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Transformer-Based Spatio-Temporal Analysis for
Classification of Aortic Stenosis Severity From

Echocardiography Cine Series
N. Ahmadi , M. Y. Tsang, A. N. Gu , T. S. M. Tsang , and P. Abolmaesumi , Senior Member, IEEE

Abstract— Aortic stenosis (AS) is characterized by
restricted motion and calcification of the aortic valve and
is the deadliest valvular cardiac disease. Assessment of
AS severity is typically done by expert cardiologists using
Doppler measurements of valvular flow from echocardiogra-
phy. However, this limits the assessment of AS to hospitals
staffed with experts to provide comprehensive echocardio-
graphy service. As accurate Doppler acquisition requires
significant clinical training, in this paper, we present a
deep learning framework to determine the feasibility of AS
detection and severity classification based only on two-
dimensional echocardiographic data. We demonstrate that
our proposed spatio-temporal architecture effectively and
efficiently combines both anatomical features and motion
of the aortic valve for AS severity classification. Our model
can process cardiac echo cine series of varying length and
can identify, without explicit supervision, the frames that
are most informative towards the AS diagnosis. We present
an empirical study on how the model learns phases of
the heart cycle without any supervision and frame-level
annotations. Our architecture outperforms state-of-the-art
results on a private and a public dataset, achieving 95.2%
and 91.5% in AS detection, and 78.1% and 83.8% in AS
severity classification on the private and public datasets,
respectively. Notably, due to the lack of a large public
video dataset for AS, we made slight adjustments to our
architecture for the public dataset. Furthermore, our method
addresses common problems in training deep networks
with clinical ultrasound data, such as a low signal-to-noise
ratio and frequently uninformative frames. Our source code
is available at: https://github.com/neda77aa/FTC.git

Index Terms— Aortic stenosis, cardiac imaging, spatio-
temporal analysis, temporal localization, ultrasound.

I. INTRODUCTION

AORTIC stenosis (AS) [1] is a severe valvular heart
disease associated with thickening and calcification of
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aortic valve (AV) leaflets. This restricts the motion of AV
leaflets and reduces blood flow from the left ventricle to the
rest of the body. AS becomes more prevalent with age, making
the problem more significant alongside an aging demographic.
Clinically significant AS is fatal, with a 5-year mortality rate
of 56% and 67% for those classified with moderate and severe
AS, respectively, if left untreated [2]. Thus, an accessible
method of screening is essential for early detection and timely
intervention of AS.

Echocardiography (echo) is the current clinical standard for
determining the severity of AS, where three clinical markers
(AV area, peak velocity of the valvular jet and mean pressure
gradient) are determined primarily based on Doppler mea-
surements [3]. This information is interpreted by experienced
cardiologists based on the clinical guidelines to make a diag-
nosis. However, Doppler imaging is technically challenging
for less experienced users, resulting in high interobserver
variability for AS diagnosis.

Recently, a body of work has emerged from both the clinical
and deep learning communities [4], [5], [6], [7] to directly
evaluate AS from two-dimensional echo data. This enables
evaluation to be accessible to a larger population in two
ways: by easing the workflow of screening for AS and, more
importantly, by allowing screening to be completed without
spectral doppler.

Anatomical evaluation of the AV involves two standard-
plane echo views, the parasternal long-axis (PLAX) and
parasternal short-axis AV level (PSAX-Ao) (Figure 1), through
which the AV is visible from two angles. These two views
provide information on the structure of the valve, degree of
calcification, speed and range of motion, all of which have an
impact on the severity of AS. While apical views also provide
visualization of the aortic valve, the opening of the aortic valve
may not be clearly visible on the apical 5-chamber and apical
3-chamber views. A normal AV, as shown in Figure 1, does not
show signs of thickening or calcification and fully opens, thus
blood flows out of the heart without obstruction [8]. With the
progression of AS, the AV thickens, its opening narrows, and
its motion becomes more restricted. To automatically assess
AS severity, a machine learning model should be able to
focus on a few pixels in an echo image representing the AV,
assess the AV’s calcification and thickness, and understand
the mobility of cusps throughout the cardiac cycle, all of
which make this a fundamental and difficult task in video
understanding.
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Fig. 1. (A) Diagram of the orientation of PLAX and PSAX views and their coincidence with the AV anatomy. (B) The appearance of the normal
aortic valve in PLAX and PSAX views. The images on the left represent the closed AV, and the images on the right represent the open AV. (C) The
appearance of calcified aortic valve in PLAX and PSAX views, and impact of calcification and narrowness of the valve on echo studies. Comparison
of images in (B) and (C) demonstrates how calcification and thickening of the cusps present themselves in echo cine series, and how the progression
of AS restricts the AV’s motion.

Previous studies on automated AS assessment [5], [6]
trained a deep neural network to learn the severity of AS
from single echo images, then aggregated the predicted results
of each image belonging to a patient using weighted aver-
aging, where PLAX and PSAX views were assigned higher
weights than other views. Based on our experiments and
previous work [4], considering temporal information about
valve opening and closing is also beneficial since the shape and
mobility of the AV are the primary indicators of AS severity.
We also observe that in most cardiac echo cine series, only
a few frames show the opening and closing of the AV in
an informative way that facilitates clinical decision-making.
As a result, a simple video analysis model that is unable to
pay attention to a subset of frames that are clinically relevant
cannot provide an accurate classification of AS. Our problem
is further complicated as each echo examination may contain
multiple videos, which may not be equally informative of the
AV structure or motion.

Based on the above observations, we investigated several
approaches that leverage available literature on small object
detection and temporal localization to tackle these challenges.
Previous work has demonstrated video datasets provide addi-
tional temporal information that can be further incorporated for
detecting small objects (e.g., [9], [10]) compared to methods
that only consider spatial dimension [11]. The similarity of

subsequent frames and slow changes in heart structure and
background in echo enforces the need to capture local temporal
context and small spatial changes of the aortic valve for a
complete diagnosis. Additionally, to detect clinically informa-
tive frames in echo cine series, we took a look at temporal
localization. Most current research [12], [13] are designed for
action detection tasks, and use a weakly supervised learning
method to identify the temporal interval of action classes.
However, those methods are usually provided with a single
or few frame-level annotations of whether a frame belongs
to the background or is representing an action. When there
is a lack of adequate temporal annotations (which is the
case in clinical labels available for AS classification), several
approaches have proposed unsupervised temporal localization
for training action recognition networks [14], [15].

Inspired by those works, in this paper, we present a machine
learning framework with the ultimate goal of developing
Point-of-care EchocardioGraphy to detect AS with UltraSound
(PEGASUS). Our framework has several key design features
that facilitate training, including 1) using a temporal loss
to enforce more sensitivity to small motions of AV in spa-
tially similar frames without explicit AV localization labels;
2) adopting temporal attention to combine spatial representa-
tions with temporal context to capture the AV motion, which is
reduced in the presence of moderate to severe stenotic valve;
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and 3) automatically identifying the relevant echo frames that
are more important for the final classification by learning
from weak diagnosis labels and without explicit supervision.
In summary, our contributions are as follows:

• We introduce an end-to-end spatio-temporal model with
an efficient frame-level encoding that can learn small
motions in echo by leveraging Temporal Deformable
Attention (TDA) [16] in its transformer architecture. The
model also adopts temporal coherence loss [17] to enforce
detecting small spatial changes across frames.

• We introduce an attention layer to aggregate the disease
severity likelihoods over a sequence of echo frames to
produce a cine series-level prediction. These attention
weights leverage temporal localization to find the most
relevant frames in each cine series. We show that high
attention weights consistently correlate with informative
frames in each cine series.

• We demonstrate state-of-the-art accuracy on two clini-
cal AS datasets, improving upon previous models for
AS severity classification while having considerably less
parameters compared to other video analysis models such
as ResNet(2+1)D [18] and TimeSformer [19].

II. RELATED WORK

The recent success of deep learning in analyzing medical
imaging data, combined with the proliferation of medical
imaging in clinical practice, are major motivators for the
automation of AS diagnosis. This is particularly important in
hospitals that are strained for staff or remote environments
where access to cardiac imaging or expertise in cardiovascular
medicine is sparse. These automated methods include the
assessment of AS using a variety of data types.

A. Image Analysis

Kang et al. [20] used radiomics features from computed
tomography AV calcium scoring (CT-AVC) to train a classifier
for separating severe from non-severe AS, and noted the
diagnostic accuracy is comparable to non-automated meth-
ods. Chang et al. [21] used deep learning to automatically
segment calcified regions discovered by CT and predicted
the severity of AS. Huang et al. [5] [6] applied a WideRes-
Net [22] to predict the view and AS grading based on single
two-dimensional echo images. They subsequently aggregated
the predictions from each image belonging to the same
patient to form a prediction at the patient level. Since
most views are clinically uninformative and irrelevant, they
conducted the final classification by a weighted sum of
image-level logits, favoring the relevant views such as PLAX
and PSAX.

B. Video Analysis

Roshanitabrizi et al. [23] used Doppler data of the PLAX
and PSAX views to detect rheumatic heart disease (RHD),
another pathology that can affect the AV. An ensemble
method of 3D-Convolutional Neural Networks (CNN) and a

transformer classify between normal and RHD cases. In point-
of-care ultrasound devices, however, spectral Doppler is not
generally available. Ginsberg et al. [4] proposed a video anal-
ysis approach to AS severity grading using two-dimensional
echo cine series of the PLAX and PSAX views. They used
a multi-task, uncertainty-aware training scheme with ResNet-
18 2+1D [18] as the backbone model. They showed that
multi-task training improves the model’s generalization. This
network cascades 1D temporal convolutions with 2D spatial
convolutions. However, their work assumed each portion of
the video is equally informative; thus, the impact of each
frame on the final classification cannot be visualized or
weighted accordingly. Dai et al. [24] uses 3D convolutional
networks to estimate three Doppler measurements to detect AS
severity levels. Vimalesvaran et al. [7] detected the presence
of AS and aortic regurgitation using cardiac MRI cines. The
algorithm is first trained on supervised key-point labels of the
AV leaflets and blood flow jets, which are visible on MRI.
An expert system and random forest performed feature extrac-
tion on the key-points and predicted pathology, respectively.
Compared to fully deep architectures, their method is more
interpretable.

In this work, we introduce a hand-crafted transformer-based
architecture that is trained in an end-to-end approach and
captures slight motions of AV without requiring any key-
point labels while providing attention weights that represent
the informativeness of frames within each cine.

III. METHOD

A. Model Overview
The overall architecture of our proposed framework is

shown in Figure 2. Within every batch comprising B elements,
given an input video (i.e. echo cine series) of arbitrary
length, X ∈ RF×H×W×3, each frame is first encoded to
a D-dimensional vector using a ResNet-18 based encoder.
Frame-level feature vectors are concatenated to form a sequen-
tial representation Xv ∈ RF×D . The features extracted from
the video are then fed to a temporal encoder to capture
the temporal context in the input feature sequence. In the
final layer, the network is divided into three branches. The
first branch calculates attention weights [14] using a fully
connected layer, which provides an importance score for each
frame. Class-specific confidence scores are derived from the
second branch, which are then aggregated favoring attention
weights with higher values to provide probability distribution
for each video. The third branch provides a temporal loss,
which ensures that the small local changes among subsequent
frames are encoded in embeddings. Overall, the model is
trained with a weighted sum of three losses:

L = Lcross_entropy

+ αLattention_entropy + βLtemporal_coherent . (1)

All losses backpropagate through the same network, and
hyperparameter values are identified based on the impact of
each term on the total loss and refined using an empirical
hyperparameter search.
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Fig. 2. Overview of the proposed machine learning framework. (A) Embeddings are extracted from each frame. (B) Extracted embeddings from
frames of each ultrasound cine series are concatenated to create cine series level embedded features with the addition of temporal positional
embedding. (C) The temporal encoder processes the temporal relation of embeddings. (D) Output embeddings are mapped to each class using
attention weights. The total loss backpropagates into the whole network. In this context, B represents the number of elements in the batch, F represents
the number of frames in the video, and H and W represent the height and width of each frame, respectively.

B. Temporal Positional Embeddings

The temporal position and order of frames are essen-
tial for accurate video understanding. In typical attention
architectures, the attention module would perform identical
inference on all frame-level embeddings, which does not pro-
vide information about the temporal relationships of the input
frames.

Consequently, we use positional embedding based on time
steps to provide order and temporal context to the input frames.
We leverage from positional embedding used in [25] to encode
this order in each video feature such that

P(λ, τ ) =

{
sin(wi .τ ) if λ = 2i
cos(wi .τ ) if λ = 2i + 1

wi =
1

10002i/D , (2)

where τ = 1,…,F represents temporal position, and λ =

1,…,D represents location of each instance in an embedding.
Thus, each time step in the sequence has a unique encoding,
and the distance between two-time steps is consistent even for
videos of different lengths. The process of incorporating posi-
tional information into the frame-level embeddings involves
addition of variable P to the existing embeddings. This step
results in an updated representation that reflects the temporal
relationships of the frames within the sequence:

Xe = Xv + P. (3)

C. Temporal Encoder
Much of the information related to AS severity is derived

from the clinical assessment of echo videos, such as the
opening and closing of the AV and the motion of the heart
chambers. The temporal encoder uses temporal deformable
attention (TDA) to enhance frame-level features with temporal
information from nearby frames. Overall, the encoder consists
of two transformer encoder layers inspired by [16], which
replaces the dense attention found in typical transformer mod-
els with TDA followed by a feedforward network. Similar to
the vanilla transformer architecture [25], outputs of each sub-
layer are fed to a residual connection and normalization layer.

1) Temporal Deformable Attention: Unlike action recognition
tasks where an action can be seen in spatially distant frames,
the AV motions observed in echo cine series are both small
and local. To mitigate this issue, we take advantage of TDA
(Figure 3). This attention module only samples small sets
of key temporal locations around chosen reference points,
independent of embedding size. Given an input video feature
Xe ∈ RF×D , for each query with index q and feature vq ∈

RD and its normalized position in time tq ∈ [0, 1], where
0 corresponds to the first frame and 1 corresponds to the last
frame, the TDA feature is defined as

hm =

K∑
k=1

amqk .Wm Xe((tq + 1tmqk)F), (4)

T D A(vq , tq , Xe) = W oConcat[h1, h2, . . . , hm]
M
m=1, (5)
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Fig. 3. Illustration of the temporal deformable attention (TDA) module. The input is an F × D matrix, where each vector represents one frame in
the video. For each reference point in the temporal sequence, two linear projections are applied to the query feature vq ∈ RD. The first branch
encodes a small set of temporal offsets, which are then used to obtain key temporal locations. Normalized attention weights are derived by applying
a softmax operator to the output of the second branch. The sampled key-points select elements from values which is a linear projection of input.
Selected elements are then aggregated using attention weights for each attention head. The values are concatenated and fed into a linear projection
to calculate the output. We show only one reference point and four sampled keys for a clear presentation.

where hm is the output of the m-th head of TDA, amqk is the
attention weight of the mth sampling point in the kth attention
head for the q th query. It is computed by performing a linear
projection on each query, vq , and subsequently normalizing the
resulting values using a softmax function (

∑K
k=1 amqk = 1),

Wm ∈ RD×D/M and W o
∈ RD×D are the learned weights, m

is the index of the attention head, M is the total number of
attention heads, k is the index of the sampled key, K represents
the total number of sampled keys, and F is the scalar video
length. 1tmqk is the sampling offset w.r.t tq for the kth sampled
key and mth attention head. To look up the value, we access
Xe at the (tq + 1tmqk)F-th position. Since (tq + 1tmqk)F
may be a decimal, we use bi-linear interpolation in the time
dimension on elements of Xe.

D. Attention Branch

In this branch, attention weights are calculated by applying
a Multi Layer Perceptron (MLP) to output embeddings of
the temporal encoder module. Attention weights are normal-
ized via softmax along the temporal dimension. The weights
indicate the importance of each frame in the final diagnosis
probabilities. Since the frame-to-frame differences caused by
AV motion can be small, the differences between frame
embeddings are generally small too. In our design, we discour-
age attention weights from being too similar for each frame in
the video. To achieve this, we add an entropy loss term based

on the normalized weights to encourage sparsity:

α̂ = σF (α),

Lattention_entropy = −

F∑
τ=1

α̂τ log(α̂τ ). (6)

where σF denotes softmax normalization across the temporal
dimension F , α ∈ RF and α̂ ∈ RF are the attention weights
before and after normalization, respectively.

E. Classification Branch
In order to derive the final cine series-level prediction,

we use the attention weights for a weighted sum of class-
specific logits. The probabilistic distribution of each class is
calculated as follows:

p(y = c|x1:F ) ∝

F∑
τ=1

α̂τσ( fθD (xτ ))c, (7)

where fθD (.) is the output of the classification branch, and
σ(.) denotes softmax across classes.

For patient-level classification, we utilize entropy as an
aleatoric uncertainty measure by employing four probabilities
obtained from cine-level prediction. This allows us to assess
the informativeness of each video. However, videos with an
entropy value exceeding 0.3 are excluded from the analysis.
Then we use majority voting to derive the final patient-level
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classification based on instances the model is more confident
on. In cases where there is a tie, the maximum severity
between those classes is selected.

F. Temporal Coherent Branch
Ideally, the frame features are consistent (i.e. have low

variation) for adjacent frames but are still diverse as a dis-
tribution. To induce this property, we introduce a loss inspired
by SyncNet [17], which tries to increase the similarity between
adjacent frames and the distance between distant frames. This
loss forces the model to create more distant embeddings for
frames with small spatial differences such as those in our
dataset. We formulate this loss as below:

L tcl =
1
F

(

F∑
τ=1

−log(
esτ

esτ +
∑

w edτ,w
))

sτ =


vT

f1
v f2 if τ = 1

vT
fF−1

v fF if τ = F
1
2
vT

fτ−1
v fτ +

1
2
vT

fτ v fτ+1 otherwise

dτ,w = vT
fτ v fw i f |τ − w| > T, (8)

where v fτ is the feature that represents frame fτ , sτ is calcu-
lated using the inner product of temporally adjacent frames,
dτ,w is the inner product of distant frames, w ranges from
1 to F, and T is the minimum temporal distance, measured
in frames, that is considered distant. T was assigned three in
our experiments. The computation of TCL is quadratic with
respect to the number of frames due to the need to compute at
least F − 2T and at most F − T similarities to find

∑
w edi,w ,

but its has a low impact on runtime.

G. Dataset
We conduct experiments on two datasets: 1) a private video

dataset, and 2) the TMED-2 [6] public image dataset, for AS
classification and grading AS severity.

1) Private AS Dataset: The private dataset was sourced
from a university-affiliated tertiary care hospital. Data were
extracted with permission from the Information Privacy Office
and the Clinical Medical Research Ethics Board. Cines were
extracted from Philip IE33 and VividE9 ultrasound machines.
In accordance with the American Heart Association Guide-
lines [3], AS severity levels were determined based on the
three markers related to AS, namely AV area, peak valvular
jet velocity, and mean pressure gradient provided in echo
reports, resulting in an equal distribution of normal, mild,
moderate, and severe cases. Furthermore, we only included
studies with at least one PLAX or PSAX view and agreement
between the calculated AV area and other Doppler parameters
in terms of AS severity grading. In this proof-of-concept
study, the exclusion of discordant cases refined our data and
facilitated the development of a well-trained machine learning
model. To establish the generalizability of this model, future
studies will evaluate its performance in a wider population of
individuals with aortic stenosis.

The two-dimensional PLAX and PSAX cine series of the
selected studies were extracted from the hospital Picture

Archiving and Communication System as follows. The echo
data were anonymized in the hospital; all patient-identifying
information and the echo-cardiogram tracing were removed
from frames by applying a cine-shaped mask over the two-
dimensional echo recording. We also removed any videos
containing color or spectral Doppler. A deep-learning based
view classification method [27] was used to automatically
select only the PLAX and PSAX view videos. Finally, an expe-
rienced echocardiographer manually reviewed each video and
removed videos from our dataset with the wrong view clas-
sification. The resultant dataset consists of only PLAX and
PSAX videos and includes 2247 patients and 9117 videos.

To apply the data to our machine learning method,
we divided the videos into training, validation, and test sets
of approximately 70%, 20%, and 10%, respectively, ensur-
ing mutually exclusive patients in each set. We extracted
approximately one cardiac cycle from each video based on
the patient’s heart rate, and applied bilinear interpolation to
resample the video to 32 frames. Subsequently, we resized
each video to a spatial dimension of 224 × 224. We normal-
ized the pixel intensities to zero mean and a standard deviation
of 1. Finally, for the training set, we augmented the data using
random horizontal flipping, rotation with the center on the
beam origin and random cropping.

2) Public AS Dataset: TMED-2 dataset [6] consists of
transthoracic echo studies from the Tufts Medical Center
from 2011-2020. Each study contains multiple videos from
various views, and studies are graded using Doppler-based
guidelines [3]. Subsequently, they group the severity of
AS into three categories: no AS, early AS (mild, mild-
to-moderate), significant AS (moderate, severe). From each
video, they extract the first frame as a representative image,
and provide a label for the image view: PLAX, PSAX, 4-
chamber, 2-chamber, and other. For each patient, around 50 to
100 images are available. The dataset contains three groups
of images with respect to labels provided by board-certified
sonographers or cardiologists, which are as follows:

• Fully-labeled set: Images from 577 patients for which
both image-level view labels and patient-level AS severity
are given;

• View-only labeled set: Images of 703 patients for which
only view labels are given;

• Unlabeled set: 5287 patients without view or severity
labels.

In this study we only used the fully-labeled set, DEV479,
to compare to the baseline set by Huang et al. [6]. The
train/test split was determined utilizing the generated csv file
from the labeled dataset.

H. Implementation Details

Firstly, we use a ResNet-18 [28] backbone for representation
feature extraction. We replace the final layer of the base model
with a linear layer to yield feature vectors of dimension 1024.
The feature maps of each video are stacked to form video
features of size F × 1024. Video features are fed to the
temporal encoder. For the TDA sublayers, we use attention
heads M = 8 and sampling points K = 4. The overall loss is
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TABLE I
TEST ACCURACY COMPARISON WITH STATE-OF-THE-ART ON OUR PRIVATE AS CINE SERIES DATASET. QUANTITATIVE RESULTS SHOW OUR

APPROACH OUTPERFORMS THE STATE-OF-THE-ART IN BOTH VIDEO-LEVEL AND PATIENT-LEVEL CLASSIFICATION. AS SEVERITY IS A

FOUR-WAY CLASSIFICATION ENCOMPASSING THE CLASSES OF NORMAL, MILD, MODERATE, AND SEVERE, WHILE AS DETECTION

ENTAILS A TWO-TIER CLASSIFICATION INVOLVING NORMAL CASES VERSUS ALL OTHER SEVERITY LEVELS

weighted with α = 0.01 and β = 0.1. The model is trained
using Adam [29] with an initial learning rate of 0.0001 and
Cosine Annealing [30] as the learning rate schedule. For
private dataset experiments, we train the model for 100 epochs.
The model is developed using PyTorch [31] and experiments
are conducted on two 16 GB Nvidia Titan GPUs. The hyper-
parameter optimization focused on the number of attention
heads, keys within the transformer module and the weights
used to aggregate loss functions. Furthermore, the metric used
to guide the hyperparameter search was the accuracy of video-
level AS severity.

I. Quantitative Results

Table I summarizes the test accuracy achieved by our
method and various other state-of-the-art methods on the
private dataset. We compare the accuracy of individual video
classification and patient classification using multiple videos.
See subsection III-E for the approach to combine predic-
tions from multiple echo cine series. Our model outperforms
other recent state-of-the-art methods while having smaller
number of parameters compared to ResNet(2+1)D [18] and
TimeSformer [19]. The accuracy and efficiency of our method
suggest the effectiveness of explicitly considering the temporal
dimension, especially with reference to the short-term nature
of relevant AV motion, compared to vanilla video analysis
architectures. Our findings demonstrate that AS detection
accuracy is substantially higher than AS severity grading accu-
racy, largely due to normal cases being easier to classify and
thin based on valve appearance, with blood flow obstruction
differences. Conversely, diseased valves are usually calcified,
and the extent of calcification and the constriction of valve
motion vary, leading to differences in severity levels. As a
result, differentiating between moderate AS and mild or severe
cases is more difficult due to visual similarity. Furthermore,
various factors such as noise, blurriness, or darkness of frames
can obscure the aortic valve in many videos, making it
challenging to assess its condition. Therefore, developing a
model that can accurately and reliably classify most videos
remains a difficult task.

J. Qualitative Results

1) Clinical Importance of Attention Weights: Our results sup-
port that learned attention weights have a direct correlation
with temporal clinical information. This is shown in Figure 4.

Most frames that represent open AV have higher weights, and
the lowest weights are associated with closed AV. We hypoth-
esize that the network is taking advantage of the valve motion
and changes in its shape during the cardiac cycle to make
its prediction. Following the addition of the attention entropy
loss, the model exhibited a greater degree of attention sparsity,
indicating a more focused allocation of attention across the
frames.

2) Coherency of Embeddings: We also analyzed the learned
features from videos by demonstrating the impact of temporal
coherent loss on the similarity and distinctness of the frames
in each cine series. Figure 5 illustrates that embeddings that
belong to the same stage of a heart cycle are more similar to
each other and more distant to frames that represent another
phase of the cycle.

3) Failure Study: We applied an extensive failure study on
patients with a large number of mislabelled videos. Videos are
often misclassified with the presence of noise, the darkness of
frames, poor image quality, and invisibility of the AV and
its cusps. We visualized three failure cases from the test set
of our private dataset in Figure 6. For all three samples,
there is a two-level difference between the prediction and
ground truth, which can largely impact clinical outcomes.
In the first failure example, the AV is visible in all frames;
however, the cusps cannot be seen. Therefore, the calcification
and the narrowness of open valve cannot be estimated accu-
rately. But, as the layout of the valve is clear, the attention
weights have assigned higher weights to frames with an open
AV. In the second example, most frames are dark, so, they
provide little clinical information. As a result, large sections
of the heart structure and small motions are undetectable.
This similarity among frames and its difference with common
cine series in the training set resulted in fairly similar and
uninformative embedding space. The third example shows a
video of good quality in which the AV is not visible. Again,
attention weights were able to detect frames representing heart
contraction.

K. Empirical Ablation Analysis
The contribution of each model component was analyzed

by performing an ablation study. Different components were
eliminated or replaced; video-level and patient-level accuracy
were used to compare different settings (see Table II).

1) Impact of Each Layer on Representation Extraction:
Replacing the ResNet-18 encoder with ResNetAE based on the
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Fig. 4. Qualitative examples of how attention weights have learned the informativeness of frames. The diagram on the right shows the attention
weights associated with 32 frames of each video. Three sample frames of each video are shown on the left side. The orange arrows show
the interval of frames with an open AV and its associated attention weights. Blue arrows represent the close AV both before and after heart
contraction.

work of [32] showed that the ResNetAE embeddings provide
a good representation of each frame, but the temporally
distant frames in each video produced similar embeddings due
to the similarity of their spatial dimension. This prohibited
the model from learning the temporal variation throughout
the cine. We experimented with both temporal transformer
encoder (TTE) and BERT architectures for temporal encoding.
We observed that BERT could not capture the small local
changes between the embeddings of adjacent frames. We val-
idated this by comparing the accuracy between a model with
ResNet-18 and the BERT encoder and a model using only the
ResNet-18 layer without the transformer encoder that averaged
the embedding for all frames. We observed that the change
in accuracy was not significant when we added the BERT
encoder. This indicates that the BERT encoder was unable to
capture the temporal information. However, using the temporal
transformer encoder resulted in a 4.6% increase in video-level
accuracy. This indicates the notable impact of replacing dense
attention with TDA.

2) Aggregation Method: We tested two aggregation methods
to calculate the class-level probabilities. In the first method,
all logits are averaged, which disregards the importance of
each frame in the cine series and its impact on the final
diagnosis. In the second method, we used normalized atten-
tion weights as a weighted score to combine class-specific
predictions. Our experiments show attention weighting, even
without the attention entropy loss, yields slightly better
accuracy.

3) Pretraining Weights of Encoder: We tried pre-training
weights of ResNet-18 using supervised contrastive loss (Sup-
Con) to learn more informative representations. Then, we froze
its weights during training. However, this did not result in
any improvement. Based on our experiments, we conclude
that good representation extraction is not sufficient, and our
empirical studies validate the advantage of end-to-end learn-
ing, especially with the impact of temporal coherent loss on
learning better overall representations.

4) Impact of Each Loss Function: As we can see in Table II,
the attention entropy (AttE) loss only improves the accuracy
by 0.4%. However, before adding the loss, weights assigned
to each frame were more similar. Therefore, this loss has
a positive influence on the sparsity of informative frames.
Since the frames of a cine are visually similar due to small
changes caused by muscle contraction and valve movement,
for certain examples, we have observed that there was a
lack of significant differences in attention weights. However,
in most samples, frames that show an open aortic valve have
higher weights assigned to them after addition of the loss.
The temporal coherent loss (TCL) improves the accuracy by
0.7%. Finally, we use all losses to train the action localization
model, and achieve an accuracy of 69.4%, implying that each
loss contributes to the overall accuracy.

L. Evaluation of Our Method on Public Dataset
1) Reproducing the Baseline: Due to the lack of a large

public video dataset with AS diagnosis labels, we tested
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TABLE II
ABLATION STUDY OF NETWORK COMPONENTS ON THE VALIDATION SET OF OUR PRIVATE DATASET, STUDYING THE IMPACT OF EACH

COMPONENT. CE: CROSS ENTROPY. ATTE: ATTENTION ENTROPY. TCL: TEMPORAL COHERENT LOSS.
SUPCON: SUPERVISED CONTRASTIVE LEARNING

Fig. 5. The upper figure illustrates the pairwise similarity of frame-level
representations based on their cosine distance. The lower figure exhibits
the attention weights of each frame. As shown, similar frames have been
divided into two subgroups. The first group represents a phase of the
heart cycle with an open AV. We can see that these frames also have
higher attention weights. Comparatively, the second subgroup mostly
belongs to frames with closed AV and they have lower attention weights.

our attention aggregation method on the TMED-2 [6] image
dataset. To reproduce their results, we resized each image
to 224 × 224. We trained a multitask WideResNet-50-2 net-
work [22] to provide a label for image view (PLAX, PSAX,
and others) and severity of AS (no AS, early AS, i.e. mild or
mild-to-moderate, and significant AS, i.e. moderate or severe).
At inference time, images with high view classification entropy
were disregarded for each patient, and the summation of
the probability of relevant views (PLAX and PSAX) was
calculated, where thresholding was used to select images with
a high likelihood of belonging to one of the clinically relevant
views. The weights of the selected images were adopted to

Fig. 6. This figure shows three failure cases, with representative frames
of a closed and an open AV in order from left to right. (a) Visible AV with
undetectable cusps due to noise. However, attention weights were able to
detect phases of the heart cycle but not calcification. (b) Fairly dark and
uninterpretable frames. Fairly similar embedding as a result. (c) Good
video quality, but in most frames AV can not be detected. Still, because
of having fairly good quality video, attention weights could detect frames
with open AV.

perform a weighted aggregation:

r_w(x) = σ( fθv (x))P L AX + σ( fθV (x))P S AX

r̂_w(x) =


0 if r_w(x) < τ1

0 if H(r_w(x)) > τ2

r_w(x) else

p(y = c|x1:n) ∝

n∑
i=1

r̂_w(xi )σ ( fθD (xi ))c, (9)

where f is the network, θv is the view classifier parameters, θD
is the AS diagnosis classifier parameters, σ(.) denotes softmax,
rw and ˆrw are the relevance weight before and after threshold-
ing, τ1 are the confidence thresholds of belonging to relevant
views, and τ2 is a threshold for having a low entropy for the
predicted probabilities. With our implementation, we were able
to obtain slightly better results compared to those reported
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TABLE III
PATIENT-LEVEL AS SEVERITY DIAGNOSIS CLASSIFICATION IN THE

TMED-2 DATASET. COMPARISON WITH THE STATE-OF-THE-ART

METHOD [6] AND THE DIFFERENCE IN AGGREGATING

IMAGES FOR PATIENT-LEVEL DIAGNOSIS

in [6]. The values selected for τ1 and τ2 were 0.7 and 0.3,
respectively.

2) Implementation of Our Method: As TMED-2 is image-
based, we trained our model without considering the trans-
former layer and temporal coherent loss and replaced
ResNet-18 with WideResNet to be able to compare the
results. Since the attention module is trained on groups of
images and the number of images per patient is variable,
for each patient, these images were fed into the model for
feature extraction. Three MLPs were applied on image-level
embeddings to obtain attention weights, view classification,
and AS classification. Since the attention module operates on
groups of images belonging to the same patient, the network
was trained at a patient-level where the number of images
per patient is variable. To accommodate for variable-length
input, we binned the patients based on the number of images
and defined multiple data loaders, each for a different bin.
Attention aggregation was used to obtain the severity of AS
from the multiplication of the AS classification branch and
view relevance. We also added the entropy loss for attention
weights to learn more informative images. Patient-level train-
ing increased the accuracy of AS detection and AS severity
classification to 91.5% and 83.8%, respectively. Compared
to the aggregation of the image-level model at inference
time, (see Table III), the addition of attention weights had
a significant impact on the calculated probability distribution.
One reason behind this may be that although only PLAX and
PSAX views are clinically relevant, not all PLAX and PSAX
images provide sufficient information to diagnose AS. The
attention map can learn to choose more informative images
during training:

p(y = c|x1:n) ∝

n∑
i=1

α̂i r̂_w(xi )σ ( fθD (xi ))c, (10)

where α̂ are the attention weights normalized across images.

IV. CONCLUSION

In this work, we introduce a novel architecture for detecting
the severity of AS in cardiac echo cine series. We demon-
strate three architectural choices that resulted in more accu-
rate detection and grading by: 1) leveraging from temporal
deformable attention to increase locality awareness in trans-
formers; 2) using temporal coherent loss to capture small
spatial changes and enforce coherency in frame-level embed-
dings, and 3) adopting attention weights for detecting frames
that provide clinical relevance and favoring those frames in

weighted aggregation. We analyze the importance of each
component in improving accuracy and outperforming state-
of-the-art methods. For future work, we plan to extend this
framework to find informative videos for patient-level classi-
fication. This may include leveraging uncertainty to disregard
videos with insufficient clinical information. We aim to include
interpretability as part of our design and to facilitate the adop-
tion of the approach toward point-of-care ultrasound settings.
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