, deep learning methods are particularly
promising due to their capability to identify complex patterns
in the absence of a complete analytical model.

Note that the following sections focus on motion correction
and compensation of motion artefacts that originate in the
acquisition process, i.e. the k-space domain, and reconstruction
refers to the domain-transfer from k-space to image-space.
For strategies targeting slice-to-volume reconstruction (SVR)
of highly accelerated (and hence nearly artefact-free) 2D
slices, such as dominantly applied for fetal motion correction,
we refer the reader to [17].

III. DATA AVAILABILITY AND MOTION SIMULATION

The majority of learning-based MoCo methods rely on
supervised training and thus, on the availability of paired
data with and without motion artefacts. Even unsupervised
or self-supervised approaches use paired data for quantitative
performance evaluations (compare Section VI). Some authors
acquire pairs of motion-corrupted and ground truth (GT)
motion-free images for training and evaluation. However, it is
costly and not always feasible to acquire large paired datasets,
which is why motion simulations are commonly used.

When simulating motion artefacts, it is important to consider
the typical motion patterns of the anatomy of interest, which
we described in Section II. In the following, we summarize
the common simulation procedures for brain as well as cardiac
and abdominal imaging.

A. Brain

The simulation of rigid-body motion follows the MRI
forward model in the presence of motion [18]:

y =

T∑
t=1

MtFUt x, (1)

where the Fourier transform F , the sampling mask Mt and
the motion transform Ut , are applied to the GT image x for
each time point t to generate the motion-corrupted k-space
y. In the case of rigid-body motion, the motion transform,
Ut = Tt Rt , consists of rotation and translation transforms, Rt
and Tt . Additionally, coil sensitivities or second-order motion
effects can be included in the forward model to extend the
simulation to the specific application.

It is mathematically equivalent to simulate motion in image
space or in k-space [19]. As visualized in Fig. 2, simulations
in image space are performed by rotating and translating the
image and replacing the corresponding k-space lines with the
Fourier transform of the transformed image for each time
step. Simulations in k-space are based on the properties of the
Fourier transform: rotations of the imaged objects correspond
to equivalent rotations in k-space and translations T corre-
spond to multiplications with linear phase ramps depending on
the translation parameter a and k-space coordinate in readout
direction kRO :

T(y) = y · exp(−i2πakRO). (2)
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Fig. 1. (A) Typical motion patterns for brain and abdominal/cardiac imaging, together with examples of motion-corrupted and motion-free images
(brain images from [3], remaining data acquired at Klinikum Rechts der Isar, Munich). For brain imaging, random rigid-body motion is typically
assumed, which results in blurring and ringing artefacts, depending on the exact acquisition scheme and motion pattern. For cardiac and abdominal
imaging, motion is typically deformable and quasi-periodic, leading to blurring and possibly, ghosting artefacts. (B) Visualisation of image-based
MoCo with motion-corrupted images as input and motion-corrected images as output of a neural network (CNN, U-Net or transformer). Optionally,
a residual connection enforces the network to learn artefact maps. Prior-assisted methods incorporate additional information, like additional dynamics
or contrasts. (C) Illustration of k-space-based MoCo. Methods that combine classical and learning based modules can be categorized as follows:
(1) methods that replace different components of a model-based reconstruction, which iterates between finding an image x and corresponding
motion parameters θ by minimizing a loss function, L(θ, x). Learning-based modules target (a) the image initialization, (b) the loss function or (c) the
motion parameters. (2) Combining a classical reconstruction with a learning-based motion detection of corrupted k-space measurements or a
learning-based estimation of motion fields, Ut. (3) Combining classical motion detection or estimation with a learned unrolled reconstruction that
iterates between denoising networks and data consistency (DC) blocks. Purely learning-based methods include (4) approaches that directly aim
to correct motion artefacts by either performing convolutions in k-space and image-space or excluding motion-corrupted k-space measurements
from the learning-based reconstruction and (5) motion compensation methods which use motion information implicitly or explicitly to achieve higher
quality image reconstructions. A subclass of approaches fit a generative reconstruction model to raw data of an individual, whereas motion can
optionally be modelled explicitly by including deformation fields. For all visualizations in (B) and (C) we illustrated the most prevalent anatomy, even
though the anatomies are interchangeable in most cases.

Regardless of the domain, in which the simulations are per-
formed, it is important to match the timing of the motion to
the MR acquisition scheme to simulate realistic artefacts [20].

B. Cardiac and Abdominal
Following (1), image-based non-rigid motion simulation

is achieved by applying a deformable vector field (DVF)
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Fig. 2. Rigid-body motion simulation in image or frequency domain,
based on x-, y- and z-translation and rotation parameters for each time
step. When simulating in image domain (1), translation and rotation
parameters are applied to the image. When simulating in frequency
domain (2), corresponding k-space lines are rotated and multiplied with
linear phase ramps (visualized by arrows). For both, k-space lines of
different time steps are merged into one corrupted k-space.

as motion transform Ut . Realistic DVF can be obtained by
registering reference images, e.g. from different motion states.
Statistical modulation of the DVF allows augmentation for
training purposes. If available, multiple time-resolved recon-
structions xt can be used to substitute Ut x and, hence, simulate
without DVF.

In contrast to rigid motion, it is not trivial to simulate
non-rigid deformation in k-space directly. Therefore, cardiac
and respiratory motion simulation can be approximated with
varying translations in k-space. To simulate periodic motion,
linear phase ramps with a periodically varying translation
parameter, i.e. a(t) ∝ sin(t), are applied in (2). It needs to be
noted that this is a strongly simplified motion representation.

IV. ARCHITECTURES

This section covers an overview of proposed architectures
for learning-based MoCo in MRI. Architectures can be cat-
egorized into (A) image-based and (B) k-space-based. Each
section includes methods applied to different anatomies and
highlights similarities, differences and general trends.

A. Image-Based Motion Correction

Image-based MoCo methods take motion-affected images as
input and produce motion-corrected images as output, similar
to image denoising or deblurring tasks, as sketched in Fig. 1B.
They differ based on their (1) underlying network architecture
and (2) potential use of prior information.

1) Underlying Network Architectures: The image-to-image
translation task can be solved using convolutional neural net-
works (CNNs), consisting of several consecutive convolutional
layers with corresponding activation functions [21], [22], [23],
[24]. Some approaches process the input images in multiple
resolutions, using varying patch and kernel sizes [21] or dilated
convolutions [24]. Similarly, convolutional encoder-decoder
structures can be utilized, which consist of a downsampling
path for feature encoding, followed by an upsampling path
for decoding the extracted features [23], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42]. As common for U-Nets, most methods
use skip connections to transfer details from the encoder
to the decoder [23], [25], [26], [28], [29], [30], [32], [34],
[35], [36], [37], [38], [39], [40], [42]. Additionally, some

approaches cascade multiple encoder-decoder structures con-
secutively [26], [32], [37], [38]. Further, to exploit temporal
dependencies of dynamic data, a recurrent encoder-decoder
network has been proposed, replacing convolutions with con-
volutional long/short-term memory models [43]. Inspired by
the recent success of transformer architectures in other fields,
initial works employ self-attention mechanisms to address
long-distance spatial dependencies of motion artefacts [44],
[45].

The above presented approaches vary with respect to
whether the inputs of the networks are patches [21], [22],
[24], [26], [29], [34], [39], [41] or complete images [23],
[25], [27], [28], [30], [31], [32], [33], [35], [37], [38], [40],
[42], [43], [44], [45]. The networks are either implemented
as classical [23], [25], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [37], [38], [39], [40], [41], [43], [44], [45] or
residual networks [21], [22], [24], [26], [36], [42], generat-
ing corrected images or motion artefact maps, respectively.
To further improve the performance, the MoCo task can be
combined with learning-based downstream tasks in an end-to-
end manner, where both tasks can benefit from each other [30].

2) Prior-Assisted Methods: The presented architectures can
be modified to take advantage of additional information, like
different contrasts [23], [27], multi-echo or multi-parametric
acquisitions [24], [33], similar slices [23], [32] or dynamic
information [22], [31], [39], [46]. These prior-assisted meth-
ods process multiple inputs by either multiple or shared
encoders and decoders with shared feature extraction [23],
[27], [33], by concatenating the inputs on different chan-
nels [22], [23], [24], [31], [32] or by using a recurrent network
structure for the additional dimension [46]. For instance,
Ghodrati et al. [39] attempt to leverage temporal information
by computing a loss on the features extracted by an auxiliary
network pretrained on dynamic images. Moreover, dynamic
information can be utilized in registration-based methods,
where a CNN is used to register binned data into a common
space, the combination of which results in a motion-corrected
output image [47].

B. K-Space-Based Motion Correction
Contrary to image-based methods, MoCo can also lever-

age the additional information content of raw k-space data
and thus, interact with the MR reconstruction process (see
Fig. 1C). Different components of the motion-aware recon-
struction pipeline can be learning-based. In the following
sections we provide an overview of methods which combine
classical and learning-based modules, and methods with pure
learning-based modules.

1) Combination of Classical and Learning-Based
Approaches: Multiple methods extend classical frameworks
with individual learning-based MoCo or reconstruction
components. A part of a model-based reconstruction, the
motion analysis or the reconstruction itself can be learned.

a) Replacing part of model-based reconstructions: Model-
based MoCo algorithms rely on the joint estimation of
motion parameters and the reconstructed image. Various
approaches propose to replace different parts of these optimi-
sation procedures with learning-based components to enable
faster convergence and ideally, more stable reconstructions
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(Fig. 1C.1). Kuzmina et al. [48] use a CNN as part of
the loss function for autofocusing, where the optimisation is
based on an image quality metric. For data consistency (DC)-
based optimisation procedures, CNNs or U-Nets are employed
for motion parameter estimation [49], as initialisation of
the motion-corrected image [50], [51] or as reconstruction
networks whose weights are defined by a hypernetwork that
is dependent on the motion parameters [52]. In contrast,
Levac et al. [53] propose an unsupervised approach, using a
score-based model, that was trained on motion-free images,
in the joint estimation of image and motion parameters.
All these approaches have in common that the network is
pre-trained and used as plug-and-play component during test-
time optimisation. Moreover, all these approaches focus on
rigid-body motion, having considerably less degrees of free-
dom than non-rigid motion.

b) Learning-based motion analysis and classical reconstruc-
tion: Another group of methods leverage the random nature
of rigid-body motion. As visualized in Fig. 1C.2, they
learn detection models for motion-affected k-space measure-
ments and inform classical reconstruction procedures with
the extracted motion timing. Eichhorn et al. [54] employ a
CNN for a line detection in k-space and use these line-wise
classification labels as weights in the DC term of a total
variation-based reconstruction procedure. Cui et al. [55] train
an image-based CNN to correct motion artefacts and compare
the k-space of the original and motion-corrected images to
generate undersampling masks for motion-affected k-space
lines. Undersampled original data are then reconstructed with
a classical compressed sensing procedure.

In the case of quasi-periodic motion, the assumption of indi-
vidual motion-corrupted k-space lines does not apply. Rather
than correcting for single motion events, motion compensation
methods leverage the periodicity of motion for higher-quality
reconstructions of undersampled data. These methods learn
motion estimates, which are included in a model-based classi-
cal reconstruction [56], [57], [58], [59], [60]. Motion fields are
predicted using image-based registration and integrated into
the forward operator of the reconstruction problem. Existing
approaches vary regarding the registration network’s input,
i.e. complete image [58], [59], [60] vs. image patches [56],
[57], and paired [56], [57] vs. grouped input [58], [59],
[60]. Furthermore, the motion estimation network can be
pre-trained [56], [57], [58] or optimized jointly with the
reconstruction problem [59]. A hybrid approach is proposed
in [60], where a motion estimation is obtained with a pre-
trained multi-scale network, and consecutively optimized in an
iterative reconstruction. Munoz et al. [57] leverage a diffeo-
morphic registration network to predict forward and backward
motion fields in one run rather than individually. A different
application of learned motion estimates is presented in [61],
where real-time high-quality reconstructions are obtained by
deforming a reference image with motion fields predicted from
few k-space lines. Whereas registration is conducted in image-
space, classical reconstruction layers are used to calculate the
loss in k-space.

c) Classical motion analysis and learning-based reconstruction:
In contrast, motion detection and estimation can also be
performed classically and combined with a learned unrolled

DC-based reconstruction (Fig. 1C.3). Rotman et al. [62]
detect discrete motion timings by comparing signals from two
opposite coil elements and learn an unrolled reconstruction,
in which the regularising network separately receives the
data acquired in the dominant and remaining motion states.
Miller and Johnson [63] employ a classical spatio-temporally
constrained registration of dynamic images to a single motion
state. The registered images are encoded and forwarded into an
unrolled reconstruction, which is trained in a self-supervised
manner by splitting the available data into subsets.

2) Pure Learning-Based Approaches: Compared to the pre-
vious section, several methods combine MoCo and image
reconstruction in one purely learning-based framework. These
can be distinguished by their aim to either correct or compen-
sate for motion.

a) Motion correction: Proposed motion correction
approaches explicitly aim to remove motion artefacts in
the underlying data (Fig. 1C.4). Singh et al. [64] propose a
network consisting of interleaved or alternating convolutions
in image and k-space for simultaneous rigid-body MoCo
and reconstruction. This approach was further developed
into a data consistent method, which we already introduced
in section IV-B.1.a [52]. Oksuz et al. [65] realize data
consistent reconstructions of cardiac data with ECG
mistriggering artefacts in line with the methods presented in
section IV-B.1.b. They propose to employ a CNN to learn
undersampling masks for motion-affected k-space lines and
reconstruct the undersampled data with a recurrent network.
In an extension, they train the detection and reconstruction
networks end-to-end with a segmentation network and thus,
optimize the MoCo specifically for the downstream task of
interest [66].

b) Motion compensation: Presented motion compensation
methods leverage occurring motion to improve reconstruction
results along with accelerated acquisition times, as illustrated
in Fig. 1C.5. This can be achieved implicitly by includ-
ing the temporal dimension in the denoising process of an
unrolled reconstruction [67], [68], [69], [70]. Spatial and
temporal convolutions are applied to dynamic image series
either with a joint [67] or separated spatio-temporal kernel,
in a cascaded [68] or parallel manner [69]. To leverage fur-
ther information from adjacent frames, Schlemper et al. [67]
include a data sharing layer. Terpstra et al. [69] extend the
implicit motion-compensated reconstruction with motion fields
obtained from a pretrained model. Qin et al. [70] employ
recurrent networks to exploit dependencies along tempo-
ral dimensions as well as along stages of the iterative
reconstruction.

In contrast, several methods explicitly learn the motion
model with the reconstruction problem in an end-to-end
fashion [71], [72], [73], [74], [75], [76]. Huang et al. [71]
append motion estimation and correction modules to a
reconstruction network and train the framework with one
combined loss function. Others directly feed learned motion
estimates into the unrolled reconstruction process, either as
input of the denoiser [72], [73] or in the DC layer [74],
[75]. Additionally, these methods differ in the way motion
estimates were obtained, e.g. using optical flow [72],
groupwise registration [73], patch-wise registration [74] or
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registration in k-space [75]. A different approach is presented
by Gan et al. [76], where a motion estimation network is
leveraged to train a reconstruction framework in an unsu-
pervised manner, i.e. by deforming other dynamics for loss
calculation. Whereas motion is modelled explicitly during
training, it is implicitly represented in the reconstruction
network at inference.

Whereas all previously presented methods have been devel-
oped for subject-independent inference, a few generative
motion-aware reconstruction methods train a reconstruction
model per subject to infer for that same individual [77], [78],
[79], [80], [81], [82]. Due to their distinct training strategy,
we consider these methods as a separate category. Still, motion
modeling can be implicit and explicit. In particular, quasi-
periodic motion can be modeled as a latent manifold and then
transformed into dynamic images through a more complex
representation [78]. Transformation of the resulting images
into Fourier space allows for network optimization in a self-
supervised manner. A different motion modelling strategy [77]
learns a low-dimensional signal, which is mapped to motion
estimates. These are then applied to one learned reference
reconstruction. Again, predicted images are compared with the
acquired data points in Fourier space. Recently, implicit neural
representations (INR) have also gained attention for dynamic
MR reconstruction. Based on spatial and temporal coordinates,
a light-weight network predicts the corresponding intensity
values in image- [80], [81] or k-space [79], [82]. By includ-
ing the cardiac [79], [80], [81] or respiratory phase [82]
as temporal dimension, motion is implicitly modelled and
motion-resolved reconstructions can be obtained at inference.
Whereas k-space-based INRs [79], [82] can directly be com-
pared with the acquired points, image-based INRs require
transformation to k-space, either by applying the non-uniform
fast Fourier transform on a fully queried image [80] or
taking advantage of the Fourier Slice Theorem for individual
spokes [81]. To enable a better spectral representation the
proposed approaches apply Fourier [71], [82], spatiotemporal
Fourier [81] or Hash encoding [80].

V. TRAINING OBJECTIVES

A. Image-Based Motion Correction
As visualized in Fig. 3A (left), classical network training

of image-based MoCo methods in a supervised setting is
performed by calculating a voxel intensity-based cost function
between the network’s prediction and a ground-truth motion-
free image. Typical intensity-based cost functions are the
L1 and L2 loss (which stand for the mean absolute and
mean squared error, respectively) or the structural similarity
index [83]. Please refer to Sec. VI-A for mathematical def-
initions. Next to these examples, any other image similarity
metric can be used as cost function.

A different training objective, however, is employed
with conditional generative adversarial networks (GANs),
as illustrated in Fig. 3B. A generator network, mapping
the motion-corrupted to a motion-free image, is extended
with a discriminator network, which aims to distinguish
the predicted image from a ground truth image. Several
supervised GAN-based methods have been proposed for var-
ious anatomies [34], [35], [36], [37], [38], [39]. Next to

Fig. 3. Visualisation of classical and adversarial training objectives
for learning-based MoCo. (A) For classical training, the loss can be
calculated in image or k-space domain. In image domain, the predicted
image is compared with the ground truth image, e.g. using a voxel
intensity-based loss function L. In k-space domain, predicted k-space
values are compared with the measured data at the sampled locations.
(B) For adversarial training, next to the generative loss Lgen, an additional
discriminator network is trained to compete with the generator network
and distinguish the predicted image from the ground truth (Ladv).

the adversarial loss, some of these methods rely on voxel
intensity-based cost functions as generator loss to compare the
predicted and ground truth image [34], [35]. Others include
a perceptual loss [36], [37], [38], style transfer loss [37] or
structural similarity loss (SSIM) [39] to account for global
changes. Bao et al. [36] propose an additional entropy loss to
enhance image homogeneity. Next to the adversarial approach,
Küstner et al. [37] present another supervised generative
training strategy using a variational autoencoder (VAE), which
attempts to learn a motion-free latent distribution directly from
the image pair.

To cope with the lack of paired motion-free and cor-
rupted data, unsupervised generative models aim to correct
for motion from unpaired data [40], [41], [42], [45]. The
CycleGAN architecture consisting of two GANs is adapted
in [40] and [45]. Two generators, one corrupting a motion-free
image and one correcting an unpaired corrupted image, are
trained to invert each other (cycle-transform). Whereas the
adversarial loss can be computed with an unpaired image
from the other domain, the generative loss is calculated
in an unsupervised manner on the cycle-transformed input
from the same domain. Liu et al. [40] additionally disentangle
the latent representation of the generators into artefact and
content information, and train the network with images gener-
ated from content-swapped translations. Both [40] and [45]
include multi-scale cost functions. In a different setting,
Oh et al. [42] treat motion as a probabilistic undersam-
pling problem and train a generator to remove undersampling
artefacts. They attempt to correct motion-corrupted measure-
ments by combining repeated randomly undersampled recon-
structions. In contrast to CycleGANs, Ghodrati et al. [41]
regularize the latent space of a single MoCo autoen-
coder by applying a discriminator with unpaired motion-free
images.
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B. K-Space-Based Motion Correction
k-space-based MoCo methods can be trained by comparing

the final reconstruction with a ground-truth motion-free image,
similarly to image-based methods. However, the loss can also
be computed in the acquisition domain directly. By compar-
ing the predicted with the available sampled k-space data,
MoCo methods can be trained in a self-supervised manner,
as visualised in Fig. 3A (right). The L2 loss is frequently
adapted for comparison of the predicted and measured k-space
values [63], [77], [78]. Due to the inherent nature of higher
magnitudes towards the center of k-space, adaptations such as
the L2 loss normalized by the square magnitude [80] or a high
dynamic range loss [79] have been proposed, thereby allowing
for a more balanced weighting of low and high-frequency
components. The k-space based loss can be extended with
any further image-based constraint, such as temporal total
variation [80] to enforce smoothness between dynamics.

Next to the final reconstruction losses, further motion
estimation and detection losses can be incorporated into the
training objective. MoCo methods including explicit motion
modelling can include an image similarity metric on a spatially
transformed image in a self-supervised fashion, as well as
spatial or temporal smoothness constraints on the predicted
motion field [56], [58]. Models based on motion detection can
be trained with any classification loss reflecting the correct
identification of motion-affected lines, such as binary cross
entropy [54], [66].

VI. EVALUATION METRICS

Since MoCo is performed as a means to an end for a
high-quality image reconstruction, the performance of the
presented methods is predominantly evaluated based on their
final outcome, using image quality measures. However, some
authors also evaluate intermediate motion estimates or make
use of downstream tasks. In the following, we provide an
overview of the most common evaluation strategies. Whereas
we focus on evaluation metrics, most of the presented mea-
sures can also be used as loss functions, depending on the
architecture and the type of training.

A. Image Quality
Quantitative or qualitative image quality evaluation can

be performed by calculating image quality metrics or expert
image quality rating, respectively. Quantitative image quality
metrics can be either full-reference metrics, which assess
the image quality by comparison to a GT reference image,
or reference-free metrics, which do not rely on a sepa-
rate GT image. Due to the variability of motion artefacts,
no single image quality measure is sensitive to all possible
artefacts.

The majority of the methods presented in section IV use
two full-reference metrics that attempt to mimick human
visual perception: structural similarity index (SSIM) [83],
which assesses the degradation of structural information, and
peak signal-to-noise ratio (PSNR), which contrasts pixel-wise
errors with the maximum signal intensity. Less frequently used
full-reference metrics are mean squared error (MSE), root
MSE (RMSE), normalized RMSE (NRMSE), mean absolute

TABLE I
DEFINITION OF THE MOST COMMONLY USED

REAL-VALUED IMAGE QUALITY METRICS

(percentage) error (MAE/MAPE), normalized mutual informa-
tion (NMI) [84] and visual information fidelity (VIF) [85].
Moreover, reference-free metrics like signal-to-noise ratio
(SNR) [86], contrast-to-noise ratio (CNR) and Tenengrad [87]
are used to to assess image quality without a reference
image. Table I provides the definitions of these metrics in
a consistent notation. Note that across literature there is no
standard normalisation constant for NRMSE. Also, all metrics
are applied to real-valued images, whereas there is no clear
indication on how to handle complex features.

Several approaches also include qualitative image quality
evaluation, i.e. through subjective scoring of the reconstructed
images by (blinded) experts [21], [22], [25], [26], [29], [31],
[37], [39], [41], [42], [43], [47], [68], [74]. However, there is
no standardized way for observer scoring and it varies strongly
regarding:

• evaluation categories and instructions for evaluators (e.g.
overall quality, sharpness, diagnostic value),

• underlying scale (e.g. three, four, five point scale),
• level of expertise of the evaluators (e.g. radiologist,

radiographer, scientist),
• number of evaluators.

B. Motion Detection and Estimation
Motion evaluation strategies can be applied if motion

is explicitly modeled within the reconstruction framework.
Models detecting motion in a line-wise manner resemble
classification tasks. Therefore, they can be evaluated with
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any classification evaluation metric as long as a ground truth
exists. For an overview of classification metrics and their
definitions we refer the reader to [88]. Observed metrics
specifically applied to MR motion detection tasks include
accuracy, sensitivity, precision, recall, F-score and area under
ROC curve [28], [55], [89].

Motion estimates can be evaluated reference-based or
reference-free. Several methods generate a reference motion
field by simulating motion or obtaining the motion field
through a distinct registration method. Consecutively, pre-
dicted motion parameters are compared using MAE [49] or
RSME, which is also termed end-point-error (EPE) when
applied to motion fields [56], [74], [75]. A further metric
specifically applicable to motion fields is the end-angulation-
error (EAE) [75], which computes the angle between the
ground truth and predicted motion vector. When no motion
estimate is available as reference, predicted motion fields
can be used to warp images. Similar to registration evalua-
tion, motion field accuracy can be evaluated by comparing
the spatially transformed image with the target image. Any
image-based similarity metric can be leveraged, whereas SSIM
and PSNR [72], [73], Normalized Cross Correlation [56], Dice
Score and Hausdorff Distance on available segmentations [61],
[71] have been observed in the reviewed papers. A further
image-based motion evaluation strategy compares the dynamic
position of relevant organ boundaries, e.g. the hepatic dome,
in the predicted motion-aware reconstruction with a motion-
resolved reference [69].

C. Downstream Tasks
In some cases the MoCo framework does not solely aim

to provide a high-quality reconstruction, but enables further
downstream tasks. In this case the downstream findings can be
evaluated independently, e.g. by calculating the Dice overlap
on organ segmentations [28], [40], [66] or computing SSIM
and relative error metrics on T2* maps [30]. To evaluate the
added statistical power due to MoCo in longitudinal analyses,
manual quality control of structural elements like cortical
surface reconstructions and cortical thickness correlation anal-
yses can be employed [29]. Especially if no reference is
available, the sharpness of small anatomical features, such
as coronary vessels can be analyzed [56], [74]. In cardiac
imaging, cardiac function analysis [39], [41], [68] or myocar-
dial strain measurements [43] can be evaluated. Further, as an
important end goal for MR MoCo, a comparison of clinical
findings in a motion corrupted and corrected scan can be
conducted [26].

VII. DISCUSSION

In the previous sections, we gave an overview of available
data and motion simulation for MR MoCo reconstruction
(Sec. III), we outlined the state-of-the-art model architectures
for learning-based MR MoCo (Sec. IV) and their common
training (Sec. V) and evaluation strategies (Sec.). In the fol-
lowing, we critically discuss the reviewed methods presented
in Secs. III-VI. We highlight common strategies and differ-
ences, pointing out their advantages, limitations and needs for
improvement.

A. Data Availability and Motion Simulation

The presented motion simulation strategies (Sec. III) are
predominantly used for training and evaluating motion correc-
tion approaches. Only a few motion compensation approaches
include non-rigid motion simulation procedures and if so,
only for evaluation [46], [56], [74], [77]. Non-rigid motion
simulation, though, is limited both in image space [46], [56],
[60], [65], [66], [74], [77] and even more, the simplified
version in k-space [22], [38], [41], [43]. Simulating translation
for breathing motion may broadly cover the direction of the
motion but does not represent the deformable nature of real
patient motion. Thus, when 3D data are available, simula-
tion using motion fields is the more realistic and preferable
approach.

Even though the motion simulation procedure based on (1)
appears to be well-defined, several variations have been imple-
mented for both rigid-body and non-rigid motion simulation.
Some methods only simulate in-plane motion [21], [22], [23],
[27], [38], [42], [48], [49], [52], [53], [55], [62], [64], whereas
others consider full through-plane motion patterns, which
better resemble real patient motion [24], [25], [29], [30], [32],
[33], [34], [36], [40], [43], [45], [50], [51], [54].

Moreover, in the case of rigid-body motion, some methods
limit their simulations to a small number of motion-states [23],
[26], [27], [29], [30], [32], [33], [34], [35], [42], [44], [45],
[51], [52], [53], [62], [64], whereas others base their sim-
ulations on time-resolved motion curves, which are either
generated randomly or based on clinical measurements like
functional MRI time series [21], [24], [25], [36], [43], [48],
[49], [50], [54], [55], [60]. In the case of non-rigid motion,
image-based simulation can only simulate discrete motion
states, since multiple reconstructions are needed for merging
into a corrupted image. The acquisition time for a single
reconstruction limits the total number of motion states that
can be simulated even for fast sequences, like cardiac cine
imaging [46] and even more, for time-consuming 3D acquisi-
tions in the abdomen.

As described in section II, second-order motion-effects
influence MR signal properties in addition to the effects of
positional changes. A few recent approaches consider such
second-order motion effects for more realistic motion simula-
tions in specific MR sequences, like phase shifts of stimulated
echoes due to respiration [43] or motion-induced magnetic
field inhomogeneity changes in T2*-weighted MRI [54].

As a simplified approach to simulate motion, a few authors
explicitly exclude central k-space lines [22], [26], [29], [38],
[42], [55], which severely limits the generalisability of their
methods to real motion patterns.

In contrast to the above discussed simulation procedures
for MoCo, there is in general no GT motion-free image
for motion compensation methods, since breathing and espe-
cially heartbeat cannot be avoided. Breath hold and gated
acquisitions have the potential to approximate GT motion-
free images. Hence, motion-corrupted images can be simulated
using deformation fields [56], [74], which can be derived from
classical motion-resolved reconstructions [90], other imaging
modalities or physical models, as e.g. the XCAT phantom [91].
However, such simulations might require expensive acquisi-
tions of additional data, might not offer sufficient temporal
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resolution for all applications and the XCAT phantom, specif-
ically, simulates images based on CT images, making raw
k-space data unavailable. Furthermore, given that the majority
of presented motion compensation methods aims for accel-
eration, most methods focus on simulating undersampling
artefacts and compare reconstructions to fully sampled acqui-
sitions to show the acceleration potential of their approach.
These simulations vary with regard to the underlying retro-
spective sampling trajectory (e.g. cartesian, radial or spiral).
For cartesian sampling, the center of k-space is usually explic-
itly sampled more frequently than the periphery, which is also
common for classical acceleration methods.

Regardless of whether motion or undersampling artefacts
are simulated, many authors who train their models on sim-
ulated data at least show qualitative evaluations on a few
unpaired real motion or prospectively undersampled datasets,
respectively. However, some approaches only evaluate on
simulated data [23], [28], [35], [38], [39], [44], [46], [48],
[51], [51], [52], [53], [54], [55], [58], [59], [60], [61], [64],
[67], [69], [70], [71], [72], [73], [74], [79], [81], which
questions their generalisability to real motion or prospectively
undersampled data.

In addition to these limitations of implemented simulation
procedures, the majority of image-based approaches [21], [22],
[23], [25], [26], [27], [28], [29], [31], [32], [32], [35], [36],
[37], [44], [46] and some k-space-based approaches [51],
[55], [61], [64], [65], [66], [76] rely on magnitude-only
data, which is questionable especially for the latter category.
Shimron et al. [92] describe the generation of k-space data
from real-valued, coil-combined magnitude data as a data
crime, for instance, if zero-padding was performed during
the initial reconstruction process. Furthermore, phase infor-
mation is relevant for several applications, e.g. quantitative
susceptibility mapping or fat-water separation, and is part of
postprocessing pipelines, e.g. for background field correction.
Magnitude-only approaches cannot be applied to these appli-
cations in a straightforward manner.

Public raw multi-coil datasets with paired motion experi-
ments could enable a more realistic method development and
evaluation for researchers who do not have the possibilities
to acquire such raw k-space data in a paired setting. For
brain imaging, currently only magnitude data with and without
intentional subject motion [3], [93] and motion-free k-space
datasets [94] are available. For motion compensation in cardiac
imaging, breath-hold cardiac gated radial dataset [95] as well
as an undersampled, free-breathing k-space dataset [96] are
available.

B. Architectures
A wide variety of architectures has been proposed to target

MR MoCo (Sec. IV). While aiming for different applications,
we outline common trends regarding the (a) data domain, (b)
targeted motion types and (c) motion modeling. Furthermore,
we discuss (d) model interpretability, (e) patient-specific mod-
els and (f) the interchangeability of modules.

1) Image-Based vs. k-Space-Based Motion Correction: The
review of proposed architectures for motion-corrected MR
reconstruction shows that both image and k-space methods are
commonly applied. Image-based methods profit from broadly

available data, since they can be applied on existing MR image
databases. Additionally, data are frequently limited to magni-
tude values, which reduces the complexity of the architecture.
Nevertheless, image-based methods are more likely to produce
hallucinations, as lack of raw k-space data restricts the ability
to perform data consistency checks. Also, these approaches
lack the flexibility to adapt the reconstruction strategy based
on motion parameters [52].

In contrast, k-space-based methods benefit from a more
comprehensive data representation that includes additional
information such as phase and coil sensitivities, which can
improve final image quality [97]. Besides a low availability of
raw k-space data in practice, a potential disadvantage is that
the reconstruction parameters and hardware may have a larger
influence on the final image. Thus, it may be more difficult to
compare results across different systems [97].

2) Different Motion Types: As pointed out in Sec. III, the
types of motion observed in brain and cardiac/abdominal
imaging are distinct. Motion artefacts in brain images mostly
originate from rigid-body motion of different severity at
random time points, generally resulting in blurring. Quasi-
periodic motion, which is typical in cardiac and abdominal
imaging, can additionally result in ghosting artefacts [1].
Because of these distinctive visual characteristics, architectures
are frequently trained and tested on specific body regions.

For image-based methods, the presented approaches pre-
dominantly target motion correction in the brain, potentially
due to the inherent capability of CNNs and encoder-decoder
structures to sharpen edges, i.e. denoise artefacts apparent as
blurring. To counteract periodic signal modulations leading
to ghosting artefacts, abdominal and cardiac image-based
methods reconstruct images from specific time intervals, i.e.
motion states. Still, residual blurring persists due to continuous
motion within this time interval, and missing data lead to
undersampling artefacts. Therefore, image-based MoCo strate-
gies applied to quasi-periodic moving organs mainly rely on
information fusion from multiple dynamics. Only few methods
aim to learn a latent motion-free representation of the heart or
abdomen from single reconstructions.

Also, for k-space-based methods, distinct architecture
approaches exist for different motion types. The modeling
of rigid-body motion with only few parameters facilitates
joint optimization of motion estimation and reconstruction
with a reasonable computational overhead, making it a tech-
nique typically limited to the head region (IV-B.1.a). With
the random timing of motion in the head, some motion
correction strategies focus on identifying the time of occur-
rence, i.e. motion detection. In contrast, methods targeting
periodic motion mostly rely on fusion of data from different
motion states, i.e. motion compensation. Since data consis-
tency is crucial to ensure physical plausibility, considerably
more k-space domain approaches have been presented than
pure image-based methods for motion compensation. Whereas
quasi-periodic motion compensation is the aim of most meth-
ods for the cardiac and abdominal anatomy, few methods target
explicit motion correction of irregular motion sources, e.g. due
to mistriggering artefacts [65], [66].

3) Motion Modelling: Many methods combine MoCo and
reconstruction in one process (Sec. IV-B). The majority of
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these hybrid approaches furthermore includes an explicit
motion model, regardless of the optimization process or type
of motion. However, such an explicit motion model only offers
an approximation of the actual motion, which is considered in
just one published work [60]. As a result, the accuracy of
the reconstruction is constrained [98]. Nevertheless, compared
to implicit motion modeling methods, explicit motion models
allow for additional quality control (refer to Sec. VI).

Both explicit and implicit motion compensation techniques
frequently rely on data that have been temporally separated
into several motion states throughout the cardiac or res-
piratory cycle. Explicit methods estimate motion between
the binned reconstructions, whereas implicit methods do not
directly model motion but exploit temporal redundancies in
the dynamic data. On the one hand, this requires a reliable
navigator signal representing the actual motion of the organ
of interest. On the other hand, binning of data from multiple
cycles is susceptible to inter-cycle variability [4]. Whereas
preliminary work on motion estimation uncertainty exists [99],
almost none of the presented MoCo architectures consider
uncertainty in their motion modelling within the reconstruction
pipeline.

As an additional drawback of methods modelling motion
based on binned motion states, the residual motion within
these states blurrs the reconstruction. Increasing the temporal
resolution by binning fewer data points to one motion state
would lead to increased undersampling, and, therefore, affect
the potential to generate reliable motion estimates. Although
motion occurs continuously, many models are restricted to
discrete representations. An initial attempt to avoid motion
states is proposed in [79], where a continuous representation
of the motion dimension is learned.

Lastly, current motion models integrated into learning-based
MoCo architectures mainly focus on primary motion effects in
k-space. Especially when handling raw data, further physics-
based motion-induced secondary effects should be considered.
Consequently, the motion-aware reconstruction could be
extended beyond the physical motion modelling, e.g. by cor-
recting spin history effects or B0- and B1-distributions [100].

4) Interpretability: When using any learning-based motion-
correcting reconstruction framework, it is important to under-
stand the model’s behaviour. Employing models without such
knowledge may lead to undesired effects like hallucinations,
directly influencing the critical process of medical diagnosis.
To avoid adverse effects of “black-box” models, interpretabil-
ity should already be considered in the architecture design.
Including physical knowledge, e.g. by explicit motion model-
ing, can aid in generating interpretable reconstruction results as
well as influences of intermediate steps. For implicit models,
in contrast, it is important to understand the bottle-necks.
Disentangling a learned low-dimensional representation, i.e.
the latent space, [40] is a first step towards such informed
modeling.

5) Patient-Specific Models: Recently, patient-specific gen-
erative models have been developed as novel direction for
motion-compensated MR reconstruction (see Sec. IV-B.2).
Since motion patterns can strongly vary between patients,
such individually learned representations may perform better
than generalized approaches. Nevertheless, the need to retrain

the model comes with prolonged reconstruction times and
increased computational resources. Transferable concepts have
not yet been proposed for patient-specific generative models.

6) Interchangeable Modules: The presented architectures
for motion-corrected MR reconstruction aim at different
motion patterns, anatomical regions and sequences. While
a general solution is unlikely, some components can be
seen as interchangeable modules to enable further develop-
ment and improvement of methods. For example, varying
methods for undersampled reconstruction [101] may be inte-
grated into approaches that aim at removing motion-corrupted
lines. Another exchangeable module can be motion estima-
tion, which, in theory, could be conducted with any other
learning-based registration method [102], but needs to consider
strong undersampling artefacts in the input images.

While the reconstruction concept dominantly used in fetal
motion correction is fundamentally different (Sec. II), individ-
ual motion estimation concepts may be transferable as well.
SVR-based MoCo methods frequently model rigid intra-slice
motion estimation as well, e.g. based on gated recurrent
units [103] or as learnable parameter within the SVR recon-
struction problem [104]. Non-rigid estimation techniques or
architecture backbones could be transferred from and to other
applications.

C. Training Objectives
A variety of training strategies and objective functions

have been adopted for optimizing MoCo models, as described
in Sec. V. Next to back-propagating errors from the
motion-corrected image and from intermediate steps, like e.g.
motion estimation, MoCo models can also be trained in an
end-to-end fashion with a downstream task. For instance,
Xu et al. [30] combine MoCo with T2* parameter quantifi-
cation and Oksuz et al. [66] with cardiac segmentation. For
such a joint optimization, the MoCo task and the downstream
task of interest might benefit from each other, improving the
overall performance. However, the resulting motion corrected
images might not be suitable for different downstream tasks.

Additionally, due to the limited availability of GT data
(see Sec. III for details), more and more self-supervised
and unsupervised methods have been proposed for data-
efficient training. Adversarial training is employed to cope
with unpaired image data. If k-space data are available,
application of data consistency allows for self-supervised
training. Proposed subject-specific generative models [77],
[78], [79], [80] are optimized by comparing the reconstruction
result with measured data, and therefore, are inherently self-
supervised. The Noise2Noise concept, originally proposed
for image restoration [105], is adapted in a self-supervised
generative [63] as well as unsupervised inter-subject [76]
motion-corrected reconstruction strategy. This highlights the
potential to transfer further computer vision training strategies
to cope with limited data.

In general, many approaches combine various objective
functions in order to guide the optimization, such as the
combination with downstream losses or the combination of
motion estimation or adversarial losses with image-based
losses of the final reconstruction. While this can enforce spe-
cific properties in the result, like e.g. imposing more realistic
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motion patterns by regularizing motion fields [56], [58], [74],
the training process might become more complex, since the
weighting of different losses is not straightforward, but rather
another hyper-parameter to be tuned. Furthermore, compu-
tational effort might increase, e.g. when combining losses
in image- and k-space domain for non-Cartesian sampling
patterns requiring a costly domain transformation [80].

D. Evaluation Metrics
As outlined in Sec. VI, the most commonly used evaluation

metrics are image quality metrics, which evaluate the main
goal of MoCo: a high quality image. Among these, especially
the full-reference metrics SSIM and PSNR stand out, which
also seem to correlate well with radiological assessment [106].
A downside of these full-reference methods is that they rely
on the availability of paired GT data (compare Sec. III).
Reference-free methods, on the other hand, do not require a
GT image but are not yet widely used, since they are less
consistent. Another important consideration for full-reference
metrics is that the evaluated and GT image might not be
perfectly aligned [107]. In order to not overestimate motion-
induced errors, some authors include a co-registration step
before calculating full-reference metrics. However, since reg-
istration might also introduce interpolation errors, further
research is needed on this topic.

In general, there is no standardized way of evaluating image
quality in practice, which is not only problematic for learning-
based MoCo, but extends to the entire fields of MoCo and
image reconstruction. A variety of metrics is used by different
authors and for some metrics, e.g. SSIM, hyperparameters can
be set manually. This heterogeneity limits the comparability of
different methods, even when ignoring the fact that different
methods are evaluated on different datasets. Furthermore, the
lack of standardized recommendations for evaluation also
leaves room for “metric picking”, which might lead to overes-
timated performances and misguide future research. However,
when aiming to develop general recommendations, investiga-
tions on the relevance of different image quality metrics on
diverse datasets are urgently needed. Since no single image
quality metric can be expected to be sensitive to all possible
image artefacts, such recommendations may comprise a broad,
generally accepted set of metrics.

Similarly, for subjective image quality scoring, the variabil-
ity of strategies regarding instructions, scales and evaluators
limits the comparability of different methods. A common
recommendation is to reduce inter-observer variability by
averaging the scores of multiple observers. However, quality
assessment is a time consuming process and experts such as
radiologists already have a high workload in many hospitals,
which limits the practicality of qualitative image evaluation.
A possible solution might be to utilize deep learning models
that can be trained to perform reference-free image quality
assessment [108], [109], [110]. However, further research is
needed on questions like the reliability and the generalisability
of trained models to distribution shifts.

Next to the relevance of consistent image quality evaluation,
we would also like to emphasize the importance of “in-
between quality assurance” by evaluating motion detection and
estimation as intermediate results for methods that explicitly

model motion. If the extracted motion information is incorrect,
these errors might propagate into the final reconstruction.
Again, standardized evaluation criteria would allow for better
comparisons of different methods.

Furthermore, we would like to highlight that the addi-
tional analysis of downstream tasks is application specific,
which limits the potential of general recommendations.
Such additional evaluations, though, might be highly rele-
vant for the translation of developed methods into clinical
practice.

VIII. CONCLUSION AND OUTLOOK

In this review, we have provided a comprehensive overview
of existing learning-based methods for MR MoCo, identifying
synergies and differences in underlying data usage, archi-
tectures, training and evaluation strategies. In the following,
we point out key findings and highlight aspects that require
further investigation.

For learning-based MoCo in MR both real and simulated
data can be used for training and evaluation. Motion simulation
provides the benefit of an existing ground truth and can be an
effective means for initial development, however pitfalls such
as sole in-plane simulation, discrete motion state modelling,
exclusion of central k-space lines and erroneous processing of
magnitude images need to be avoided. For non-rigid motion
types, motion simulation should focus on deformable motion.
Nevertheless, particularly with respect to secondary motion
effects and to enable a reliable transfer to clinical applications,
real data needs to be employed, at least for the evaluation
process. Since such data is difficult to obtain and can strongly
vary from site to site, a common database with real motion
artefacts is crucial for the community. Inclusion of raw k-space
data would further advance the development of data-consistent
methods and ensure method comparability independent of
individual hardware settings.

Next to openly accessible data, we would like to emphasize
the need for systematic evaluation guidelines. Up to this point,
methods have been evaluated with various metrics with various
definitions. Initial work on the relevance and performance
of metrics needs to be extended. A standardization of both,
full-reference and reference-free evaluation metrics, should be
aimed for.

Architecture development should strongly focus on DC
based methods, which avoid hallucinations and, thus, might
be easier to translate into clinical practice. Whereas targeted
motion patterns will continue to affect the architecture design,
the underlying motion modelling requires careful consider-
ation in all cases, e.g. regarding simplified assumptions of
discrete motion states or uncertainties of motion estimates.
Training the MoCo model in an end-to-end fashion with
a downstream task to back-propagate task-specific errors
seems to be promising, but is limited to the specific applica-
tion. Further, self-supervised training strategies can encounter
expensive acquisitions of GT data. Self-supervised patient-
specific models open up a new direction, but require expensive
retraining for each individual reconstruction.

In general, most state-of-the-art architectures are developed
for 2D data, requiring less expensive computation. However,
many 2D approaches cannot correct through-plane motion,
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which limits their performance for real motion-corrupted data.
Also, due to the slice-selective excitation, secondary motion
effects like spin history effects impact 2D data more strongly
than 3D data and cannot be simulated in a straightforward
manner. Thus, future research should focus, whenever pos-
sible, on 3D acquisitions or otherwise, consider 3D motion
information. Exploration of transferable models may enable
reduced computational burden.

In view of the rapid development of deep learning,
we expect further advances in learning-based MoCo in MRI in
the near future. An initial transfer of methods developed in the
machine learning community has been presented in this review,
but there are many more to be exploited: methodological devel-
opments with novel architectures, e.g. diffusion models [111],
neural implicit representations [112] and transformers [113],
can be advanced. Motion modelling may benefit from parallel
developments of probabilistic models that include uncertainty
estimates. Data-efficient strategies could reduce the need for
large training data sets or long training of patient-specific
models.

Modern learning-based MoCo methods should consider the
multi-dimensional nature of MRI. Clinical protocols often
include multiple contrasts and dynamics, providing addi-
tional information at hand. Co-development of acquisition
and motion monitoring techniques should be promoted. The
presented and any future learning-based MoCo models may
have the potential to be integrated into clinical MRI protocols,
allowing for motion detection and estimation at fast inference
times.

With this review we aim to bridge the gap between machine
learning and MRI. We see potential for further development of
clinically relevant MoCo methods. Not only would this devel-
opment aid in improving current clinical protocols, but open
doors to areas where motion has been a major restricting fac-
tor, e.g. due to irregular and deformable patterns. Next to MR
reconstruction, advances could be transferred to multi-modal
imaging techniques and foster MRI as a non-invasive motion
monitoring technique for applications such as PET-MR and
MR-guided radiotherapy.
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