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Abstract—The early detection of glaucoma is essential
in preventing visual impairment. Artificial intelligence (Al)
can be used to analyze color fundus photographs (CFPs) in
a cost-effective manner, making glaucoma screening more
accessible. While Al models for glaucoma screening from
CFPs have shown promising results in laboratory settings,
their performance decreases significantly in real-world
scenarios due to the presence of out-of-distribution and
low-quality images. To address this issue, we propose
the Artificial Intelligence for Robust Glaucoma Screening
(AIROGS) challenge. This challenge includes a large dataset
of around 113,000 images from about 60,000 patients
and 500 different screening centers, and encourages the
development of algorithms that are robust to ungradable
and unexpected input data. We evaluated solutions from
14 teams in this paper and found that the best teams
performed similarly to a set of 20 expert ophthalmologists
and optometrists. The highest-scoring team achieved an
area under the receiver operating characteristic curve of
0.99 (95% CI: 0.98-0.99) for detecting ungradable images on-
the-fly. Additionally, many of the algorithms showed robust
performance when tested on three other publicly available
datasets. These results demonstrate the feasibility of robust
Al-enabled glaucoma screening.

Index Terms—Color fundus photography, glaucoma
screening, out-of-distribution detection, retina, robustness.

[. INTRODUCTION

LAUCOMA is one of the main causes of irreversible
blindness and impaired vision in the world. It affects
the optic nerve, which connects the eye with the brain,
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and leads to progressive visual field damage. This damage
initially passes unnoticed by the patient. Only in later stages
will glaucoma patients experience visual loss. According to
estimates, by 2040, over 110 million people will have varying
degrees of visual impairment caused by glaucoma [1], with
10% experiencing blindness in both eyes and 25% in one
eye [2]. Many people experience visual impairment from
glaucoma because it is often not detected until later stages [3],
[4]. Current treatments of glaucoma cannot repair the damage,
but can only halt or slow the progression of the condition [5].
Implementing screening programs to identify patients early on
for treatment can alleviate the consequences of the disease.
Artificial intelligence (AI) may be the enabling technology
for the cost-effective implementation of these programs by
automatically detecting perimetric glaucoma (i.e., glaucoma
in which there is already visual field damage) in color fundus
photographs (CFPs) [6], [7], [8], [9], [10].

Existing Al solutions have been shown to drop in perfor-
mance in real-world screening practice due to comorbidities,
poor quality images, different ethnicities, or unexpected out-
of-distribution (OOD) samples [9]. Ad-hoc quality check
modules have been added to Al solutions to overcome this
performance drop, but recent research has indicated that these
quality checks are not sufficiently accurate when deployed
in real-world settings [11]. To allow a safe and effective
deployment in screening, the reliability and robustness of
such solutions need to be assessed. Medical image analysis
challenges often exclusively focuses on performance metrics
that are potentially unrealistic and overestimated due to the
use of test sets that do not represent real-world scenarios.
Moreover, metrics to measure reliability and robustness are
often neglected due to the difficulty of estimating them in the
provided test sets.

To develop solutions that overcome the aforementioned
issues related to robustness in glaucoma screening, we orga-
nized the Artificial Intelligence for RObust Glaucoma Screen-
ing (AIROGS) challenge. The goal of this challenge was to
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evaluate the feasibility of the development of a state-of-the-
art, reliable Al solution that takes a CFP as input and provides
as output the likelihood of referable glaucoma, accompanied
with outputs for robustness (i.e., predicting whether the input
image can be graded reliably or not). The screening task was to
distinguish no referable glaucoma (i.e., either no glaucoma at
all or non-referable glaucoma, that is suspected pre-perimetric
glaucoma) from referable glaucoma. This is different from, for
example, distinguishing between multiple glaucoma severity
stages.

To encourage the development of solutions that are robust
to any kind of ungradable and unexpected input data and are
equipped with inherent robustness mechanisms, the training set
we provided was a subset of the full AIROGS dataset where
only gradable images were included and ungradable images
excluded. The test set, however, is unfiltered, containing all
images found in screening settings (gradable and ungradable),
representing a real-world scenario.

AIROGS was part of the International Symposium
on Biomedical Imaging (ISBI) 2022 challenge program.
It reopened after presenting the results during ISBI 2022 and
submissions can still be made on Grand Challenge.!

Our challenge, along with the dataset we made publicly
available, distinguishes itself from previous glaucoma chal-
lenges. First, to the best of our knowledge, our dataset is
the largest publicly available CFP dataset with glaucoma
labels by a large margin. In total, our dataset contains
112,732 CFPs, exceeding the size of other publicly avail-
able datasets containing CFPs with glaucoma, of which the
sizes range from 22 to 2,000 CFPs [12], [13], [14], [15],
[16], [17], [18], [19], [20]. It is a highly diverse dataset as
it originates from 500 screening centers across the United
States of America and was acquired with a large variety of
cameras. Second, the AIROGS challenge is the first chal-
lenge to emphasize robustness in glaucoma screening. Third,
AIROGS is one of the first types of challenges on grand-
challenge.org that requires participants to submit an algorithm
(a Type 2 challenge), rather than a file with their predictions on
the test set (a Type I challenge), as is done in more traditional
challenges. This makes human intervention in the generation
of test set results impossible, reducing the possibility of cheat-
ing. Moreover, it greatly improves reproducibility, allowing
everyone to reuse the trained algorithms that were submitted
and apply them to new data in a cloud-based environment.
Fourth, the reproducibility enabled testing of the participating
algorithms on three external datasets: two for evaluating the
screening task and one for evaluating robustness.

Il. DATASETS

A. The Rotterdam EyePACS AIROGS Dataset

The Rotterdam EyePACS AIROGS dataset contains 112,732
CFPs from 60,071 subjects and 500 different sites with a
heterogeneous ethnicity. The images were originally acquired
for a diabetic retinopathy screening program [21]. For grading
of the CFPs, all graders were trained and then selected for
this task using the European Optic Disc Assessment Trial

1 https://airogs.grand-challenge.org

(EODAT) [22], containing 110 stereoscopic optic nerve pho-
tographs, in which all glaucomatous eyes had reproducible
visual field defects on standard automated perimetry. 90 expe-
rienced ophthalmologists and optometrists were examined and
those who scored at least 85% overall accuracy and 92%
specificity were selected to label images for the present study.
Eventually, 30 out of 90 candidates passed.

For each eye, three images were taken by the camera oper-
ators to reduce the number of ungradable eyes. When labeling
the images, graders classified one eye at a time. The labeling
tool first presented the first CFP for each eye, upon when
graders could choose from the options “Referable glaucoma”
(RG), “No referable glaucoma” (NRG), or “Ungradable” (U).
If a grader selected U for the first image, the tool showed
the consecutive CFP. The third image was presented if the
second image was also deemed U. Each eye was scored by
two separate graders, who were both unaware of the identity
of the other grader. If the two graders agreed on the label of a
CFP, this became the final label. If they disagreed, the image
was scored by one of the glaucoma specialists who passed the
EODAT test with at least 95% accuracy. The final label was
then based on his judgment.

The graders were instructed to select RG if they found
glaucomatous signs which they expected to be associated with
visual field defects on standard automated perimetry. The
signs that could be selected were “appearance neuroretinal rim
superiorly”, “appearance neuroretinal rim inferiorly”, “baring
of the circumlinear vessel superiorly”, “baring of the circum-
linear vessel inferiorly”, “disc hemorrhage(s)”, “retinal nerve
fiber layer defect superiorly”, “retinal nerve fiber layer defect
inferiorly”, “nasalization (nasal displacement) of the vessel
trunk”, “laminar dots” and “large cup”. If the graders did not
expect any glaucomatous visual field defects, NRG was to be
selected, ignoring any comorbidities (e.g., age-related macular
degeneration and diabetic retinopathy). If there was not enough
information visible in the CFP to decide between RG and
NRG, graders were instructed to select U. Since the goal of
this study was to develop solutions for automated screening,
glaucoma severity was not reported by the human graders.

The graders were not only evaluated at the start, but
they were periodically monitored during the grading process,
as well. If their sensitivity or specificity dropped below 80% or
95%, respectively, they were removed from the study and all
images they labeled were re-graded by any of the remaining
graders. In case a grader wrongly classified a CFP as U, while
its final label was NRG or RG, their specificity or sensitivity
went down, respectively. In the end, 20 graders remained.

Out of the three CFPs that were available for each eye,
we only included the RG or NRG photograph in the dataset
if it was available. Otherwise, only one of the U photographs
was used. We split the data into a training set of 101,442
CFPs and a test set of 11,290 CFPs, ensuring that data from
patients in the training set was not in the test set. We randomly
sampled patients when making the split, oversampling patients
with ungradable and RG CFPs for the test set, such that
approximately 1,600 RG and 1,600 U photographs ended up
in the test set. When making the split, we ensured that data
from a single patient ended up in either the training set or
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TABLE |

STATISTICS OF THE ROTTERDAM EYEPACS AIROGS DATASET. # = NUMBER OF. CFPs = COLOR FUNDUS PHOTOGRAPHS

Full set

Training set

Test set

# CFPs / # patients

112,732 / 60,071

101,442 / 54,274

11,290 / 5,797

Prevalence RG 4,872 (4.3%) / 3,531 3,270 3.2%) / 2,336 1,602 (14.2%) / 1,195

(# CFPs (% within set) / # patients) NRG 106,306 (94.3%) / 58,388 98,172 (96.8%) / 53,400 8,134 (72.0%) / 4,988
U 1,554 (1.4%) / 1,415 0 (0.0%)/0 1,554 (13.8%) / 1,415

All classes 56.9 £+ 10.3 56.7 & 10.2 59.3 £ 10.9

Age at encounter (mean =+ std. dev.) RG 63.3 £ 105 63.0 £ 105 63.9 + 107
NRG 56.5 £+ 10.2 56.5 & 10.1 57.5 £ 104

U 63.7 £ 11.0 N/A 63.7 £ 11.0

# sites 500 486 376

Canon CR1 11,462 (10.2%) / 6,013 10,274 (10.1%) / 5,422 1,188 (10.5%) / 591

Canon CR2 10,523 (9.3%) / 5,538 9,179 (9.0%) / 4,866 1,344 (11.9%) / 672

Canon DGI 10,644 (9.4%) / 5,690 9,581 (9.4%) / 5,145 1,063 (9.4%) / 545

Optovue iCam 100 29,108 (25.8%) / 16,166 26,480 (26.1%) / 14,742 2,628 (23.3%) / 1,424

Cameras TopCon NW200 3,109 (2.8%) / 1,588 2,888 (2.8%) / 1,478 221 (2.0%) / 110

(# CFPs (% within set) / # patients) TopCon NW400 22,519 (20.0%) / 11,736 20,557 (20.3%) / 10,737 1,962 (17.4%) / 999
Centervue DRS 1,805 (1.6%) / 988 1,598 (1.6%) / 879 207 (1.8%) / 109

Nidek AFC300 61 (0.1%) / 31 53 (0.1%) / 27 8 (0.1%) / 4

Crystalvue NFC-700 8 (0.0%) / 4 6 (0.0%) /3 2 (0.0%) /1

Unknown 23,493 (20.8%) / 12,323 20,826 (20.5%) / 10,981 2,667 (23.6%) / 1,342

the test set. Since we were interested in Al solutions that
can identify ungradable data without training on ungradable
data, we left out all U photographs that ended up in the
AIROGS training set. Table I shows statistics about RG,
NRG, and U prevalence, age, sites, and cameras for the
full dataset, the training set, and the test set. For further
information about the acquisition process, labeling, and dataset
statistics, including the prevalence of ethnicity, please refer to
the paper on the REGAIS dataset, of which AIROGS is a
subset [23]. The AIROGS dataset includes 99% of the data
from the REGAIS dataset. The difference in size is due to the
exclusion of ungradable eyes of patients in the AIROGS set,
which was not done in the REGAIS set. The dataset included
data from “people of African descent, Whites, Asians, Latin
Americans, native Americans, people from the Indian subcon-
tinent, people of mixed ethnicity, and people of unspecified
ethnicity” [23]. Approval from the Institutional Review Board
of the Rotterdam Eye Hospital was obtained to conduct this
research.

B. External Datasets

The participants uploaded their trained algorithms, rather
than a file with predictions on our test set, to our challenge
platform. This enabled us to reuse the developed models on
external data after the challenge ended. To evaluate model
generalization and to demonstrate this reusability, we applied
all trained algorithms to three external datasets: Retinal Fundus
Glaucoma Challenge (REFUGE) [18], Glaucoma grAding
from Multi-Modality imAges (GAMMA) [20] and Diabetic
Retinopathy Image Database (DRIMDB) [24]. The former two
are datasets with positive and negative glaucoma CFPs, which
we used for externally evaluating the screening performance.
We used the latter dataset, which contained different types of
ungradable images, to evaluate the robustness externally.

The REFUGE test set contained 400 CFPs, of which 40
CFPs showed glaucoma and 360 CFPs did not. The definition
of glaucoma was glaucomatous damage in the optic nerve head
area and reproducible glaucomatous visual field defects, which
is similar to our definition of glaucoma described earlier [18].

The GAMMA dataset is a multi-modal dataset with optical
coherence tomography scans and CFPs for each eye. We used
the CFP data from the 100-sample training set as only
that subset of the GAMMA dataset had publicly available
labels. We defined positive glaucoma in the same way as
Wu et al. [20], i.e., as the union of the early, intermediate,
and advanced glaucoma stages. These stages were defined
using the mean deviation (MD) from the visual field reports
as follows: an MD less than -6 dB the early stage, an MD
between -6 dB and -12 dB for the intermediate stage, and
an MD worse than -12 dB for the advanced stage [20].
This resulted in 50 negative and 50 positive glaucoma
samples.

DRIMDB is a dataset with 125 “Good” CFPs, 69 “Bad”
CFPs, and 22 “Outlier” CFPs. According to Sevik et al. [24],
one of the criteria of the “Good” category was OD pres-
ence. We also manually confirmed the OD was visible in
all CFPs that were labeled “Good” in the DRIMDB dataset.
Therefore, we assumed the CFPs with th2e category “Good”
were gradable. The images labeled “Bad” and “Outlier” were
assumed to be ungradable. This resulted in 125 gradable and
91 ungradable images.

[1l. CHALLENGE SETUP

The AIROGS challenge consisted of four phases (see
Fig. 1). The Training Phase opened on the 1% of December
2021 and closed on the 4™ of March 2022, providing the
participants with approximately three months to develop their
solutions. At the start of this phase, the training set was
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Training Phase
Opened December 1, 2021
Closed* March 4, 2022

Published labeled
color fundus images
in the training set

351 teams from 51 countries
joined AIROGS

Preliminary Test Phase 1
Opened December 1, 2021
Closed* March 4, 2022

No metrics computed
20 submissions per day
10 images from training set

31 teams from 19 countries
submitted to this phase

Preliminary Test Phase 2
Opened February 1, 2022
Closed* March 4, 2022

All metrics computed
3 submissions in total
10% of test set

29 teams from 18 countries
submitted to this phase

Final Test Phase

Opened February 1, 2022
Closed* March 4, 2022

All metrics computed
1 submission in total
100% of test set

15 teams from 13 countries
submitted to this phase

Y

@ Training set

-=II No referable glaucoma

(&d 98,172 & 53,400

Referable glaucoma
@

@d 3270 &2.336

8 Test set

-=II No referable glaucoma

d 8,134 &5.179

Referable glaucoma
G

o 1,324

Ungradable
Lu]l &d 1554 & 1,425

Fig. 1. Overview of all phases in the AIROGS challenge. A world map is shown for each phase that indicates with red circles from which countries the
teams that participated in that phase originated. A circle is shown for each country from which at least one team participated and its size represents
the number of teams that joined from that country. The relevant subset of the AIROGS dataset for each phase is shown at the bottom of the figure.
*All phases reopened for new submissions after the winning teams were announced.

released and has since been available for download under the
CC BY-NC-ND license on Zenodo.?

To ensure fair competition and to encourage the devel-
opment of inherent robustness mechanisms, teams were not
permitted to use additional fundus image training data,
including weights pre-trained on fundus image data or in
pre-processing steps such as OD segmentation. Manually
labeling the challenge data and using the resulting annotations
during training was allowed.

To test the algorithms developed by participants, they
needed to wrap their trained algorithm in a Docker® container
and submit it to our challenge platform. This allows the
submitted algorithms to be run on data that is not directly
accessible by the participating teams. Example code for
generating such a containerized submission can be found
on GitHub.* Preliminary Test Phase 1 opened and closed
simultaneously with the Training phase and served as a check
for whether the submitted algorithms could be run on the
challenge platform and produced the output in the expected
format. Algorithms were tested on 10 images from the training
set for this check. All algorithms were executed on the
challenge platform using an NVIDIA T4 GPU (16 GB VRAM)
with 8 CPUs (32 GB RAM).

The test set was and still is closed, meaning the image
data and the labels are private and cannot be downloaded.
Preliminary Test Phase 2 opened on the 1% of February
2022 and we allowed three submissions per team to this
phase, as it used 10% of the test set for evaluation. All
challenge metrics were also computed and reported back to

2https://zenodo.0rg/record/579324 1
3 https://docker.com
4https://github.com/qurAI—amsterdam/airogs—example—algorithm

the participants. The Final Test Phase opened simultaneously
with Preliminary Test Phase 2, but algorithms were tested on
100% of the test data and only one submission per team was
allowed. The challenge metrics computed for this phase were
used for the final team ranking.

The algorithms were expected to produce four outputs,
of which two were related to glaucoma screening performance
(i.e., image classification of RG and NRG) and the other two
to robustness (i.e., the identification of U). The glaucoma
screening outputs were a likelihood score for RG (01) and
a binary decision for RG (O;, positive if RG and negative if
NRG). The ungradability outputs were a binary decision on
whether the image is ungradable (O3, positive if ungradable
and negative if ungradable) and a non-thresholded scalar
value that is positively correlated with the likelihood for
ungradability (e.g. the entropy of a probability vector produced
by a machine learning model or the variance of an ensemble)
(O4). Output O was not used in the evaluation pipeline for the
challenge leaderboard, but it was requested by the challenge
organizers for further analysis.

The evaluation was also based on the two aspects of
screening performance and robustness, with two metrics per
aspect. Screening performance was evaluated using the stan-
dardized partial area under the receiver operating characteristic
curve [25] (90-100% specificity) for RG (pAUCys), and the
sensitivity at 95% specificity (SE@95S Ps). These metrics
were based on these specificity ranges, as a high specificity
is required for cost-effective glaucoma screening due to its
relatively low prevalence [26], [27]. pAUCs and SE@95S Ps
are both based on output O;. For evaluating the robust-
ness, we determined the model’s agreement with the human
reference on ungradability using Cohen’s kappa score (ky),
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TABLE Il
METHOD OVERVIEW FROM ALL PARTICIPATING TEAMS FOR THE SCREENING TASK. OD = OPTIC Disc. #0Ds = NUMBER OF CFPs IN WHICH

THE OD WAS MANUALLY LABELED. #VESSELS = NUMBER OF

CFPS IN WHICH THE VESSELS WERE MANUALLY LABELED

Screening
. Pre-  Manual Loss . Pre- . Class Data augmentation
Architecture . . Optimizer, . . imbalance . -
processing labels function training . during training
solution
§ v
- .  E 2 E _
# Team 55 Tz g 3 Ba é 8 FoS
EE z & 3 2 8 528, % 2 £ ooy
<8 § <« & 2 2 = iz £ gz ¢ 5 zg8
29 5 0% s F.i_ . SE Euds2 o820 2455 s 3p 225
s4 L3 = 2 2 — 33 22 3 2.5 &b 5
SEE,%537 282 25228 § 2 5SS 52383 522 3 % R PSR E w2
SEBEEZZL028 282888 c a0 & A 2 22 2S2EEns S¥y § @ S55ZSEEZERSEZSTE
Z5EDCCE%088E%5%8 2052 o 8 2% £85330< 85 = B 2cS5555885S855z2
SHNASKEA>AE0RREHC O % £ S5 UOEM<I<0n ESZ @ B mORNERAENGOGO<R e
1 PUMCH-eye Vv v 40 40 384> 7 7 v
2 RWTH-CuP ae% v v V3221 24> v vV v v a4 v
2 Eyelab 7 v 1,500 3842 7 v v v VYV v
4 Tien v v Vs 1,024 v v v v v
5 UPF+AIML 7 Y 5122 v il % v
6 FMS-CETCV v 5122 v v v
7 ICT_HCI v 7 5122 v 7 % 7 v
8 SK v Vs 256 Vv v v v oV VIV
9 SACM VY v v 735 120%/224 v Vvl v
10 UPRetina-UR v v v 5122 v v v v
11 OPTIMATeam v 2242 i % v v v Vi %
11MA v vV OV YYY Y 5122 v v v v v VIV v
13YC ¥ v v v 101 6082 v 7 v 7 MaAY%
14Mirazzak v v v 2242/384% v v v v v

calculated using output Os3. Furthermore, we calculated the
area under the receiver operator characteristic curve using the
human reference for ungradability as the true labels and output
O as the target scores (AUCyp).

To determine the final ranking, we first ranked all partic-
ipants on the four individual metrics pAUCgs, SE@95S Ps,
ky,and AUCy resulting in the rankings RpAUCsa RSE@9SSPS,
Ry, and Raycy, respectively. The final score S ;4 Was then
calculated as the mean of those rankings:

Rpavcs + Rse@9ossps + Reuy + Ravcey

7 6]

Stinal =

The final ranking (later also referred to as Mean position),
was based on Sy;nq, where a lower value for Sy;,q resulted
in a higher ranking.

We calculated 95% confidence intervals (CIs) with
non-parametric bootstrapping using 1000 iterations [28]. The
code for evaluating submissions can be found on GitHub.? The
performance of human graders was calculated by comparing
the labels given by the individual graders (excluding the two
glaucoma specialists, since the final labels were equal to their
decision in case of disagreement) to the final labels as defined
in Section II-A. To compute the performance of all human
graders combined, each image was weighted equally in the
calculation of the metrics. We also evaluated ensembles of
participating algorithms, which were generated by averaging
the outputs of these algorithms.

5 https://github.com/qurAl-amsterdam/airogs-evaluation

V. PARTICIPATING METHODS

Fifteen teams submitted a working solution to the Final Test
Phase, of which one team did not opt-in to contribute to the
current paper. In this section, we present the methods of the
fourteen participating teams. More extensive descripions are
available on the AIROGS challenge website® and a selection of
the participating methods were included in the ISBI challenge
proceedings [37], [38], [39]. Table II and III summarize the
participating methods in a structured manner.

A. PUMCH-Eye [37]

The PUMCH-eye team proposed an approach with five
trained models in their workflow. The first model (My;;.) was
a segmentation model with ResNet101-UperNet [40] as the
backbone that segmented the OD in the input CFP. For the
development of this model, they manually labeled the OD in
40 images. In case My;s successfully detected the OD, they
computed the center ¢ and the diameter d of the segmentation
to crop the input image around ¢ with size 3d. This cropped
image was then fed into a vision transformer [41] for the
binary classification of RG and NRG. If the OD detection was
unsuccessful, they fed the original input image to a different
vision transformer for binary classification of RG and NRG.

The team also developed a vessel segmentation model with
40 images in which they manually annotated vessels (Myegser)-
They trained a ResNet-18 (Ryess0;) Which took the output of
M yesser as input data, using the first 500 images in the training

6https://airogs. grand-challenge.org/evaluation/final-test-phase/leaderboard/
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TABLE Il

METHOD OVERVIEW FROM ALL PARTICIPATING TEAMS FOR THE UNGRADABILITY TASK AND THE DEEP LEARNING FRAMEWORKS THEY USED.

OD = OPTIC Disc. AE = AUTOENCODER. VAE = VARIATIONAL AUTOENCODER. REC. ERROR = RECONSTRUCTION ERROR.

OOD = OUT-OF-DISTRIBUTION

Robustness General
OD detection  Threshold based on Input size f D

# Team for uncertainty manual identification of "Por $1Z€ o cep

Method o . ungradability learning

or confidence low-quality images in
estimation the development set approach framework

1 PUMCH-eye Vessel and OD segmentation v v 3842 PyTorch
2 RWTH-CuP OD detection confidence v v 2242 PyTorch
2 Eyelab OD presence detection v v 3842 PyTorch
4 Tien AE rec. error + probability classification model 1,024? PyTorch
5 UPF+AIML Synthetic image degradations v 5122 PyTorch
6 FMS-CETCV Interpolated gaussian descriptor 2562 PyTorch
7 ICT_HCI Probability classification model v 5122 PyTorch
8 SK Energy-based OOD + activation rectification 2562 PyTorch+Lightning
9 SACM AE and VAE rec. error + OD detection confidence v v 2882 PyTorch
10 UPRetina-UR  Test-time augmentation + probability classification model 5122 PyTorch-+fast.ai
11 OPTIMATeam Deep Dirichlet uncertainty 2242 TensorFlow+Keras
11 MA Ensemble 5122 TensorFlow+Keras
13 YC Monte-Carlo Dropout 6082 TensorFlow
14 Mirazzak Regret function 2242/3842 PyTorch

dataset and 100 manually selected images in the training set
with relatively poor image quality. This classfication model
served as one of the inputs for ungradability classification.
The second input was taken from My;s.. The ungradability
likelihood output (O4) was then defined as the output likeli-
hood of the binary classification model Ry¢sser (i.€., Oyessel OF,
if the M ;5. could not detect an OD, as Ryes50; +0.75. O3 was
positive if O4 was at least 0.95 and negative otherwise. The
vessel segmentation model was evaluated on four randomly
selected images, on which a Dice score of 0.787 was achieved.
This was lower than the state-of-the-art for this problem [42].
However, this was expected to be sufficient for the downstream
task of ungradability detection.

B. RWTH-CuP [38]

The RWTH-CuP team proposed an approach with two steps
consisting of cropping around the OD by employing a detec-
tion network, followed by an ensemble of transformers (Swin
Transformer-B [43] and DeiT-S [44]) and convolutional neural
networks (CNNs) (EfficientNet-B4 [45] and EfficientNetV2-
M [46]) that classifies the cropped image. They manually
labeled the OD and its environment in 3,221 CFPs to develop
this detection network, for which they trained a YOLOvVS [47]
object detector network.

For ungradability classification, the team used a hybrid
approach. As the probability that an image is ungradable
is high if the OD could be found by the object detector
network, they employed the confidence score of the YOLOvS
detection model as one of the ungradability measures. To cap-
ture other ungradability causes, such as blurred depictions of
the OD, they trained an additional classifier on a manually
selected subset of the CFPs in the development set. The
team considered the 4000 CFPs with the lowest confidence
score of the object detector and manually selected 600 images
that were assumed by the team to be very close to being
classified as ungradable. They used another set of 2,000 high-
quality images to train an EfficientNet-B4 [45] ungradability

classification model. O4 was then defined as (1 — ¢) + g,
where ¢ is the object detection confidence and g the output
the ungradability classification model. The binary O3 output
value was determined using a cut-off manually determined by
a medical doctor in 20,000 images from the development set
for which O4 was computed.

C. Eyelab [48]

The Eyelab team employed a two-stage approach for glau-
coma classification. The first step was to detect and crop the
OD area and the second step was a vision transformer [49]
that classified the cropped image from the first step. For
the detection model, they trained a YOLOvVS5 [47] model
using semi-automatically generated labels. Their method for
ungradability detection was based on whether the optic disc
detection model from the first step found an optic disc to be
present.

D. Tien [50]

Tien used an ensemble of an EfficientNet [45] and
DenseNet [51] for the classification of RG and NRG. For
the ungradability task, they used an autoencoder network and
a blending engine. They used the reconstruction error as a
measure of the likelihood of ungradability. The higher the
reconstruction error, the more likely it is that the image is
ungradable. The blending engine fused the probability output
from the binary classification model as a weight factor to
the reconstruction error. The highest weight was 1 (when the
probability was 0.5) and the weight was lowest when the
probability is certain (either O or 1).

E. UPF+AIML [52]

Team UPF+AIML trained two separate models, both based
on the MobileNet-V2 [53] architecture for lightweight training,
and both optimized with the Sharpness-Aware Minimization
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(SAM) [31] technique for better generalization. The first model
was trained on the available training set for the screening
task. The second model was tasked with identifying out-of-
distribution data, i.e., ungradable images in this case. For
this, ungradable images were simulated by applying four
image transformations (brightness, gamma, saturation, and
blur) online to the data, with such a strength that they would
destroy image content and turn images useless for diagnostic
purposes. The ungradability detection model was trained on
a mixture of gradable (sampled directly from the original
training set) and ungradable (simulated). After training, this
model was applied to the training set, where all images were
expected to be gradable. The threshold that would classify
0.1% of the training set as ungradable was selected for
ungradabiltiy detection.

F. FMS-CETCV [54]

The FMS-CETCV team used a binary classifier with
ResNet-50 as the backbone for classifying RG and NRG. They
used focal loss [55] to account for the class imbalance in the
training set.

For the classification of ungradable images, they used a
self-supervised learning approach, inspired by the work of
Oza et al. [56], where a one-class classification method was
presented for unsupervised anomaly detection. The one-class
classifier builds a feature space by extracting the features of
the training sample which contain only the positive samples
(i.e., gradable images). They used an encoder with ResNet-18
as the backbone, which is trained on the AIROGS test set that
only contains gradable images. The feature space produced by
this encoder is then used by a Gaussian anomaly classifier to
distinguish gradable and ungradable images.

G. ICT HCI [57]

Team ICT_HCI used ResNet-50 for their RG and NRG
classification model. During inference, they made five random
512 x 512 crops of the image and then provided all crops
separately to the model and get five scores. If the maximum
of five scores was greater than 0.9, they let it be the output of
the model, otherwise, they took the mean of the five scores as
the output of the model.

The team used the minimum class probability of the two
classes RG and NRG as the likelihood for ungradability. If and
only if the ungradability likelihood was greater than 0.1, they
set O3 to be positive.

H. SK [58]

The SK team employed ResNet-RS [59] for RG and
NRG classification. They replaced the final linear layer of
ResNet-RS with a single linear layer with two channel outputs.

For ungradability classification, they used an inference-time
OOD energy-based method [60] combined with activation
rectification [61]. The energy-based method uses a scoring
function based on energy, instead of softmax, to discriminate
in-distribution (ID) and OOD data. In activation rectification,
the outsized activation of a few layers can be attenuated by

rectifying the activations at an upper limit. After rectification,
the output distributions for ID and OOD data become much
more well-separated. It is based on the observation that the
mean activation for ID data is well-behaved with a near-
constant mean and standard deviation, and the mean activation
for OOD data has significantly larger variations across units
and is biased towards having sharp positive values.

I. SACM [62]

Team SACM used the YOLOvVS [47] detection model to
crop the optic disc in the CFP input image. In a semi-
automated process, they manually labeled the locations of
735 optic discs and trained the detection model with 4,088
in total. The cropped image was then passed through an
ensemble of classifiers (SeResNext-50 [63], VGG-16 [64],
DenseNet-161 [51], EfficientNet-B5 [45], EfficientNet-B7 [45]
and Inception-V3 [65]) to make the final prediction. They also
used test-time augmentation.

For the robustness task, they used the detection model
confidence, an autoencoder, and a variational autoencoder
(VAE) [66]. They combined these three aspects of their
pipeline using this formula to achieve a final ungradability
score for O4 as (1 —¢) - S - Pautoencoder * Pvaes Where ¢ refers
to the detection network confidence and puyzoencoder and Pyge
refer to the mean squared error between the input and output
of the autoencoder and VAE, respectively.

J. UPRetina-UR [67]

The UPRetina-UR team used ResNet-RS-50 [59] for the
classification of RG and NRG. They oversampled cases with
RG during training to account for the class imbalance.

They employed a closed-set classification approach for
the ungradability task based on the method proposed by
Vaze et al. [68]. They applied test-time augmentation to obtain
five predictions that are averaged to produce Og.

K. OPTIMATeam [39]

OPTIMATeam used the first two blocks from the Inception-
V3 [65] network for the classification of RG and NRG. They
only used these two blocks to reduce the receptive field size,
which was necessary for their ungradability approach.

The ungradability approach was based on the direct
modeling of the uncertainty following the evidential deep
learning approach [69]. They used Deep Dirichlet uncertainty
estimation as the ungradability score O4. To set a threshold for
getting a binary value for O3 based on Oy, they assumed that
diagnosis is only possible if the OD has enough image quality
for diagnosis, as glaucoma’s main structural manifestation
occurs in that region. They applied Grad-CAM [70] on the
trained model for the screening task and occluded out the
region where Grad-CAM was greater than 0.5. This allowed
them to produce ID and OOD samples in their validation set,
with which they computed the threshold for the binary ungrad-
ability decision. In particular, they constructed a receiver
operating characteristic (ROC) curve using their values for
O4 with these ID and OOD samples. The ROC threshold
where the sensitivity was 0.5 was set to calculate Os.



DE VENTE et al.: AIROGS: ARTIFICIAL INTELLIGENCE FOR ROBUST GLAUCOMA SCREENING CHALLENGE

549

PUMCH-eye (#1)| —+ —+ All graders t
RWTH-CUP (#2)| —— -+ —+ combined || '
Eyelab (#2)| —+— — — + +
Tien (#4) + —+ -+ + +
2 UPF+AIML (#5) -+ —+ — + +
§ FMS-CETCV (#6)
g ICT_HCI (#7)
'{z; SK (#8)
% SACM (#9)
i£ UPRetina-UR (#10)
OPTIMATeam (#11) - —+ — + +
MA (#11) -+ —_ —— + +
YC (#13) - —— — + -+
Mirazzak (#14) +— — — 1 +
4 8 12 0.80 0.85 0.90 0.7 0.8 0.0 0.4 0.8 0.8 0.9 1.0
Mean position PAUCs SE@95SPs Ky AUCy

Fig. 2. Final rankings of all participating teams. The teams are sorted by their final ranking and therefore also by their mean position. The mean
position is shown in the left plot and the four challenge metrics are shown in the other four plots. The x, of all human graders is indicated with a red
dotted line. The width of the horizontal lines in all plots and the shaded area in the plot for k; are 95% Cls. We consistently use the same colors to

refer to teams in other figures in this manuscript.

L. MA [71]

Team MA used an ensemble of these twelve different
architectures for the glaucoma screening task: SeNet-
154 [63], SeResNet-101 [63], SeResNeXt-101 [63],
EfficientNet-B1 [45], EfficientNet-B2 [45], EfficientNet-
B3 [45], EfficientNet-B4 [45], EfficientNet-B5 [45],
EfficientNet-B6 [45], EfficientNet-B7 [45], DenseNet-
201 [51], Inception-ResNet-v2 [72]. The RG likelihood was
computed by averaging the likelihoods of all respective
models in the ensemble.

The ungradability output O4 was the sum of the variances
between all models in the ensemble for the positive and
negative class probabilities. O3 was positive if O4 exceeded
0.2 and negative otherwise.

M. YC [73]

The YC team used two DenseNet-121 networks to classify
RG and NRG in the CFPs. The first network was trained
with the full CFP as input and the second network used a
version of the CFP that was cropped around the optic disc as
input. After the last convolutions of these networks, a fully
connected layer with dropout was added. The outputs of these
fully connected layers were then concatenated and used as the
input to another fully connected layer with dropout, which was
followed by the final layer of the network. For cropping the
CFPs around the optic disc, they trained a U-Net [74] with
a DenseNet-121 [51] backbone. To train this segmentation
network, they first roughly annotated the position of the optic
disc in 101 CFPs in the training set. Subsequently, they
generated reference segmentation maps using a probability
density function of the multivariate normal distribution around
the annotated optic disc position.

They used Monte-Carlo drop-out [75] with 20 predicted
probabilities per image for the robustness task. Then they
statistically tested a Wilcoxon one-sample test whether the

mean of the predicted probabilities was equal to 0.5. The team
defined ungradability for predicting glaucoma as the logarithm
of the p-value for the Wilcoxon test.

N. Mirazzak [76]

Team Mirazzak used an ensemble of ConvNeXts [77] and
a vision transformer for the screening performance task.

For the ungradability task, they employed the regret
function, which was proposed by Bibas et al. [78] as the
generalization error of an explicit expression of the predictive
normalized maximum likelihood learner. If the value of regret
function was high, the samples were considered OOD and they
were marked as ungradable.

V. RESULTS

This section presents the glaucoma screening performance
and robustness of the fourteen participating teams. The final
rankings and mean positions of the teams are shown in the
first plot of Fig. 2. Four teams shared a rank with another
team, since their mean positions were exactly equal, causing
there to be two teams for each of the ranks #2 and #11.

A. Glaucoma Screening Performance

The glaucoma screening performance of the participat-
ing teams is summarized in Fig. 2, showing pAUCg and
SE@95SPg in the second and third plot, respectively. The
highest scores for pAUCg and SE@95S Pg were 0.90 (95%
CI: 0.89 — 0.91) and 0.85 (95% CI: 0.83 — 0.87), respectively.
These scores were both achieved by team PUMCH-eye.

Fig. 3a and Fig. 3b show the pAUCgs and SE@95SPg
for the ensembles when averaging the RG likelihood output
O; of the best M participants in terms of the relevant
metric. An optimal pAUCg of 0.91 (95% CI: 0.90 — 0.92)
was achieved at M 3. At M = 2, an optimal value
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Fig. 4. ROC curves for both challenge tasks. The sensitivity and specificity of all human graders on the AIROGS test set combined are indicated
with black lines. Respectively, the width and height of the black horizontal and vertical lines are 95% Cls. In (a), the partial ROC curve (90%-100%
specificity) for screening is shown, with 1,602 positive (RG) and 8,134 negative (NRG) images from the AIROGS test set. In (b), the ROC curve for

robustness is shown with 1,554 positive (ungradable) and 9,736 negative (gradable) images from the AIROGS test set.

for SE@95SPg was reached, which was 0.87 (95% CI:
0.85 — 0.89).

Fig. 4a shows the partial ROC curves between 90% and
100% specificity for all participants. The plot also presents the
sensitivity and specificity of the human graders with a 95%
CI. These were 0.86 (95% CI: 0.84 — 0.87) and 0.94 (95% CI.
0.94 — 0.95), respectively.

In Fig. 5, we compare the performance on the REFUGE test
set of the final AIROGS algorithms, which were trained on the

AIROGS train set, to the performance of the algorithms that
were submitted to the REFUGE challenge, which were trained
on the REFUGE train set. The top three participants of the
REFUGE algorithms achieved AUCs of 0.99, 0.98 and 0.96.
For the AIROGS algorithms, the best three AUCs were 0.98,
0.97 and 0.97. The mean £ std. dev. AUC of all REFUGE
and AIROGS algorithms were 0.94 + 0.04 and 0.95 £ 0.02,
respectively. Fig. 6 presents the relation between the two
glaucoma screening performance metrics of all participating
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Fig. 5. Comparison of the AIROGS and REFUGE algorithms, tested
on the REFUGE test set, visualized as violin and swarm plots. The final
algorithms that were developed for the REFUGE challenge itself and for
the AIROGS challenge are shown on the left and right, respectively. The
AIROGS algorithms were only trained on the AIROGS train set and were
not retrained with the REFUGE dataset.
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AIROGS algorithms on the AIROGS test set and that per-
formance on the REFUGE test set. For both metrics, almost
all AIROGS algorithms (except for team PUMCH-eye for
SE @958 Pg) scored higher on REFUGE than on AIROGS.
Of all AIROGS participants, the best pAUCg and SE@95S Pg
on REFUGE were 0.94 and 0.88, respectively.

In Fig. 7, the relation between the glaucoma performance
of all participating AIROGS algorithms on the AIROGS test
set and that performance on GAMMA is shown. For both
screening metrics, all AIROGS algorithms scored higher on
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Fig. 8. Performance of the participating AIROGS algorithms on the

DRIMDB dataset, compared to their performance on the AIROGS
dataset. Both robustness metrics (a) ky and (b) AUCy are shown.

GAMMA than on AIROGS. Of all AIROGS participants, the
best pAUCys and SE @955 Pg on GAMMA were 1.0 and 1.0,
respectively.

B. Robustness

The robustness metrics of the participating teams are sum-
marized in Fig. 2, showing xy and AUCy in the fourth
and fifth plot, respectively. The highest scores for xy and
AUCy were 0.82 (95% CI: 0.80 — 0.84) and 0.99 (95% CI:
0.98 — 0.99), respectively. These scores were achieved by team
Temirgali and RWTH-CuP, respectively.

Fig. 3c and Fig. 3d show the xky and AUCy for the ensem-
bles when averaging output O3 and output Oy, respectively,
of the M best algorithms in terms of these respective metrics.
An optimal «y of 0.85 (95% CI: 0.84 — 0.86) was achieved
at M = 6. Also at M = 6, an optimal value for AUCy was
reached, which was 0.99 (95% CI: 0.99 — 0.99).

In Fig. 4b, ROC curves for robustness are shown for
all participants. The plot also presents the sensitivity and
specificity for separating ungradable from gradable images
of the human graders with a 95% CI. These were 0.95
(95% CI: 0.94 — 0.96) and 0.97 (95% CIL: 0.97 — 0.97),
respectively.

The results on the external DRIMDB dataset are shown
in Fig. 8, indicating the relation between the ungradability
metrics ky and AU Cy of all participating AIROGS algorithms
on DRIMDB and those metrics on AIROGS. Of all AIROGS
participants, the best xy and AUCy on DRIMDB were
0.94 and 1.0, respectively.

C. Inference Time

The time that each algorithm took to perform inference on
the test set of the Final Test Phase is shown in Fig. 9. Please
note that these results reflect the total time it took to run the
Docker containers provided by the participants. The time it
took for the software to load the model weights and to run
other setup code defined by the teams was also included in this
analysis. Since the test set was split into 38 separate chunks,
this initialization and setup code was run at least 38 times for
each participating team, as well.
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Fig. 9. Average inference time per CFP in the test set of the Final Test
Phase. This time includes the actual inference time, model initialization,
and other setup code executed by the submitted Docker containers.

VI. DISCUSSION

Al models have been shown to be effective at detecting glau-
coma in CFPs, but most studies lack evidence of robustness
to real-world scenarios in which unexpected OOD data can
be presented due to various causes. To this end, we relied on
the community to develop robust Al solutions for glaucoma
screening based on the largest multi-center real-world CFP
dataset with glaucoma labels. We organized the AIROGS
challenge around this dataset, ensuring the resulting algorithms
are reusable in a cloud-based environment. We applied these
algorithms to ungradable data, while the participants could
only train on gradable data to ensure robustness to any kind
of ungradable data, and to other publicly available datasets to
assess their generalization.

A. Overall Findings

The team with the highest SE@95S Ps scored expert-level
screening performance on the AIROGS test set with a sensi-
tivity of 0.85 (95% CI: 0.83 - 0.87) at 95% specificity, similar
to the sensitivity of 0.86 (95% CI: 0.84 - 0.87) at a specificity
of 0.94 (95% CI: 0.94 - 0.95) of human graders. The highest
pAU Cy that was achieved by any of the teams was 0.90 (95%
CI: 0.89 - 0.91). Ensembling the different participating meth-
ods improved the screening performance even further, to 0.91
(95% CI: 0.90 - 0.92) and 0.87 (95% CI: 0.85 - 0.89) for
pAUCg and SE @958 Py, respectively. Our analysis revealed
that ensembling improved the performance for all metrics up to
a certain point at which adding further models to the ensemble
resulted in a decline in performance. A probable reason for this
is that the models added after this point under-perform to such
a degree that their outputs negatively impact the performance
of the ensemble, instead of improving it. Seven out of fourteen
teams exceeded the minimum performance of 80% sensitivity
and 95% specificity that was required by human graders
who were periodically monitored during the grading process.
This shows these models can provide similar performance to
human graders for glaucoma screening, suggesting that Al can
potentially play a role in an automated screening process.

We also evaluated the screening performance of the algo-
rithms on two external test sets. Even though the algorithms

were trained on AIROGS data, they achieved very high per-
formances on the two external test sets, showing reproducible
results in different sets and populations. On average, the
participating AIROGS algorithms scored slightly higher on the
REFUGE dataset than the REFUGE participants. We found
that the participating algorithms scored substantially higher
on these external datasets than on the AIROGS test set,
indicating the value of a challenging real-world dataset. This
strong generalization of the developed solutions also shows the
potential of models trained on our dataset to be successfully
implemented in screening programs with limited to no loss
of performance. Unlike the external datasets, the AIROGS
dataset represents a screening population, which likely consists
of a relatively large amount of individuals with lower severity
levels of glaucoma compared to clinical populations. Since
more severe cases are expected to be picked up easier than less
severe cases, the underlying ratio between less and more severe
positive glaucoma cases could be a cause of the observation
that the external test set performance was higher than the
internal test set performance.

The robustness to ungradable data in the AIROGS test
set was evaluated for each team using the metrics xy and
AUCy. The teams that performed the best in terms of these
metrics achieved 0.82 (95% CI: 0.80 - 0.84) and 0.99 (95% CI.:
0.98 - 0.99) for kxy and AU Cy, respectively. Human experts
did reach a higher xy of 0.85 (95% CI: 0.84-0.86) for this
task. Moreover, they achieved a sensitivity of 0.95 (95% CI:
0.94 - 0.96) and a specificity of 0.97 (95% CI: 0.97 - 0.97)
for detecting ungradable cases, while the team with the best
AUCy achieved a lower sensitivity at 97% specificity of 0.90
(95% CI: 0.88-0.92). Although the teams achieved relatively
high performances, they still achieved lower performance at
the robustness task than human experts. This shows this task
was especially challenging, possibly because the participating
teams could not use ungradable development data or because
their robustness approaches focused on specific forms of
ungradability.

We also assessed robustness on the external DRIMDB
dataset. The best-scoring team on this dataset scored very high
performances; they achieved 0.94 and 1.0 for xy and AUCy,
respectively. These two metrics were lower on the AIROGS
dataset for that team. This also indicates very strong gener-
alization to other datasets for the robustness task. The high
ungradability detection performance also indicates robustness
to other diseases in the image, as diabetic retinopathy was
prevalent in the gradable subset of DRIMDB and the best
algorithms did not classify these diseases as ungradable.

A large difference in performance between participating
teams can be observed, both for the screening and the robust-
ness task. Therefore, we think it is important to identify
which methodological choices were made predominantly by
top-performing teams. One of the most notable differences
between the top three participants and the rest was the use of
transformers. Outside of the top three, only the latest-placed
team used a transformer. One of the possible reasons for
this superiority that is achieved by transformers compared
to CNNs could be their effectiveness at modeling long-range
dependencies [79], [80]. This allows for a better understanding
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of contextual information, which is generally believed to be
beneficial in medical imaging [80]. Empirically, transformers
and methods that combine transformers with CNNs have
previously also been shown to outperform CNNs in medical
image analysis [81], [82], [83], which is in line with our
findings.

Moreover, all best three participants manually labeled ODs
for training either a segmentation or detection model to crop
around the OD during pre-processing. Even though this was
also done by two other teams, this seems like an effective
strategy to achieve higher screening performance. A likely
reason for the effectiveness of this approach is that most
glaucoma-related imaging features can be found on or around
the OD. This shows how a priori medical knowledge could
still be of value even when a large amount of data is available.
A less important factor appears to be the number of manually
labeled ODs. A possible reason for this could be that the
OD detection or segmentation network is not required to be
extremely accurate as combining a rough localization of the
OD with a large enough padding margin could also suffice to
crop the image during pre-processing.

Since the development set only consisted of images that
were labeled gradable (either RG or NRG) and the use of
external fundus data was prohibited, all teams came up with an
uncertainty or OOD detection method based on the gradable
data for the robustness task. The ungradability methods of
the top three participants in terms of mean position, «y,
and AUCy, all revolved around the confidence of a neural
network that localized the OD. Of the other participants,
only the ninth-placed team had such an approach. Apart from
these methods based on OD detection, only team UPF+AIML
implemented a different robustness technique that was also
based on domain knowledge. This raises the impression that
solutions based on domain knowledge are more effective
for robustness than more general OOD detection solutions.
However, it still needs to be evaluated if such approaches
are robust for other general tasks (not glaucoma screening)
or other sources of OOD data.

For calculating the «y; metric, the participants were required
to output a binary decision on ungradability. A popular
approach, especially among the top participants, was to manu-
ally identify relatively low-quality images in the development
set and base a threshold for this binary output on that subset.
This technique was employed by the best three, fifth, tenth, and
twelfth teams in terms of «;. This indicates that this could be a
successful approach, although not in general as the accuracy of
this binary value is also highly dependent on the quality of the
scalar output for ungradability O, that is being thresholded.
We found the difference between the ranking in terms of «y
and AUCy of one team, in particular, stood out. Team YC
ranked only eleventh for AU Cy (which depended on the scalar
output O4), but ranked fourth in terms of xy (which depended
on the binary output O3), indicating the approach they used
for thresholding their scalar value was highly effective. The
difference between their AUCy and ky was 7, while the next
biggest value of this difference was only 3. Team YC indeed
came up with a relatively sophisticated method for binarizing
O4 compared to others, based on a Wilcoxon one-sample
test to statistically test whether the mean of the predicted

probabilities from a Monte-Carlo drop-out approach was 0.5 or
not.

B. Strengths and Limitations

The dataset presented in this paper substantially exceeds
what was publicly available before in terms of number of
images and patients. The dataset is also highly diverse because
of the large number of different sites, cameras that were used,
and ethnicities. Comorbidities were not excluded from the
dataset, as our goal was to develop tools that are robust to data
with such conditions in real-world screening settings. These
conditions should not have an influence on the classification
of glaucoma or ungradability. The quality of the labels was
controlled by the initial and periodical evaluation of human
graders, the fact that each image was independently labeled
twice by two trained graders, and, in case of disagreement,
by a highly experienced reader. The participants submitted
their solutions as containerized algorithms, allowing repro-
ducibility, facilitating inference on other data, and preventing
manual manipulation of the test set.

One of the rules of the AIROGS challenge was the pro-
hibition of the use of external fundus data for development.
A limitation of this work is the fact that we cannot be sure if
any of the teams used such data in their development process.
A possible approach to prevent this and make the process fairer
is to have participants submit a containerized algorithm for
training, which would be trained by the challenge organizers
with private challenge training data. Nevertheless, with such
an approach it would still be challenging and time-consuming
for the challenge organizers to verify if the training containers
do not contain any weights pre-trained on other data.

The teams that participated in the competition were permit-
ted to create their own manual annotations on the data and
employ them in the development of their models. We made a
deliberate decision not to forbid this practice, as we believed
that the possibility of achieving superior results outweighed
the disadvantage of potentially introducing a slight unfairness
due to some teams having access to larger manual labor work-
forces than others. Teams PUMCH-eye, RWTH-CuP, Eyelab,
UPF+AIML, ICT_HCI, SACM, and YC took advantage of
this opportunity and produced at least one of the subsequent
manual annotations: OD detection or segmentation, vessel
segmentation, and identification of low-quality images in the
development set. As a result, the final rankings of the teams
have likely been influenced by this practice, and it is important
to consider this potential bias when comparing solutions.
We think it is also worth noting that the aforementioned
solution for promoting fairness of submitting a containerized
algorithm for training on private data would disable manual
annotation of development data.

The dataset used for the challenge is diverse, but improve-
ments could still be made in that respect. All screening sites
were based across the United States of America, raising the
question of whether a more generalizable model could be
obtained with data from across the world. On the other hand,
we showed that many algorithms trained on the AIROGS
dataset performed at least as well on three external test sets,
of which two originated from China and one from Turkey,
as on our internal test set.
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Not all research groups working in the field of retinal image
analysis participated in this challenge and many teams that
joined the challenge did not submit a solution to the Final
Test Phase. Possible reasons for this include that many teams
saw their results did not match to ones already present on
the leaderboard, that the barrier for some teams was too high
to get a solution wrapped in a Docker container, or that
they were not able to finish in time. Therefore we would
like to stress the challenge is still open and we are curious
to see if the community can make further improvements.
After all, especially for the robustness task, there seems to be
room for improvement, given the gap with the human grader
performance.

C. Future Directions

Based on the solutions that were presented by the teams,
we think it would be valuable to combine methodologies
from different participants and to work further on their ideas.
For example, as we mentioned before, team YC apparently
had a highly effective method for thresholding their ungrad-
ability scores as their xy was very high compared to their
AUCy. A possible future direction would be to combine
methods of high performance in terms of AUCy with the
binarization technique from team YC. Moreover, we observed
that algorithms that scored high in terms of robustness, used
domain knowledge for this aspect of the challenge. Pos-
sible future directions could be to explore other ways to
incorporate domain knowledge into an ungradability method.
This observation also leads to the question of whether there
are more fields in medical image analysis in which domain
knowledge can be leveraged for uncertainty estimation and
OOD detection.

Next to a decision on RG and NRG presence, the graders
were asked to provide which clinical, glaucomatous features
were present in the eyes they classified as RG, as listed in
Section II-A and further described by [84]. This information
was not yet included in the dataset release for this challenge,
as it fell outside the scope of this challenge. Future solutions
and challenges could be developed with this information,
possibly resulting in more explainable algorithms.

This challenge only focused on classification based on a
single CFP. It may be interesting to explore the effect on
screening performance and robustness of including various
types of metadata in our dataset, which we have available
but have not been published yet. This metadata, although
missing for some images, includes the camera type, age, and
anonymous patient identification (which can be used to link
two eyes to a single patient).

In order to ensure the safe and effective implementa-
tion of the Al models for glaucoma screening described in
this paper, several important steps need to be undertaken.
Gonzélez-Gonzalo et al. [85] provide valuable insights into the
key aspects that are crucial for the integration of Al models
in ophthalmic practice.

Among these aspects, additional retrospective validation
studies play a significant role in validating the performance
and generalization of these models. An external evaluation
with substantially different data was already performed in

this study. However, we think it is crucial to evaluate with
additional large screening datasets that represent real-world
scenarios before practical implementation. Prospective valida-
tion studies and cost-effectiveness analyses are also essential
for evaluating the accuracy, reliability, and generalization of
glaucoma screening Al models in real-world settings. These
analyses are especially important for screening programs since
screening solutions that are not specific enough can have
substantial negative financial impacts, as they can lead to
unnecessary hospital visits. It is also essential to identify and
mitigate potential limitations such as data quality, which the
AIROGS challenge aimed to address, model interpretability,
integration with screening workflows, and potential biases.
Finally, establishing mechanisms for post-market surveillance
is vital to monitor and evaluate the performance and safety of
these Al models after their regulatory approval.

Further implementation and real-world evaluation of these
algorithms are needed, as described above. As this was con-
sidered out of the scope of the current manuscript, we leave
the execution of these steps to future work.

VIlI. CONCLUSION

We presented the results of community-acquired algorithms
tested on real-world data for robust glaucoma screening from
CFP. The best algorithms performed similarly in terms of
screening to the carefully trained and selected human graders,
and were shown to be effective at flagging images that could
not be graded. Methodological choices predominantly made
by the best teams included, for the screening task, the use
of vision transformers and the incorporation of optic disc
detection models in pre-processing and, for the robustness
task, out-of-distribution detection approaches based on domain
knowledge. We hope the unprecedented size and real-world
nature of the dataset we released and the algorithms that were
developed using this dataset will help towards implementing
robust Al for glaucoma screening.
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