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Clinically-Inspired Multi-Agent Transformers for
Disease Trajectory Forecasting
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Abstract— Deep neural networks are often applied to
medical images to automate the problem of medical diag-
nosis. However, a more clinically relevant question that
practitioners usually face is how to predict the future trajec-
tory of a disease. Current methods for prognosis or disease
trajectory forecasting often require domain knowledge and
are complicated to apply. In this paper, we formulate the
prognosis prediction problem as a one-to-many prediction
problem. Inspired by a clinical decision-making process
with two agents–a radiologist and a general practitioner –
we predict prognosis with two transformer-based compo-
nents that share information with each other. The first
transformer in this framework aims to analyze the imag-
ing data, and the second one leverages its internal states
as inputs, also fusing them with auxiliary clinical data.
The temporal nature of the problem is modeled within the
transformer states, allowing us to treat the forecasting
problem as a multi-task classification, for which we propose
a novel loss. We show the effectiveness of our approach in
predicting the development of structural knee osteoarthri-
tis changes and forecasting Alzheimer’s disease clinical
status directly from raw multi-modal data. The proposed
method outperforms multiple state-of-the-art baselines with
respect to performance and calibration, both of which are
needed for real-world applications. An open-source imple-
mentation of our method is made publicly available at
https://github.com/Oulu-IMEDS/CLIMATv2.

Index Terms— Deep Learning, knee, osteoarthritis, prog-
nosis prediction.
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Fig. 1. The concept of CLIMATv2 was inspired by a multi-agent decision-
making system with a radiologist and a general practitioner. All types
of imaging data of disease are handled by the radiologist. The general
practitioner then utilizes a report description produced by the radiologist
and the context of clinical variables to forecast a future trajectory of the
disease.

I. INTRODUCTION

RECENT developments in Machine Learning (ML) sug-
gest that it is soon to be tightly integrated into many

fields, including healthcare [1], [2]. One particular subfield of
ML – Deep Learning (DL) has advanced the most, as it opened
the possibility to make predictions from high-dimensional
data. In medicine, this impacted the field of radiology, in which
highly trained human readers identify pathologies in medical
images. The full clinical pipeline, however, aims to assess the
condition of a patient as a whole, and eventually prescribe the
most relevant treatment for a disease [3], [4]. Using DL in this
broad scope by integrating multimodal data has the potential
to provide even further advances in medical applications.

Clinical diagnosis is made by specialized treating physicians
or general practitioners. These doctors are not radiologists
and rather use the services of the latter in decision-making.
One of the typical problems that such doctors face is to
make a prognosis [5], [6], which can be formalized as disease
trajectory forecasting (DTF). This is an especially relevant task
in degenerative disorders, often seen in musculoskeletal and
nervous systems. This work studies DTF for knee osteoarthritis
(OA) – the most common musculoskeletal disorder [7], and
Alzheimer’s disease (AD) – the leading cause of dementia [8].

Among all the joints in the body, OA is mostly prevalent
in the knee. Knee OA is characterized by the appearance of
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osteophytes, and the narrowing of joint space [9], which in
the clinical setting are usually imaged using X-ray (radiog-
raphy) [10]. The disease severity is graded according to the
Kellgren-Lawrence system [11] from 0 (no OA) to 4 (end-
stage OA), or Osteoarthritis Research Society International
(OARSI) atlas criteria [12]. Unfortunately, OA is progressive
over time (see Figure 2) and no cure has yet been developed
for OA. However, diagnosing OA at an early stage may allow
the slowing down of the disease, for example using behavioral
interventions [13].

Individuals with AD have difficulties with reading, learning,
and even performing daily activities. AD is fatally progressive
and caused more than 120, 000 deaths in the United States
in 2019; however, no effective cure for it has been made
available [8]. The benefits of early AD diagnosis are similar
to OA – the progression of the disease can be delayed, and
patients may be assigned relevant care in a timely manner [14].

In both of the aforementioned fields – OA and AD, there
is a lack of studies on prognosis prediction. From an ML
perspective, a more conventional setup is to predict whether
the patient has the disease at present or a specific point of
time in the future [15], [16], [17], [18], [19], [20], [21].
However, prognosis prediction aims to answer whether and
how the disease would evolve over time. Furthermore, in a
real-life situation, the treating physician makes the prognosis
while interacting with a radiologist or other stakeholders who
can provide information (e.g. blood tests or radiology reports)
about the patient’s condition. This also largely differentiates
the diagnostic task from predicting a prognosis.

In this paper, we present an extended version of our earlier
work on automatic DTF [22], where we proposed a Clinically-
Inspired Multi-Agent Transformers (CLIMAT) framework,
aiming to mimic the interaction process between a general
practitioner / treating physician1 and a radiologist. In our
system, a radiologist module, consisting of a feature extrac-
tor (convolutional neural network; CNN) and a transformer,
analyses the input imaging data and then provides an out-
put state of the transformer representing a radiology report
to the general practitioner – corresponding module (purely
transformer-based). The latter fuses this information with
auxiliary patient data, and makes the prognosis prediction. We
graphically illustrate the described idea in Figure 1.

Compared to the conference version [22], we have enhanced
our framework, such that the module corresponding to the
general practitioner does not only perform prognosis, but is
also encouraged to make diagnostic predictions consistent
with a radiologist module. The earlier version of CLIMAT
relies on a simplifying assumption in relation to the inde-
pendence between the diagnostic label task and non-imaging
data. The introduced update helps the framework to expand
out of the knee osteoarthritis domain, and be more realistic,
thereby allowing our method to be applied in fields where
diagnosis could rely on both imaging and non-imaging data.
Moreover, we equip the framework with a new loss – Cali-
brated Loss based on Upper Bound (CLUB) – that aims to

1In the sequel we write general practitioner, which, however, does not
restrict our modeling approach.

Fig. 2. Radiographs of a patient with knee OA progressed in 8 years. The
orange arrow indicates joint space narrowing. The disease progressed
from Kellgren-Lawrence (KL) grade 0 at the baseline (BL) to 3 in 6 years.
At the 8th year, the patient underwent a total knee replacement (TKR)
surgery.

Fig. 3. The three projections of a 3D FDG-PET scan, which is converted
to the jet colormap for demonstration purposes. The red regions are
associated with high concentrations of the FDG radioactive tracer in the
brain.

maintain the performance while improving the calibration of
the framework’s predictions. Finally, we have also expanded
the application of our framework to the case of AD.

To summarize, our contributions are the following:
1) We propose CLIMATv2, a clinically-inspired

transformer-based framework that can learn to
forecast disease severity from multi-modal data in
an end-to-end manner. The main novelty of our
approach is the incorporation of prior knowledge of the
decision-making process into the model design.

2) We derive the CLUB loss, an upper bound on a
temperature-scaled cross-entropy (TCE), and apply it
to the DTF problem we have at hand. Experimentally,
we show that CLUB provides better calibration and
yields similar or better balanced accuracy than the
competitive baselines.

3) From a clinical perspective, our results show the feasi-
bility to perform fine-grained prognosis of knee OA and
AD directly from raw multi-modal 2D and 3D data.

II. RELATED WORK

A. Knee Osteoarthritis Prognosis
The attention of the literature has gradually been shift-

ing from diagnosing the current OA severity of a knee to
predicting whether degenerative changes will happen within
a specified time frame. While some studies [15], [16], [17]
aimed to predict whether knee OA progresses within a spec-
ified duration, others [18], [19] tried to predict if a patient
will undergo a total knee replacement (TKR) surgery at
some point in the future. However, the common problem
of the aforementioned studies is that the scope of knee OA
progression is limited to a single period of time or outcome,
which substantially differentiates our work from the prior art.

B. Alzheimer’s Disease Prognosis
Compared to the field of OA, a variety of approaches

have been proposed to process longitudinal data in the
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AD field. Lu et al. [21] utilized a fully-connected
network (FCN) to predict AD progression within a time frame
of 3 years from magnetic resonance imaging (MRI) and flu-
orodeoxyglucose positron emission tomography (FDG-PET)
scans. Ghazi et al. [23] and Jung et al. [20] used different long-
short-term memory (LSTM)-based models to predict AD clin-
ical statuses from scalar MRI biomarkers. Albright et al. [24]
took into account various combinations of scalar measures
and clinical variables to predict changes in AD statuses using
FCNs and recurrent neural networks (RNN). In contrast to
the prior art relying on either raw imaging data or scalar
measures, our method enables learning from raw imaging
scans, imaging-based measurements, and other scalar variables
simultaneously. Additionally, whereas FCN and sequential
networks were widely used in the literature, we propose
to use a transformer-based framework to perform the AD
clinical status prognosis task. Furthermore, we use FCN, two
well-known sequential models – gated recurrent unit (GRU)
and LSTM – as our reference approaches.

C. Transformers for Vision Tasks
Although originally developed in the field of natural lan-

guage processing [25], [26], transformer-based architectures
have recently been applied also in vision tasks. Dosovit-
skiy et al. [27] pioneered the use of transformer-based
architectures without a CNN for image classification problems.
Girdhar et al. [28] and Arnab et al. [29] studied the same
family of architectures to perform video recognition tasks.
However, Hassani et al. [30] pointed out such pure transform-
ers require a significantly large amount of imaging data to
perform well. The reason is that transformers do not have
well-informed inductive biases, which are strengths of CNNs.
Thus, our method relies on [30] due to medium dataset sizes.

D. Multimodal Data Processing With Transformers
Transformers have been empirically robust in learning var-

ious categories of tasks from sequential data such as text or
tabular data [25], [31]. However, in medical imaging, it is
common to acquire multiple modalities comprising both raw
images (e.g. plain radiographs, MRI, or PET scans) and tabular
data, which are challenging for a single transformer. Recent
work has shown that multiple transformers are needed to
for such multiple modalities [32]. Therefore, similar to our
previous version [22], this study adapts the idea of using
multiple transformers in our framework to perform DTF from
multiple modalities.

III. METHODS

A. The CLIMAT Framework: A Conceptual Overview
As mentioned earlier, we base our framework on multi-agent

decision-making processes in a clinical setting. In many appli-
cations, this can be considered information passing between
two agents – a radiologist and a general practitioner [33].
While the radiologist specializing in imaging diagnosis is in
charge of producing radiology reports, the general practitioner
relies on various modalities including the radiologic findings to

forecast the severity of a certain disease. We model such col-
laboration by the concept presented in Figure 1. Specifically,
the radiologist analyzes a medical image x0 (e.g. radiograph
or PET image) of a patient to provide an interpretation with
rich visual description and annotations, allowing the diagnosis
of the current stage y R

0 of the disease. Subsequently, the
general practitioner relies on (i) the clinical data m0 (e.g.
questionnaires or symptomatic assessments) with a further
interpretation if needed, (ii) the provided radiology report,
and (iii) the referenced diagnosis of the radiologist y R

0 to
predict the course of the disease y0:T .

We implement the concept proposed above in the
CLIMATv2 framework (see Figure 4 and Section III-B). CLI-
MATv2 comprises three primary transformer-based blocks–
2namely Radiologist (R), Context (C), and General Practitioner
(P). Firstly, assume that we obtain visual features learned
from the imaging data x0. Then, the block R acts as the
radiologist to perform visual reasoning from the visual features
and predict the current stage ŷ R

0 of a disease. The other two
blocks are responsible for context extracting and prognosis
predicting. As such, the block C aims to extract a context
embedding from clinical variables m0. Subsequently, the block
P utilizes the combination of the context embedding and
the output states of the block R to forecast the disease
trajectory ŷ0:T .

In this work, we have two major upgrades to CLI-
MATv1 [22]. Firstly, we do not assume anymore that y0 and
m0 are independent, as this does not hold in many medical
imaging domains, e.g. for OA [34]. Namely, in the current
version of CLIMAT, both the blocks R and P have now
been allowed to make diagnosis predictions simultaneously,
making sure that the learned embeddings contain information
on y0. Furthermore, we encourage their predictions to be
consistent with the final module of our model. Secondly,
besides performance, in this work, we take into account model
calibration, which allows us to gain better insights into the
reliability of models’ predictions [35]. To facilitate better
calibration within our proposed framework, we propose a
novel loss, called CLUB, presented in Section III-C.

B. Technical Realization
1) Transformer: A transformer encoder comprises a stack of

L multi-head self-attention layers, whose input is a sequence
of vectors {si }

N
i=1 where si ∈ R1×C , and C is the feature size.

As such, a transformer is formulated as [25]

h0 = [E[C L S], s1, . . . , sN ] + E[P O S], (1)
zl−1 = MSA(LN(hl−1))+ hl−1, (2)

hl = MLP(LN(zl−1))+ zl−1, l = {1, . . . , L} (3)

h̄ = hL (4)

where E[C L S] is a learnable token, E[P O S] is a learnable
positional embedding, and h̄ represents features extracted from
the last layer. MLP is a multi-layer perceptron (i.e. a fully-
connected network), LN is the layer normalization [36], and
MSA(·) is a multi-head self-attention (MSA) layer [25]. The

2Hereinafter, we use the terms block and transformer interchangeably.
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Fig. 4. The CLIMAT framework (best viewed in color). There are N and M input imaging and non-imaging feature vectors, respectively. The first
feature vector h̄0

C of the last layer of the transformer C is appended to every output vector of h̄R to form the input for the transformer P. All the blue
blocks are transformer-based networks. [CLS] and [POS] embeddings are in white and orange, respectively.

self-attention mechanism relies on the learning of query, key,
value parameter matrices, denoted by W Q

l , W K
l , and W V

l
with l = 1, . . . , L , respectively. Initially, we simultaneously
set Q0, K 0, and V 0 to h0 defined in Eq. (1). When iter-
ating through layers l = 1, . . . , L , we update the states as
follows

Ql = Ql−1W Q
l

K l = K l−1W K
l

V l = V l−1W V
l (5)

Finally, the self-attention is established thanks to the scaled
dot-product function applied to Ql , K l , and V l , and defined
as

Attention( Ql , K l , V l) = Softmax

(
Ql K⊺

l
√

dk

)
V l , (6)

where dk is the feature dimension of Ql . In essence, Ql K⊺
l

represents the association between all pairs of queries and
keys. The normalization based on dk is critical to address the
case where the magnitude of entries in Ql K⊺

l is too large.
The essential part that produces the attention is the utilization
of softmax, which allows for the creation of a normalized
heatmap over the association of Ql and K l . Subsequently,
by adding more sets of learnable weights W Q

l , W K
l , and W V

l ,
we can obtain MSA by concatenating different output heads
of attention. Precisely, the MSA mechanism is formulated as
follows

headh
l = Attention( Ql , K l , V l), h = 1, . . . , H

MSA(·) = Concat(head1
l , . . . , headH

l )W O
l ,

where H is the number of heads, and W O
l represents learning

parameters associated with the H output heads.
The three main blocks in our framework are

transformer-based networks (see Figure 4). While the
blocks R and C have only 1 [C L S] token, the block P can
include K [C L S] tokens to allow for multi-target predictions.
The hyperparameter K is introduced in the block P to ensure
that there are enough output heads for multi-task predictions.
We typically set K to 1 or T + 1. In the case K = T + 1,
each output head has a corresponding [C L S] token.

2) Multimodal Feature Extraction: Our framework is able
to handle multimodal imaging and non-imaging data. As
input data can be clinical variables, raw images (i.e. 2D
or 3D images), and biomarkers extracted by human experts
or specialized software, we have distinct feature extraction
modules for different input formats. Specifically, we use the
feed-forward network (FFN), 2D-CNN, and 3D-CNN-based
architectures for scalar or 1D inputs, 2D, and 3D images,
respectively. As such, we pre-define common feature lengths
CX and CM for all imaging and non-imaging embeddings,
respectively. Each FFN-based feature extractor consists of a
linear layer, a GELU activation [37], layer normalization [36],
and has an output shape of 1×CX or 1×CM depending on the
type of input data. In the CNN-based modules, we first unroll
their output feature maps into sequences of feature vectors per
image super-pixel or super-voxel, then linearly project them
into a CX -dimensional space.

3) Radiologist Module: The Radiologist block is a trans-
former network with L R layers and is responsible for process-
ing all imaging features previously extracted in Section III-B.2.
For the input data preparation, we concatenate all features of
different imaging modalities to form a sequence of length N
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that contains CX -dimensional image representations. Subse-
quently, we propagate this sequence through the transformer R.
To this end, the visual embedding h̄R ∈ R(N+1)×CX produced
by its last layer serves two purposes: representing radiology
reports and visual features for diagnosis predictions. For
the former, we subsequently combine h̄R with non-imaging
embeddings to constitute inputs for the General Practitioner
block (see Section III-B.5). For the latter, following a common
practice in [38], [39], and [40], we perform an average pooling
onto h̄R to generate a CX -dimensional vector. Afterward,
we pass the resulting vector through an FFN comprised of
a linear layer, a GELU activation [37], and a layer normal-
ization [36] to predict the current stage y R

0 of the disorder
(see Figure 4).

4) Clinical Context Embedding Module: Here, we aim to
mimic the comprehension of a general practitioner over
different clinical modalities (e.g. questionnaires, extra tests,
and risk factors). As such, we take a single [C L S] embed-
ding followed by M clinical vector representations extracted
in Section III-B.2 to form the input sequence for the Context
block (see Figure 4). The underlying architecture of the
block is a transformer-based network. After passing the input
sequence through the transformer C with LC layers, we merely
use the first feature vector h̄0

C of the last feature maps hLC as
a common contextual token representing all the non-imaging
modalities.

5) General Practitioner Module: As soon as the contextual
token of length CM is acquired from the Context block,
we concatenate N + 1 copies of the token h̄0

C into the last
states h̄R of the transformer R to generate a sequence of
N + 1 mixed feature vectors with a feature size of CX +CM .
We then process the obtained sequence using Eq. (1) to
have the sequence of (K + N + 1) feature vectors. Here,
we utilize the third transformer-based module to simulate
the analysis of the general practitioner over all sources of
data for prognosis predictions. Specifically, after passing the
input sequence through the transformer P, we utilize the
first T + 1 vector representations of the last layer to fore-
cast the disease severity trajectory (ŷ0, . . . , ŷT ). Predicting
disease severity at each time point requires a common or
distinct FFN, which comprises a layer normalization fol-
lowed by two fully connected layers separated by a GELU
activation [37].

C. Calibrated Loss Based on Upper Bound for Multi-Task
1) Motivations and Formulation: Compared to

CLIMATv1 [22], we aim to optimize not only the
performance but also the calibration of our model’s
predictions. As CLIMATv2 simultaneously predicts a
sequence of T + 1 targets with different difficulties, we treat
it as a multi-task predictive model. The temporal information
here is contained within the transformer states. Inspired
by [41], to harmonize all the tasks, we propose the CLUB loss
(abbreviated from Calibrated Loss Upper Bound). However,
unlike [41], which relies on the ‘not always true’ assumption
that 1

σ

∑
c′ exp

(
1
σ 2 fc′(x)

)
=
(∑

c′ exp ( fc′(x))
) 1

σ2 , where σ

is a noise factor and fc′(.) is the c′-th element of the logits

produced by a parametric function f , we theoretically derive
CLUB as an upper bound of temperature-scaled cross-entropy
(CE) loss.

Consider the t-th task with t ∈ {0 . . . T }, let f t =

( ft,1, . . . , ft,N t
n
)⊺ ∈ RN t

c denote predicted logits of CLI-
MATv2 (i.e. an output of the transformer P) on task t , where
N t

c is the number of classes of the t-th target. Let gt =

(gt,1, . . . , gt,N t
c
)⊺ = exp( f t ). Similar to [41], we model the

affection of noise σt onto the prediction of yt in the scaled
form Softmax

(
1

σ 2
t +ε

f t

)
, where ε ∈ R+ is needed to ensure

the scaled softmax to be valid for all σt ∈ R. For convenience,
we temporarily eliminate the t index from all notations. By
denoting τ = 1

σ 2+ε
∈ R+, we rewrite the scaled softmax as

Softmax (τ f ) =

(
gτ

1∑
c′ g

τ
c′

, . . . ,
gτ

Nc∑
c′ g

τ
c′

)⊺

∈ [0, 1]Nc , (7)

where c, c′ are class indices, and τ ∈ R+ is a noise factor.
Without the loss of generality, c is assumed to be the ground

truth class of a certain input x . τ is the inverse temperature
that can smoothen (τ ≤ 1) or sharpen (τ > 1) predicted

probabilities. Here, one can observe that
(∑

c′ g
τ
c′
) 1

τ can be
seen as an absolutely homogeneous function or an ℓτ -norm
∥g∥τ in a Lebesgue space, when τ belongs to (0, 1) or [1,∞),
respectively. Therefore, a TCE loss can be formulated as

LTCE = − log
gτ

c
∥g∥ττ

, (8)

where c is the true class. When τ = 1, the TCE loss becomes
the vanilla CE loss

LCE = − log
gc

∥g∥1
. (9)

For the purpose of improving calibration, we are interested
in the case of τ ∈ (0, 1] [35], allowing us to apply the reverse

Hölder’s inequality to have ∥g∥τ ≤ N (1−τ)/τ
c ∥g∥1. Then,

we can derive an upper bound of LTCE, called the CLUB
loss, as

LCLUB ≜ −τ log
gc

∥g∥1
+ (1− τ) log Nc

= τLCE + (1− τ) log Nc, τ ∈ [0, 1],

where the equality holds if and only if τ = 1. Unlike LTCE,
our CLUB loss directly depends on ∥g∥1 rather than ∥g∥τ .
Eq. (10) indicates that LCLUB is a convex combination between
the CE loss (9) and log Nc, which takes into account the task
complexity in terms of the number of classes.

2) Performance and Calibration Optimization: In our setting,
we consider each τt associated with task t as a learnable
parameter. As the model’s parameters θ and τt ’s are inde-
pendent, we can respectively derive the gradients of LCLUB(t)
w.r.t. θ and τt ’s as follows

∂LCLUB(t)
∂θ

= τt
∂LCE(t)

∂θ
, t = 0 . . . T, (10)

∂LCLUB(t)
∂τt

= LCE(t)− log Nc, t = 0 . . . T, (11)

where LCE(t) and LCLUB(t) are the CE and CLUB losses on
the t-th task, respectively. Whereas the optimization w.r.t. θ
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Algorithm 1 Constraint of τt ≤ 1, t = 0 . . . T
Input: T : the number of future time points
Input: {σt }

T
t=0: noise parameters

Input: ε ∈ R+: hyperparameter
1 ρt ←−

1
σ 2

t +ε
t = 0 . . . T

2 for t = 0, . . . , T do
3 ρ̃t =

exp(ρt )∑T
t ′=0 exp(ρt ′ )

4 end
5 ρmax ←− Max

(
{ρ̃t }

T
t=0
)

6 τt ←−
ρ̃t

ρmax
t = 0 . . . T

essentially aims to improve the performance of our model,
learning τt ’s directly impacts its calibration quality. Eqs. (10)
and (11) indicate that τt ’s can be seen as learnable coefficients
of different tasks.

To effectively constrain τt ≤ 1 and avoid a trivial solution
where ∀t ∈ {0, . . . , T }, τt = 1, we constrain the learnable
parameters {τt }

T
t=0 using Algorithm 1. Specifically, Line 1

guarantees that ρt ’s are valid for any σt ’s. Lines 2 to 4 pre-
vent all the τt ’s from converging to the obvious value 1.
Lines 5 and 6 re-scales τt ’s such that merely ones with the
maximum values become 1. This last step is necessary to avoid
τt ’s values being small inversely proportionally to the number
of tasks.

D. Multi-Task Learning for Disease Trajectory Forecasting
In practice, it is highly common to have data not fully anno-

tated. Thus, our framework should allow for handling missing
targets by design. As such, our multi-task loss can tackle such
an impaired condition with ease by using an indicator function
to mask out targets without annotation. Formally, we minimize
the following prognosis forecasting loss

Lprog =
1∑T

t=0 It

T∑
t=0

ItLCLUB(t), (12)

where It is an indicator function for task t .
While the radiologist has strong expertise in imaging diag-

nosis, in relation to prognosis, the general practitioner has
more advantages due to the access to multimodal data, such
as the patient’s background. On the other hand, general
practitioners are also able to assess images to some extent.
We incorporate the corresponding prior into our learning
framework by enforcing consistency in predictions between
the two agents:

Lcons =

∥∥∥ f R
0 − f 0

∥∥∥
1
, (13)

where f R
0 and f 0 indicate logits of the blocks R and P for

diagnosis predictions, respectively. It is worth noting that while
Lprog operates solely on annotated targets, Lcons optimizes all
targets.

To optimize the whole framework, we minimize the final
loss L as follows

L = Lprog + λLcons, (14)

where λ ∈ R+ is a consistency regularization coefficient.

Fig. 5. Subject selection in our study.

IV. EXPERIMENTS

A. Data

In this study, we conducted experiments on two public
datasets for knee OA and AD. The overall description and
subject selection of the two datasets and corresponding tasks
can be seen in Figure 5 and Table I. The details of data
pre-processing and prognosis prediction tasks are presented as
follows.

1) Knee OA Structural Prognosis Prediction: We conducted
experiments on the Osteoarthritis Initiative (OAI) cohort, pub-
licly available at https://nda.nih.gov/oai/. 4, 796 participants
from 45 to 79 years old participated in the OAI cohort, which
consisted of a baseline, and follow-up visits after 12, 18, 24,
30, 36, 48, 60, 72, 84, 96, 108, 120, and 132 months. In the
present study, we used all knee images that were acquired with
large imaging cohorts: the baseline, and the 12, 24, 36, 48, 72,
and 96-month follow-ups.

As the OAI dataset includes data from five acquisition cen-
ters, we used data from 4 centers for training and validation,
and considered data from the left-out one as an independent
test set. On the former set, we performed a 5-fold cross-
validation strategy.

Following [15] and [42], we utilized the BoneFinder
tool [43] to extract a pair of knees regions from each bilat-
eral radiograph, and pre-process each of them. Subsequently,
we resized each pre-processed image to 256×256 pixels (pixel
spacing of 0.5mm), and horizontally flipped it if that image
corresponds to a right knee.

We utilized the Kellgren-Lawrence (KL) as well as OARSI
grading systems to assess knee OA severity. The KL sys-
tem classifies knee OA into 5 levels from 0 to 4, pro-
portional to the OA severity increase. The OARSI system
consists of 6 sub-systems – namely lateral/medial joint space
(JSL/JSM), osteophytes in the lateral/medial side of the femur
(OSFL/OSFM), and osteophytes in the lateral/medial side of
the tibia (OSTL/OSTM). And according to that the furthest
targets in KL, JSL, and JSM were 8 years from the baseline
while it was 4 years for the other grading aspects.
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TABLE I
DATASET STATISTICS. SUBJECTS ARE PATIENT KNEE JOINTS, AND

PATIENT BRAINS FOR OAI, AND ADNI, RESPECTIVELY

Regarding the KL grading system, we grouped KL-0 and
KL-1 into the same class as they are clinically similar, and
added TKR knees as the fifth class. As a result, there were
5 classes in KL, and there were 4 severity levels in each of
the OARSI sub-systems. Following [15] and [22], we utilized
age, sex, body mass index (BMI), history of injury, history of
surgery, and total Western Ontario and McMaster Universities
Arthritis Index (WOMAC) as clinical variables. We quantized
the continuous variables, and presented each of them by a
4-element one-hot vector depending on the relative position
of its value in the interval created by the minimum and the
maximum.

For clinical relevance, we did not perform knee OA prog-
nosis predictions on knees that underwent TKR or were
diagnosed with the highest grade in any OARSI sub-system.
In addition, we ignored one single entry whose pair of knees
were improperly localized from its lateral radiograph by the
BoneFinder tool. To have more training samples, we generated
multiple entries from the longitudinal record of each partici-
pant by considering imaging and non-imaging data at different
follow-up visits (except for the last one) as additional inputs.

2) AD Clinical Status Prognosis Prediction: We applied our
framework to forecast the Alzheimer’s disease (AD) clinical
status from multi-modal data on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort, which is available
at https://ida.loni.usc.edu. The recruitment was done at 57 sites
around America and Canada, and there were 2, 577 male and
female participants from 55 to 90 enrolled in the cohort.
The participants underwent a series of tests such as clinical
evaluation, neuropsychological tests, genetic testing, lumbar
puncture, MRI, and PET imaging at a baseline and follow-up
visits at 1, 2, and 4-year periods.

In this study, we used raw FDG-PET scans, MRI measures,
cognitive tests, clinical history, and risk factors as predictor
variables. The raw FDG-PET scans were pre-processed by the
dataset owner, and were then standardized to voxel dimensions
of 160 × 160 × 160 (1.5 × 1.5 × 1.5mm3 voxel spacing)
using the NiBabel library [44]. To be in line with the OAI
dataset, we applied the same technique to convert scalar inputs
to one-hot encoding vectors with a length of 4. In querying
subjects, while we only selected entries whose raw FDG-PET
scans were available, the other input variables were allowed
to be missing.

Our objective was to forecast the AD clinical statuses of
participants’ brains – cognitively normal (CN), mild cognitive
impairment (MCI) or probable AD – in the next 4 years.
Since the amount of the queried data was substantially limited
(see Table I), we sampled entries from follow-up examinations
to increase the amount of training data, and performed 10-fold
cross-validation on this task.

B. Experimental Setup
1) Implementation Details: We trained and evaluated our

method and the reference approaches using V100 Nvidia
GPUs. Each experimental setting was performed on a single
GPU with 12GB. We implemented all the methods using
the PyTorch framework [45], and trained each of them with
the same set of configurations and hyperparameters. For each
problem, we used the Adam optimizer [46]. The learning rates
of 1e−4 and 1e−5 were set for the OA and AD-related tasks,
respectively.

To extract visual representations of 2D images, we utilized
the ResNet18 architecture [47] whose weights were pretrained
on the ImageNet dataset [48]. We used a batch size of 128 for
the knee OA experiments. Regarding 3D images, we chose
the 3D-ShuffleNet2 architecture because it was well-balanced
between efficiency and performance as shown in [49], which
allowed us to train each model with a batch size of 36 on
a single consumer-level GPU. We utilized 3D-ShuffleNet2’s
weights previously pretrained on the Kinetics-600 dataset [50].
Moreover, we used a common feature extraction architecture
with a linear layer, a ReLU activation, and a layer normal-
ization [36] for all scalar numerical and categorical inputs.
We provide the detailed description of the input variables in
Tables II and III.

2) Baselines: For fair comparisons, our baselines were
models that had the same feature extraction modules for
multi-modal data, as described in Section IV-B.1, but uti-
lized different architectures to perform discrete time series
forecasting. As such, we compared our method to baselines
with the forecasting module using fully-connected network
(FCN), GRU [51], LSTM [52], multi-modal transformer
(MMTF) [31], Reformer [53], Informer [54], Autoformer [55],
or CLIMAT [22]. While FCN, MMTF, Reformer, Informer,
Autoformer, and CLIMAT are parallel models, GRU and
LSTM are sequential approaches. Among the transformer-
based methods both versions of CLIMAT have a modular
structure of transformers rather than using a flat structure as
in MMTF, Reformer, Informer, and Autoformer.

3) Metrics: As data from both OAI and ADNI were imbal-
anced, balanced accuracy (BA) [56] was a must metric in
our experiments. As there were only 3 classes in the AD
clinical status prognosis prediction task, we also utilized the
one-vs-one multi-class area under the ROC Curve (mAUC-
ROC) [57] as another metric. To quantitatively measure
calibration, we used expected calibration error (ECE) [35],
[58]. We reported means and standard errors of each metric
computed over 5 runs with different random seeds.

To perform analyses of the statistical significance of our
results, we utilized the two-sided Wilcoxon signed-rank test to
validate the advantage of our method compared to each base-
line [59]. We equally split the test set into 20 subsets without
overlapping patients. For such a subset, we computed metrics
averaged over 5 random seeds per method. The statistical
testing was done patient-wise by comparing our method with
every baseline individually. In the case of the OAI dataset, for
all patients, we did two rounds of hypothesis testing: one for
the left and one for the right knee, respectively. Subsequently,
we applied the Bonferroni correction to adjust the significance
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TABLE II
INPUT VARIABLES FOR FORECASTING KNEE OA SEVERITY GRADES

TABLE III
INPUT VARIABLES FOR FORECASTING CLINICAL STATUSES OF

ALZHEIMER’S DISEASE. SEE SEC. IV-E.2 FOR ACRONYMS

thresholds for multiple comparisons (p = 0.025 due to two
knees per patient) [60].

C. Ablation Studies

1) Overview: We conducted a thorough ablation study to
investigate the effects of different components in our CLI-
MATv2 architecture on the OAI dataset. The empirical results
are presented in Table IV and summarized in the following
subsections.

2) Effect of the Transformer P’s Depth: Firstly, we searched
for an optimal depth of the transformer P. The results show
that the transformer P with a depth of 4 provides the best
performance, yielding 0.2 % gain in averaged BA compared
to depths of 2 and 4. The average BA (over 4 years) indicates a
substantial boost in performance. We, therefore, use the depth
of 4 for the transformer P in the sequel.

3) Effect of the Number of [CLS] Embeddings and FFNs in
the Transformer P: Then, we simultaneously validated two
components: using single or multiple [CLS] embeddings, and
using common or separate FFN in the transformer P. Of
4 combinations of settings, the quantitative results suggest that
the transformer should have 9 individual [CLS] embeddings,
each of which corresponds to an output head, and merely use
one common FFN to make predictions at different time points.

TABLE IV
HYPERPARAMETER AND MODEL SELECTION BASED ON CV
PERFORMANCES ON THE KL-BASED KNEE OA PROGNOSIS

PREDICTION TASK. BA∗ INDICATES THE AVERAGES OF BAS

OF THE TARGETS AT THE BASELINE AND THE FIRST 4 YEARS

TABLE V
EFFECT OF THE CONSISTENCY TERM ON PERFORMANCE AND

CALIBRATION (K-FOLD CROSS-VALIDATION). REPORTED RESULTS

ARE AVERAGES OF BAS AND ECES OVER THE FIRST 4 YEARS

4) Effect of the Consistency Term: To validate the necessity
of the Lcons term, we conducted an experiment on a set
of λ values {0, 0.25, 0.5, 0.75, 1}. The empirical evidence
in Table IV shows that a λ of 0.5 resulted in the best
performance, which was 0.7% higher than the setting without
Lcons. We further validated the effects of the consistency term
on other knee OA grading criteria as well as the AD status
forecasting task. The empirical results in Table V consistently
demonstrate that the term Lcons has a positive impact on
performance, albeit with the trade-off of calibration. A consis-
tency coefficient λ of 0.5 is the most optimal setting in terms
of performance across the tasks. Specifically, we observed BA
gains of 1.7%, 0.6%, and 0.5% with trade-off ECEs of 0.4%,
0.8%, and 0.4% for JSL, JSM, and AD, respectively.

5) Average Pooling for Image Representation: In contrast to
the previous version, we adopted a conventional approach used
in prior studies [38], [39], [40], which involves performing an
average pooling over the output sequence of the Radiologist
block to constitute an imaging feature vector for diagnosis
prediction ŷ R

0 . According to Table IV, such an approach results
in a gain of 1.1% BA compared to the baseline, which solely
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TABLE VI
ABLATION STUDY ON IMAGING AND NON-IMAGING COMBINATION WITH

K-FOLD CROSS-VALIDATION (K = 5 AND K = 10 FOR OAI AND ADNI,
RESPECTIVELY). CHANNEL-WISE APPROACH (OURS) IS COMPARED

TO THE SEQUENCE-WISE APPROACH, CONCATENATING IMAGING

EMBEDDINGS PRODUCED BY THE BLOCK R WITH PROJECTED

NON-IMAGING EMBEDDINGS OUTPUTTED BY THE BLOCK C.
REPORTED RESULTS ARE AVERAGED BAS AND

ECES OVER THE FIRST 4 YEARS

utilized the first vector of the sequence generated by the
block R.

6) Multimodal Channel-Wise Concatenation: We conducted
an ablation study on the combination of multimodal embed-
dings. As such, we compared our channel-wise approach to
a sequence-wise baseline that simply concatenates imaging
embeddings and a projected version of non-imaging ones.
For the baseline, we utilized a linear projection layer to
ensure that imaging and non-imaging embeddings are in
the same CX -dimensional space. We reported the K-fold
cross-validation results in Table VI. On the knee OA-related
tasks, our approach tends to have positive benefits on both
performance and calibration. Specifically, the performance
gains were 2.3%, 2.0%, and 0.5% for KL, JSL, and JSM,
respectively. Except for JSL with an increase of 0.1% ECE,
the approach results in calibration improvements of 2.5% and
3.2 for KL and JSM, respectively. On the AD-related task, the
channel-wise approach leads to improvements of 1.1% BA and
0.2% ECE.

7) Effectiveness of CLUB Loss: We compared the CLUB loss
to CE itself, multi-task loss (MTL) [41], focal loss (FL) [61],
and adaptive focal loss (AFL) [62]. Whereas the first two
baselines and our loss are based on CE loss, the remaining
ones are related to FL. In Figure 6, we graphically visualize the
trade-off between performance and calibration, in which the
best in both aspects are expected to locate close to the top-left
corners. We observe that our model trained with FL-related
losses was substantially worse calibrated compared to the
settings with any CE-based loss. Among the losses based on
CE, the proposed CLUB helped our model to achieve the best
ECEs in all three OA grading systems with insubstantial drops
in performance.

D. Performance and Calibration Comparisons to
Competitive Baselines

1) Knee OA Structural Prognosis Prediction: In Figure 7,
we graphically present comparisons between both versions of
CLIMAT and the baselines in the 7 different knee OA grading
scales.

Fig. 6. Performance and calibration comparisons between CLUB and
other baselines. All the measures are on the medial side. The losses can
be categorized into groups: (1) FL and AFL, and (2) CE, MTL, and CLUB,
which are based on cross-entropy and focal loss, respectively.

TABLE VII
CV PERFORMANCE AND CALIBRATION COMPARISONS ON THE ADNI

DATA (MEAN AND STANDARD ERRORS OVER 5 RANDOM SEEDS).
THE BEST PERFORMANCES WITH AND WITHOUT SUBSTANTIAL

DIFFERENCES ARE INDICATED BY BOLD AND UNDERLINED VALUES,
RESPECTIVELY. THE SUBSTANTIAL IMPROVEMENT IS DETERMINED

BY WHETHER THE BEST PERFORMANCE OVERLAPS WITH ANY

OTHER METHOD’S. ∗ AND ∗∗ INDICATE THE STATISTICALLY

SIGNIFICANT DIFFERENCES BETWEEN CLIMATV2 VS.
EACH BASELINE VIA WILCOXON SIGNED-RANK TESTS

(P < 0.05 AND P < 0.001, RESPECTIVELY)

In general, both versions of CLIMAT outperformed the
other baselines in forecasting the knee OA progression within
the first 4 years across the knee OA grading systems. That
is consistent with the observation of [22] in KL. We observe
that LSTM is the most competitive baseline across the grading
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Fig. 7. Performance comparisons between our CLIMAT models and other baselines on the knee osteoarthritis prognosis task via different types of
grading (means and standard errors over 5 random seeds). ∗ and ∗∗ indicate the statistically significant differences between CLIMATv2 compared to
each baseline via Wilcoxon signed-rank tests (p < 0.05 and p < 0.001, respectively). As the statistical tests were conducted on both knees, p-value
thresholds were adjusted to 0.025 and 0.0005, respectively.

Fig. 8. Calibration comparisons on the knee OA prognosis predictions.
(a) Averaged ECEs over the first 4 years. (b) Averaged ECEs over 8 years.

systems. Compared to LSTM, on average of the first 4 years,
our model achieved 1.3%, 1.7%, 1.9%, 2.3%, 0.7%, 4.4%,
and 2.4% higher BAs while having 1.9%, 0.1%, 0.02%, 6.5%,
3.6%, 1.4%, and 4.1% lower ECEs in KL, JSL, JSM, OSFL,
OSFM, OSTL, and OSTM, respectively. On average, Informer
was the most competitive transformer-based baseline. Com-
pared to Informer, CLIMATv2 achieved BA improvements
of 0.4%, 0.3%, 1.6%, 0.6%, 0.4%, 1.2%, and 1.8% in KL,
JSL, JSM, OSFL, OSFM, OSTL, and OSTM, respectively.
Except for KL and OSFM, our model had lower ECEs
with differences of 0.3%, 0.1%, 1.5%, 1.2%, and 0.4% in
JSL, JSM, OSFL, OSTL, and OSTM, respectively. Moreover,
in comparison to CLIMATv1 [22], on average for the first
4 years, the newer version performed better in KL, JSM,
OSFL, and OSTL with BA improvements of 0.1%, 0.4%,
0.5%, and 0.2%, respectively, whereas it reached 0.1%, 0.5%,
and 0.3% lower BAs in JSL, OSFM, and OSTM, respectively.
Regarding the calibration aspect, CLIMATv2 obtained lower
ECEs compared to CLIMATv1 in JSL, JSM, OSFM, and

Fig. 9. An example of progression from a healthy knee at baseline to
early osteoarthritis. Our model identified the changes in the intercondylar
notch, sex, and symptomatic status.

OSTM with differences of 0.1%, 0.3%, 0.2%, and 0.4%,
respectively.

2) Alzheimer’s Disease Status Prognosis Prediction: We
reported the quantitative results in Table VII. Regarding
performance, both the CLIMAT methods achieved the best per-
formances across the prediction targets, in which CLIMATv2
was top-1 at the first 2 years in both BA and mROCAUC.
Compared to the transformer-based baseline MMTF, our
method outperformed by 2.2%, 1.8%, and 2.2% BAs at
years 1, 2, and 4, respectively. In calibration, CLIMATv2
yielded substantially lower ECEs than all the references at
every prediction target. That observation was supported by the
statistical test results in Table VII.

E. Attention Maps Over Multiple Modalities

The self-attention mechanism of the transformers in CLI-
MATv2 allowed us to visualize attention maps over imag-
ing and non-imaging modalities when our model made
a prediction at a specific target. Specifically, we used
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Fig. 10. Interpretability of our method’s prediction on a selective sample
from the ADNI dataset.

Softmax
(

QL K⊺
L/
√

dk
)
, where QL , K L are query and key

matrices of the last layer L , respectively, and dk is the feature
dimension of the key matrix, as attention maps [25]. While
we utilized the softmax output corresponding to h̄0

C in the
transformer F for clinical variables, we took the softmax output
in computing h̄t

P with t = 0, . . . , T in the transformer P to
visualize attention maps on imaging modalities. Here, we set
t = 1, corresponding to the forecast of a disease severity 1 year
from the baseline.

1) Knee OA Structural Prognosis: In Figure 9, we visualized
attention maps over different input modalities across 7 grading
criteria. As such, in Figure 9a, we displayed a healthy knee at
the baseline overlaid by 7 corresponding saliency maps. For
differentiation, we also provided colored ellipses. Figure 9b
shows the heatmap over the 6 clinical variables on each
grading criterion. Values on each row sum up to 1. In this
particular case, we observe that the model has paid the most
attention to the intercondylar notch, together with BMI and
WOMAC [63].

2) AD Clinical Status Prognosis: As imaging data consisted
of 3D FDG-PET scans as well as the other imaging measure-
ments, we had to separate them into Figures 10a and 10b. We
can observe that an attention sphere locates around the poste-
rior cingulate cortex, the inferior frontal gyrus, and the middle
gyrus [64]. Figure 10b shows accumulated attention weights
corresponding to the FDG-PET feature vectors alongside ones
of the other imaging measurements. The reason that imaging
variables were assigned a substantially higher importance is
that the number of the 3D visual embeddings was dominant
compared to the others (i.e. 125 versus 6). In Figure 10c,
high attention can be observed on the percent forgetting score
of the Rey Auditory Verbal Learning Test (RAVLT), RAVLT
immediate, the AD assessment score 11-item (ADAS11),
Clinical Dementia Rating Scale-Sum of Boxes (CDRSB),
Mini-Mental State Exam (MMSE), and Functional Activities
Questionnaire (FAQ).

Fig. 11. Attention maps on axial FDG-PET slices. Three axial slices on
each row belong to the same PET scan.

V. CONCLUSION

In this paper, we proposed a novel general-purpose
transformer-based method to forecast the trajectory of a dis-
ease’s stage from multimodel data. We applied our method to
two real-world applications, that are related to OA and AD.
Our framework provides tools to integrate multi-modal data
and has interpretation capabilities through self-attention.

In comparison with the prior version, CLIMATv2 has two
primary upgrades. First, we have eliminated the assumption
of independence between non-imaging data m0 and diagnostic
predictions y0 used in CLIMATv1 [22] since it does not hold
not only in OA and AD, but also in other diseases. Specifically,
Liu et al. [34] provided empirical evidence of the benefit of
the inclusion of non-imaging data in the knee OA grading
task. The study conducted by Bird et al. [65] indicated a link
between human genes and AD while Li et al. [66] showed
that a blood test can detect the existence of amyloid-beta
plaques in the human brain, which is strongly associated
with AD status. Second, we have proposed the CLUB loss,
which allowed us to optimize for both performance and
calibration.

There are some limitations in this study, which are worth
mentioning. First, we used common DL architectures as
imaging and non-imaging feature extractors. While such a
standardized procedure resulted in fair comparisons, better
results could have been obtained with e.g. Neural Architecture
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Search methods [67]. Furthermore, a wider range of DL mod-
ules could have been considered, but this could substantially
increase the use of computing resources. Specifically, to obtain
results in this work, it required roughly 400 GPU hours for
experiments in Table VII and 525 GPU hours in Figure 7 for
every method, respectively.

The second limitation of the present study, is that attention
maps produced by transformers act as human-friendly signals
of our model, and should be carefully used in practice with
expert knowledge in the domain. Transformers may highlight
areas not associated with the body part, which can be seen
in Figure 11 as well as in other studies [68], [69], [70].

Lastly, we primarily utilized the transformer proposed
by [27]. More efficient and advanced transformers such
as [53], [54], [55], and [71] could be further investigated to
integrate into the framework.

To conclude, to our knowledge, this is not only the first
study in the realm of OA, but also the first work on AD
clinical status prognosis prediction from the multi-modal
setup that includes raw 3D scans and scalar variables. The
developed method can be of interest to other fields, where
forecasting of calibrated disease trajectory is of interest. An
implementation of our method is made publicly available at
https://github.com/Oulu-IMEDS/CLIMATv2.
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