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Abstract— In this paper, we present the results of the
MitoEM challenge on mitochondria 3D instance segmen-
tation from electron microscopy images, organized in
conjunction with the IEEE-ISBI 2021 conference. Our bench-
mark dataset consists of two large-scale 3D volumes, one
from human and one from rat cortex tissue, which are
1,986 times larger than previously used datasets. At the
time of paper submission, 257 participants had registered
for the challenge, 14 teams had submitted their results,
and six teams participated in the challenge workshop.
Here, we present eight top-performing approaches from
the challenge participants, along with our own baseline
strategies. Posterior to the challenge, annotation errors in
the ground truth were corrected without altering the final
ranking. Additionally, we present a retrospective evaluation
of the scoring system which revealed that: 1) challenge
metric was permissive with the false positive predictions;
and 2) size-based grouping of instances did not correctly
categorize mitochondria of interest. Thus, we propose a new
scoring system that better reflects the correctness of the
segmentation results. Although several of the top methods
are compared favorably to our own baselines, substantial
errors remain unsolved for mitochondria with challenging
morphologies. Thus, the challenge remains open for sub-
mission and automatic evaluation, with all volumes available
for download.

Index Terms— Mitochondria, electron microscopy, 3D
instance segmentation, connectomics, brain.

I. INTRODUCTION

M ITOCHONDRIA are the primary energy providers for
cell activities, thus essential for metabolism. Quan-

tification of the size and geometry of mitochondria is not
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only crucial to basic neuroscience research, e.g., neuron type
identification [1], but also informative to clinical studies, e.g.,
bipolar disorder [2] and diabetes [3]. High-resolution imaging
technologies like electron microscopy (EM) have been used to
reveal their detailed 3D geometry at the nanometer level with
the terabyte data scale [4]. Consequently, to enable an in-depth
biological analysis, we need high-throughput and robust 3D
mitochondria instance segmentation methods. Publicly acces-
sible datasets that can exemplify the challenges are also of
essential importance for understanding the empirical gain of
segmentation approaches in this field.

The goal of this study is to (1) analyze the current progress
in the mitochondria segmentation task based on the results
of the Large-scale 3D Mitochondria Instance Segmentation
challenge (MitoEM),1 at the IEEE International Symposium
on Biomedical Imaging (ISBI) 2021, and (2) present an
in-depth analysis of the state-of-the-art evaluation metrics for
identifying mitochondria instance segmentation errors, that
reveals the difficulties of the current approaches and can
be used as a guide for the creation of the next generation
mitochondria segmentation models. To the best of our knowl-
edge, MitoEM was the first open comparison of mitochondria
instance segmentation algorithms on EM volumes. Moreover,
we describe the associated annotated dataset of two 3D EM
image stacks at the scale of (32.8 × 32.8 × 30µm), which are
freely available from the challenge website, and are two of a
few large-scale 3D image volumes suitable for testing instance
segmentation algorithms.

A. Previous Works
1) Mitochondria Segmentation Datasets: The de facto

benchmark dataset for evaluating methods of mitochondria
segmentation from EM images is the EPFL Hippocam-
pus dataset [5], referred to as the Lucchi dataset in
this paper. This dataset includes two EM image vol-
umes along with corresponding binary segmentation masks.
Subsequently, Kasthuri et al. [6] provided annotation for mito-
chondria masks for selected regions within a 3-cylinder
volume. Additionally, Casser et al. [7] improved the annota-
tion quality for both datasets through the implementation of

1Challenge website: https://mitoem.grand-challenge.org
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a consistent annotation protocol for mask boundaries. Despite
these efforts, the datasets remain small in size, less than 0.3
Gigavoxels and (5 µm)3 physically, which does not adequately
capture the complexity of mitochondria morphology. The
complete image stack measures 2048 × 1536 × 1065 voxels,
yet only approximately 35% of it was manually annotated,
comprising two sub-volumes, each with dimensions of 1024×

768×165 voxels. Furthermore, the provided binary masks are
not easily converted into instance segmentation masks, which
are necessary for detailed biological analysis as the instances
of mitochondria can be connected to each other.

2) Instance Segmentation Evaluation Metrics: The evaluation
of instance segmentation results can be done at either the pixel
level or the instance level. The pixel-level metrics assume
high-quality ground truth instance masks and measure the cor-
rectness of the pixel grouping with a clustering-based criterion,
such as the Rand index [8]. However, as dataset sizes grow,
it becomes increasingly difficult to manually refine all masks
for pixel-level accuracy. As a result, instance-level metrics
are more commonly used for large-scale datasets. For each
predicted instance mask, if its intersection-over-union (IoU)
score with a ground truth mask is higher than a predefined
threshold, it is considered a true positive. Similarly, predictions
that fall below the IoU threshold are considered false positives,
while ground truth predictions without a match with the true
positive prediction are considered false negatives. For biomed-
ical image datasets, metrics based on true positives, false
positives, and false negative rates, such as accuracy are widely
used in the literature [9], [10], [11]. In the case of natural 2D
images, popular methods like Mask R-CNN-based approaches,
typically predict the confidence for each instance detection,
and the average precision (AP) metric is used to average results
over different detection thresholds [12], [13]. In addition,
instances are usually divided into small/medium/large groups
for separate evaluations. Wei et al. [14] provided an efficient
implementation of the AP metric for instances inside 3D
volumes. To further break down the analysis of instance
matching results, Ka et al. [15] proposed association met-
rics, categorizing them into one-to-one, over-segmentation,
under-segmentation, many-to-many, missing, and background.
In summary, the combination of these metrics and cate-
gories allows for a comprehensive evaluation of instance
segmentation methods in the context of biomedical imaging
applications. While these metrics are often used individually,
their collective utilization provides a more thorough assess-
ment of performance.

3) Machine Learning Methods: Despite the advances in
large-scale instance segmentation for neurons from EM
images [16], [17], similar efforts for mitochondria have been
largely overlooked in the field. The lack of a large-scale, public
dataset has led to the majority of recent mitochondria (seman-
tic) segmentation methods being benchmarked on the Lucchi
dataset [5], where mitochondria instances are small in number,
simple in morphology, and relatively sparse in distribution.
Even in non-public datasets [18], [19], the complexity of
mitochondrial shapes is limited by the small size of the dataset
and the use of non-mammalian tissue. In the field of mitochon-
dria semantic segmentation, previous studies have employed a

variety of techniques to segment the Lucchi dataset. Early
works have leveraged traditional image processing and
machine learning techniques [20], [21], [22], [23], while recent
methods made use of 2D or 3D deep learning architectures for
mitochondria segmentation [7], [24], [25], [26]. Furthermore,
Liu et al. [27] proposed an instance segmentation approach by
means of a modified Mask R-CNN [28], while Xiao et al. [29]
achieved instance segmentation through a tracking approach.
However, it remains uncertain how the performance of these
methods, developed on small datasets, would extend to larger
datasets (e.g., (30 µm)3 cube) for neuroscience analysis, where
mitochondria exhibit more complex variations in appearance
and shape.

II. MITOEM CHALLENGE

A. Dataset

The basis for this challenge is our previously released
large-scale 3D mitochondria instance segmentation bench-
mark, known as the MitoEM dataset [14]. The MitoEM dataset
comprises two 3D EM image stacks, each measuring 32.8 ×

32.8×30 µm in size, with a voxel dimension of 8×8×30 nm.
These image stacks originate from distinct sources, one from
adult rat brain tissue (MitoEM-R) and the other from adult
human brain tissue (MitoEM-H). Notably, the MitoEM dataset
represents a substantial increase in scale, being approximately
1,986 times larger,2 than the previous Lucchi benchmark [5].
From the 1, 000 consecutive slices of each stack, ground-
truth mitochondria instance labels were provided for the first
500 slices and split into training (400 slices) and valida-
tion (100 slices) subsets. The annotations of the remaining
500 slices of each volume were kept private and used as the
test set. For information regarding the dataset acquisition and
annotation strategy, we refer readers to Wei et al. [14].

1) Improved Annotation (V2): After the initial release of
the MitoEM dataset, we identified three consistent categories
of annotation errors (as depicted in Fig. 1). These errors
include instances of organelles with a similar dark appearance
that were mistakenly labeled as mitochondria, instances of
neighboring mitochondria that were falsely merged into a
single mitochondrion, and instances of mitochondria-on-a-
string (MOAS) [30] that were occasionally incomplete due to
their thin microtubule connections. According to the findings
reported by Zhang et al. [30], MOAS have been identified
as a novel phenotype that exhibits increased prevalence dur-
ing disease progression and the accumulation of mutations
in both rat and human brain analyses. Therefore, accurate
segmentation of this type of mitochondria, without inducing
any splitting, holds significant importance in understanding its
role and implications in cellular biology.

To rectify these annotation errors, we engaged the expertise
of three neuroscience specialists with in-depth knowledge of
EM images and mitochondria morphology. Each expert inde-
pendently scrutinized the previous annotations, meticulously
comparing them to the visual information depicted in the EM

2Calculated by comparing the size of the MitoEM dataset with that of the
Lucchi benchmark as follows: ((4096 × 4096 × 1000)(8 × 8 × 30))/((165 ×

1024 × 768)(5 × 5 × 5)) ≈ 1986.
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Fig. 1. Common annotation errors in the initial MitoEM dataset [14]
(v1): (a) organelles that look similar to mitochondria and where often
false positives are created, (b) false merges of mitochondrion, and
(c) incomplete segmentation. Those errors were fixed after another round
of expert proofreading (v2).

images. In cases where discrepancies or differences of opinion
arose among the experts, collaborative discussions were held
to resolve these issues and reach a consensus. Through this
collaborative effort, we consolidated the necessary changes,
resulting in a more accurate and reliable ground truth for the
challenge.

Consequently, the number of confirmed instances in the
MitoEM-H dataset was reduced from 24.5K to 19K, while in
the MitoEM-R dataset, it was reduced from 14.4K to 10.8K.
These revised annotations were subsequently updated and
uploaded to the Grand Challenge platform in December 2021,
and all participating methods were re-evaluated accordingly.
Notably, despite the modifications in the annotations, the
overall rankings on the leaderboard remained largely unaltered.

B. Evaluation Metric
In our initial release of the challenge, we used the evaluation

metric proposed by Wei et al. [14], which computes the AP-
75 score for small/medium/large groups of instances based on
the instance size. However, upon conducting an analysis of the
errors in the challenge submissions, we recognized the need
to make certain improvements to the evaluation metric.

1) Improved Metric: From AP to Accuracy: We found that the
AP-based metrics that were originally designed for top-down
instance segmentation methods, such as Mask RCNN [28],
are not well-suited for our challenge. In our case, most
submission methods employed a bottom-up approach for
instance segmentation, in which there is no estimation of
the detection confidence score for each instance. To address
this issue, Wei et al. [14] approximated the confidence score
with the size of the instance, which can lead to unintuitive
evaluation results, as further discussed in Section IV. After
careful consideration, we decided to adopt the popular accu-
racy metric [10] for evaluating the challenge submissions.
This metric matches prediction instances with ground truth
instances, providing a more intuitive evaluation of the meth-
ods’ performance.

2) Improved Instance Grouping: From Volume to Cable
Length: In our initial release of the challenge, we used a
splitting rule based on the volume to categorize mitochondria

Fig. 2. Visualization of MitoEM-H and MitoEM-R datasets splitting
categories based on cable length. From left to right: original 3D EM
images, and their corresponding meshes of small (length ≤ 1µm),
medium (1µm< length< 4µm), and large (length ≥ 4µm) mitochondria
of human (top) and rat tissue (bottom).

instances into small, medium, and large groups. However,
we noticed that this approach was not effective for correctly
categorizing complex mitochondria instances, such as the
MOAS. For that reason, we opted for the cable length3 instead,
using length thresholds of 1 µm and 4 µm to split the
mitochondria into three groups: small, medium and large (as
in the original MitoEM release). Under this new categoriza-
tion, the number of small, medium, and large mitochondria
instances are respectively: 5106, 3608, and 164 in MitoEM-H
and 1292, 3832 and 524 in MitoEM-R. A visualization of the
mitochondria of each new split is depicted in Fig. 2. Notably,
all instances classified as MOAS are now grouped within
the large category, aligning with our previous expectations.
A fast inspection reveals that (1) the human tissue contains
many more small mitochondria than the rat tissue, and (2)
the large mitochondria from the human tissue are notably
thinner than those of the rat tissue. It is important to note
that these differences between human and rat tissues may
not be generally extrapolated, as making such statements
would require additional samples and references to establish
reference ranges.

All these changes in the evaluation became effective in
July 2022 in the Grand Challenge platform. In contrast to the
improved annotation, these modifications resulted in signifi-
cant alterations in the leaderboard as described in Section V.

C. Organization

The challenge was accepted to ISBI 2021 in October
2020 and officially announced in November 2020. This
announcement was accompanied by the creation of a dedi-
cated website and the preparation of an evaluation system.
The two image volumes, MitoEM-R and MitoEM-H, were
made immediately available to participants to enable them to
begin developing their methods. Participants performed the
segmentation on their own computers. The challenge was
widely advertised and was open to any interested participants.
A total of 257 individuals registered for the challenge and

3Cable length is defined as the skeleton length of the instance, i.e., total
length of all branches, taking into account each axes resolution, e.g., 8 × 8 ×

30 for (x , y, z) axes in MitoEM. We use Kimimaro [31] for the skeletonization.
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14 teams submitted their results. For comparison, we also
used two “internal submissions” corresponding to our 2D and
3D baseline methods (U2D-BC and U3D-BC, Section III-A).
To lower the barrier of entry for the challenge, an initial
version of the code of U3D-BC was made publicly available.
The teams were also asked to submit a description of their
method. Eight teams were invited to a workshop on April
13, during the ISBI 2021 conference, and to participate in
the writing of this article. The winners of the challenge were
announced at this workshop.

Some of the teams that participated in the challenge did
not register for the conference or participate in the workshop.
However, six teams did submit short papers and presented
their methods. The results announced at the workshop (ranked
using the original AP-75 metric) are given in Table V in the
Appendix. Those results may be based on updated submis-
sions. After the workshop, the challenge has remained open
to submissions and all image volumes, as well as their ground-
truth labels, are available for download. The testing labels
continue to be confidential.

III. SUMMARY OF SEGMENTATION METHODS

In this section, we present our proposed baseline methods
together with the evaluated segmentation methods submitted
by the eight teams who successfully completed the challenge.
An overview of the principal components of each method,
including our baseline methods, can be found in Table I.
Detailed information about the algorithms employed by each
team is provided in their respective manuscripts, which were
submitted according to the MitoEM challenge policies. These
manuscripts are available on the challenge webpage under the
“manuscripts” tab.

A. Open-Source Baseline Methods
To enhance the accessibility of our challenge, we have

developed and released two open-source baseline methods:
U2D-BC and U3D-BC. These methods are designed to handle
2D and 3D input images, respectively. Both approaches make
use of a U-Net-based architecture [36] to predict binary
foreground segmentation masks and instance contours masks
(referred to as BC in the methods’ name). Following the pre-
diction, the two outputs are thresholded and combined. Next,
a connected components operation is applied to generate dis-
tinct, non-touching mitochondria instance seeds. Subsequently,
a marker-controlled watershed algorithm [37] is applied, using
three key components: 1) the inverted foreground probabilities
as the input image (representing the topography to be flooded),
2) the generated instance seeds as the marker image (defining
starting points for the flooding process), and 3) a binarized
version of the foreground probabilities as the mask image
(constraining the extent of object expansion). The collective
implementation of these components facilitates the creation
of individual mitochondria instances (see Fig. 3 for a visual
representation).

1) U2D-BC: The core architecture of the U2D-BC method
consists of a 5-level U-Net. The initial level of the U-Net
comprises 16 filters, which are doubled in each subsequent

Fig. 3. Processing pipelines of our open-source baseline methods
(U2D-BC/U3D-BC). The model predicts foreground and contour prob-
abilities that are fused to create three inputs for a marker-controlled
watershed [37] to produce individual instances.

level. Dropout regularization is applied in each block, with
the dropout rate gradually increasing from 0.1 to 0.3 (in the
bottleneck layer), and then decreasing back to 0.1 in the
upsampling layers. Exponential linear units (ELU) [38] are
employed as activation functions. To perform upsampling in
the decoder, transposed convolutions are used, following the
approach proposed in [26]. The model was trained using an
input size of 256 × 256 and optimized until convergence,
approximately 180 epochs, over a reduced version of the
dataset (20% of training data) with stochastic gradient descent
(SGD) using a fixed learning rate of 0.002. The reduced train-
ing set was created by selecting one image every four slices
along the z-axis. This decision was based on the repetitive
nature of the slices along this axis, where no significant 3D
information would be lost in the process. The intention behind
using a smaller training dataset for the U2D-BC model was
to expedite the training process and provide a baseline 2D
network for competitors to build upon. We further applied
median filtering in the y-z axes to improve the network output
predictions. The model was implemented with BiaPy [39]
and can be reproduced based on the tutorial provided by the
challenge organizers.4

2) U3D-BC: The U3D-BC method utilizes a 5-level residual
U-Net architecture, inspired by Lee et al. [40]. The model
incorporates batch normalization as a regularization technique
and employs ELUs as activation functions. Transposed convo-
lutions are used for upsampling. To account for the anisotropy
of the datasets, the model is trained with an input size of
225×225×17 for the x , y, and z axes. Notably, feature maps
are not downsampled or upsampled along the z-dimension, and
each residual block consists of a combination of 2D and 3D
convolutions [40]. The model was optimized for 150 epochs
over the entire training data, with an initial learning rate
of 0.04 and cosine learning-rate scheduling [41]. We also
applied Gaussian blending and test-time augmentations (self-
ensemble) to improve the prediction quality. The model was
implemented with PyTorch Connectomics [42] and can be
reproduced based on the tutorial provided by the challenge
organizers.5

In comparison to our previous work [14], we made improve-
ments to the implementation details in order to achieve

4https://biapy.readthedocs.io/en/latest/tutorials/mitoem.html
5https://connectomics.readthedocs.io/en/latest/tutorials/mito.html
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TABLE I
OVERVIEW OF THE MitoEM PARTICIPANT METHODS. BASELINE METHODS FROM THE CHALLENGE ORGANIZERS ARE ALSO SHOWN (MARKED

WITH *). CE — CROSS-ENTROPY, WBCE — WEIGHTED BINARY CROSS-ENTROPY, MSE — MEAN SQUARED ERROR, WMSE — WEIGHTED

MSE, SGD — STOCHASTIC GRADIENT DESCENT, HA — HIERARCHICAL AGGLOMERATION, MCWS — MARKER-CONTROLLED

WATERSHED, MWSMC — MUTEX WATERSHED AND MULTICUT, CC — CONNECTED COMPONENTS,
HUA — HUNGARIAN ALGORITHM. (†) REUSE U3D-BC CODE

superior results. Specifically, we have incorporated a num-
ber of additional data augmentation techniques, including
misalignment (which simulates xy-plane displacement during
data acquisition in microscopes), CutBlur [43], CutNoise, and
motion-blur. These augmentations supplement the brightness,
flip, elastic transform, and missing parts augmentations used
in the original MitoEM paper [14]. Furthermore, we increased
the probability and intensity of all augmentations to enhance
the robustness of the models.

B. Participants’ Methods

The following methods by the participant teams produced
successful results that were submitted to the challenge. Notice
that the method names used here may differ from the team
names found on the MitoEM webpage.

• VIDAR (USTC)6 [32]: The VIDAR method proposed by
the authors consists of two specialized networks: Res-
UNet-R and Res-UNet-H. Both networks are designed
to predict instance boundaries and semantic masks of
mitochondria. Inspired by the 3D U-Net [44], both archi-
tectures incorporate residual blocks. However, the initial
convolution is performed only in 2D to account for the
anisotropic resolution of the input data. The encoding and
decoding paths of both networks have five levels, with the
number of filters per level set as follows: 28, 36, 48, 64,
and 80. In the Res-UNet-R, the decoder simultaneously
outputs the semantic mask and the instance boundary.
On the other hand, the Res-UNet-H contains two sep-
arate decoders, one for each output. To address class
imbalance, a weighted binary cross-entropy loss function
is utilized during training. The authors also employ a
multi-scale training strategy, dividing the training into
two stages with progressively larger input images, first
256 × 256 × 32, and then 320 × 320 × 36. For pre-
processing, the authors apply denoising using their own
image restoration network [45], which is trained on
patches of size 256 × 256 × 3. During testing, coarse
noisy regions in the test sets are manually selected and

6M. Li, C. Chen, Z. Xiong.

restored using the trained interpolation network before
performing segmentation. Finally, the semantic masks and
instance boundaries are used to synthesize a 3D affinity
volume, which enables hierarchical agglomeration [46]
for extracting individual instances.

• IIPPR (SJTU)7: The submissions of this team were
based on the U3D-BC baseline method provided by
the challenge organizers. The main difference from the
original U3D-BC configuration is the input size of 256×

256 × 32 with an overlap of 128 × 128 × 16. To separate
touching instances, ground truth masks were eroded using
a 3 × 3 kernel, while instance contours were extracted
through morphological erosion with a 7 × 7 kernel. For
MitoEM-H, they used threshold values of 0.7, 0.6, and
0.6 to extract seeds, instance contours, and foreground,
respectively. For MitoEM-R, they used threshold values
of 0.85, 0.6, and 0.8. Moreover, they removed all objects
with fewer than 1024 voxels based on the fact that all
mitochondria instances in the challenge volumes are at
least 2000 voxels in size.

• VGG (NEL-BITA)8 [33]: This team used a contrastive
learning [47], [48] framework, employing a representative
voxel sampling strategy and a loss function that combines
a voxel-wise similarity term to increase the similarity
of voxels from the same class and the separability of
voxels from different classes. Additionally, an inter-frame
consistency term is included to enhance the sensitivity of
the 3D model to changes in image content from frame
to frame. The backbone network used is a classic 3D
U-Net [44], which outputs binary masks and boundary
maps. A marker-controlled watershed [37] algorithm is
then applied to extract the final instances. Feature maps
are extracted from the last two layers of the backbone
decoder to capture voxel features and build positive and
negative pairs based on their classes. This enables the
use of contrastive learning to maximize the similarity
between feature vectors of the same class while mini-
mizing the similarity between feature vectors of different

7R. Xin, H. Liu, H. Chen.
8Z. Li, J. Zhao, X. Chen.
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classes. Similarly, the consistency loss term is designed to
enhance the feature similarity between voxels belonging
to the same class at the same position in adjacent slices
and contrastively decrease the similarity between voxels
from different classes.

• EMBL (Heidelberg)9: A 5-level 3D U-Net [44]. The
network predicts foreground probabilities and long-range
affinity maps [40], specifically targeting pixel distances
of 1, 3, and 9 along the x- and y-axes, and 1, 2, and
3 along the z-axis, taking into account the dataset’s
anisotropy. For the same reason, no pooling is performed
across the z-axis in the first two pooling layers of the 3D
U-Net. The network is trained using the Dice score as
the loss function. For obtaining an instance segmentation
based on the foreground and affinity predictions, Mutex
Watershed [49] is applied in parallel on the predic-
tions of subvolumes of the entire dataset. To segment
only mitochondria, the segmentation algorithm is applied
solely to the foreground mask obtained by thresholding
the foreground probability predictions at 0.5. Finally,
the whole-volume instance segmentation is obtained by
solving a Multicut clustering problem [50].

• CEM-PDL (NIH)10: A Panoptic-DeepLab model [51]
with a ResNet50 [52] backbone is trained to perform
instance segmentation in 2D slices. More specifically,
the model has three outputs: semantic masks, instance
centers, and instance center regressions (offset from each
pixel to its corresponding center). Instances are obtained
by simple post-processing (assigning each pixel to the
closest predicted center). The backbone network uses
weights pre-trained on CEM500K [53], a large dataset
of EM images. Training is performed on patches of size
512 × 512 and the inference is applied to the full-size
image (4096 × 4096). Several post-processing methods
are used including z-filtering, 2D watershed to split
false mergers, and the Hungarian algorithm [54] and the
Intersection-over-Area merging strategy to merge false
splits. This method has been further developed since
submission to the MitoEM challenge into an open-source
model called MitoNet [34].

• FCI (London)11 [35]: Four separate convolutional neu-
ral networks were trained to predict mitochondria
binary masks in MitoEM-H, mitochondria boundaries in
MitoEM-H, mitochondria binary masks in MitoEM-R,
and mitochondria boundaries in MitoEM-R, respectively.
All networks share a common architecture based on a
5-level 3D U-Net [44] with Inception-like blocks [55],
32 initial filters and a dropout rate of 0.3. The input size
for the networks is 256 × 256 × 12 and the loss function
used was a smoothed Dice coefficient (or F-measure).
Weights were initialized using a nuclear envelope seg-
mentation model trained on crowd-sourced citizen science
annotations [56]. The training sets of MitoEM-R and
MitoEM-H were both divided into 16 equally sized

9C. Pape.
10R. Conrad.
11L. Nightingale, J. de Folter, M. L. Jones.

stacks. Due to memory constraints, one training stack
was presented per epoch. An initial model was trained to
predict binary masks on both human and rat data, which
was then fine-tuned on MitoEM-R and subsequently
on MitoEM-H. The final weights from the MitoEM-R
binary mask model served as the initial weights for the
MitoEM-R boundary prediction model, and the weights
from this model were used as initialization for the model
predicting boundaries in MitoEM-H. To improve bound-
ary predictions, the team combined predictions from all
three views of the volumes after reslicing the data in
the xz and yz planes and interpolating the z-scale from
30nm to 10nm, resulting in a voxel size of 8 × 8 ×

10nm [56]. Individual instances were then extracted using
marker-controlled watershed [37] after creating seeds by
subtracting the boundary masks from the binary masks.

• ABCS (FNL)12: The ABCS team trained two simplified
3D versions of the original U-Net architecture [36] to
simulate different fields of view. The first network had
an input size of 128 × 128 × 64, and the second network
had an input size of 256×256×64. Each 4096×4096×

1000 volume was vertically split into four quadrants,
resulting in four quadrants of size 1024 × 1024 × 500 as
sub-volumes for four-fold cross-validation training. Dur-
ing each fold of the cross-validation training, three out
of the four quadrants were used as the training set, and
the remaining quadrant was used as the validation set.
Training and validation samples were randomly extracted
from the corresponding quadrants at runtime and fed
to the GPU. To account for boundary conditions, the
original volumes were padded with blank pixels along all
three axes. Basic data augmentation techniques, including
flipping in all three axes, were applied during training.
During inference, ensemble prediction with patch over-
lap was performed. Blank paddings were added to the
two testing volumes as required by the sample extrac-
tion process. The combined segmentation outputs from
both trained networks showed slightly better performance
compared to the individual networks.

• H2RNet (Zurich)13: The H2RNet method is a hybrid
instance segmentation approach that combines 2D and
3D processing. Initially, the method performs a seg-
mentation on individual 2D slices of the volume using
a modified HRNet [57] network. The HRNet has two
heads, one for predicting the energy surface and the
other for estimating the curvature of mitochondria in
each 2D slice. The outputs of both heads are fused to
obtain the final prediction. The input size of the network
is set to 256 × 256, but during inference, a patch size
of 1024 × 1024 is used to minimize border effects or
artifacts from reassembled image crops. For training,
a weighted mean-square-error loss function is employed.
The weights are determined based on the frequency of a
given value for the energy head, and bending loss [58]
is used to compute the weights for the contour head.

12Y. Liu, D. Ziaei.
13S. Huschauer.



3962 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 12, DECEMBER 2023

Unlike some other methods, H2RNet does not require
watershed post-processing in 2D, as a cut-off from the
learned surface energy is used as a hyper-parameter in
the prediction. Due to computational limitations, the 2D
predictions are downsampled before applying marker-
controlled watershed [37] in 3D to connect regions across
sections. The connected regions are then upsampled using
nearest-neighbor interpolation.

IV. HITS AND MISSES OF CURRENT
EVALUATION METRICS

Instead of using a single set of metrics, as it is common
practice in the literature of 3D instance segmentation of
biomedical images, we decided to perform an in-depth analysis
of the most commonly used metrics to create a compact and
informative error report to debug 3D instance segmentation
methods. Moreover, this analysis allowed us to decide on the
optimal metric to finally base the challenge ranking on.

A. State-of-the-Art 3D Instance Segmentation Metrics
There are three commonly used sets of metrics for the 3D

instance segmentation task: AP-based, matching-based, and
association-based.

1) AP-Based Metric: The AP metric [12] relies on the
calculation of other metrics such as IoU, precision, and recall.
Let an instance be set of pixels/voxels belonging to an object,
then the IoU measures the overlap between two instances
(A, B) and can be calculated as

I oU (A, B) =
|A ∩ B|

|A ∪ B|
(1)

where |.| denotes the number of pixels (in 2D) or voxels (in
3D). Precision and recall are then defined as

precision =
T P

T P + F P
, (2)

recall =
T P

T P + F N
(3)

where the true positive (T P), false positive (F P), and false
negative (F N ) values depend on a predefined IoU threshold
value (to consider two overlapping instances the same) and
a probability confidence threshold (to consider the instance
a mitochondrion). More specifically, a predicted instance is
considered a TP if its IoU value with a ground truth instance is
larger than the IoU threshold value, otherwise it is considered
a FP. Moreover, ground truth instances without matching
predictions are considered FN. For a fixed IoU threshold,
a precision-recall curve can be created for a set of different
confidence threshold values. The AP is the area under the
precision-recall curve:

AP =

∫ 1

0
p(r) dr (4)

where p is precision and r recall. The trade-off between
precision and recall will decrease the precision-recall curve
monotonically, as increasing one will decrease the other.
Nevertheless, this rule does not occur consistently, resulting
in a zigzag pattern. Henceforth, precision at each recall level

r is interpolated by taking the maximum precision when the
corresponding recall exceeds r :

pinter p(r) = max
r̃ :r̃≥r

p(r̃) (5)

where p(r̃) is the measured precision at recall r̃ . Then, the
AP is commonly approximated as the mean precision (p) at
a set of eleven equally spaced recall (r ) levels (from 0.0 to
1.0 with 0.1 increments):

AP =
1
11

∑
r∈{0,0.1,...,1}

pinter p(r) (6)

In the present scenario, we employ AP-75, a metric that quan-
tifies the AP computed at a threshold of 75% of the minimum
IoU required to classify a detection as a TP (following [14]),
otherwise the ground truth instance is considered a FN and
the prediction a FP. In this manner, the IoU is calculated at
pixel level but whereas a TP, FP and FN is defined at instance
level.

A drawback of the AP metric is that it requires sorting
predictions by confidence, which is not provided by most
bottom-up segmentation approaches. Wei et al. [14] heuristi-
cally used the instance size as the prediction confidence, which
can lead to undesirable biases for method ranking.

2) Matching-Based Metrics: Metrics based on matching
focus on quantifying correctly predicted instances, transform-
ing instance segmentation results into an object detection
framework. In this paradigm, the emphasis shifts from
uniquely labeled instances to detecting the presence or absence
of instances. This transformation is achieved by establishing
a criterion for instance overlap, commonly measured through
IoU. Unlike traditional segmentation evaluations that rely on
nuanced pixel-level overlaps, this approach simplifies assess-
ment by classifying instances as successful (TP) based on a
predefined IoU threshold. This aligns with decision-making
processes in detection problems, providing a streamlined and
robust evaluation strategy.

These metrics can combine informative statistics, i.e.,
TP/FP/FN, into a single value to rank the methods. More
specifically, we use accuracy, which is defined as follows:

accuracy =
T P

T P + F P + F N
(7)

To decide which predicted instance corresponds to a ground
truth instance we make the following definitions. Let us
assume we have two sets: one consisting of the predicted
instances, denoted by P , and another set containing the ground
truth instances, denoted by G. The mathematical representation
of the scenario can be expressed as follows:

P = {p1, p2, p3, . . . , pn} (8)

where pi are the predicted instances and n is the number of
instances in the predicted set.

G = {g1, g2, g3, . . . , gm} (9)

where g j are the ground truth instances and m is the number
of instances in the ground truth set.

Following previous work [9], [10], in order to decide the
optimal assignment of predicted and ground truth instances,
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Fig. 4. Synthetic example of mitochondria instance segmentation. Left to
right: ground truth instances, same instances color-coded by size (small
in red, medium in blue and large in green), model prediction, matching
errors (FP in blue and TP in green) and association errors (one-to-one
in green, background in blue, over-segmentation in yellow and under-
segmentation in magenta).

TABLE II
AP-BASED, MATCHING-BASED AND ASSOCIATION-BASED METRICS

EVALUATION OF THE SYNTHETIC EXAMPLE OF FIG.4. ASSOCIATION

METRICS ARE EXPRESSED IN %

we use the Hungarian algorithm [54] whereby an instance
cannot be assigned to multiple ground-truth instances (and
vice versa). In our case, the optimal assignment is given by
the following cost

min
∑

i

∑
j

Ci, j X i, j (10)

where X is a boolean matrix, wherein an element X i, j is true
if and only if row i is assigned to column j , and C is the cost
matrix, defined as:

C(i, j) =
−(I oU (g j , pi ) >= T ) − I oU (g j , pi )

(2 ∗ N )
(11)

where T is the threshold 0.75, as in AP-75, and N is the
number of assignments (minimum between the number of
predicted instances and the number of ground truth instances).

3) Association-Based Metrics: Many segmentation methods
need to set hyper-parameters to control the ratio between
false-split and false-merge errors. Thus, a pie chart displaying
the proportion of different types of segmentation association
error [15] is critical for a more interpretable result under-
standing. Using the previously computed IoU values as in the
matching-based metrics, the set of pairs of associated regions
between pi and g j can be defined as follows:

A = {(pi , g j ) | I oU (pi , g j ) > 0, pi ∈ P, g j ∈ G} (12)

Let us define the two sets A(g j ) = {pi |(pi , g j ) ∈ A}

and A′(pi ) = {g j |(pi , g j ) ∈ A} corresponding to the ground
truth instances g j associated with predicted instances pi and

predicted instances pi associated with ground truth instances
g j , respectively. Then, different cases of resulting reciprocal
mapping are considered:

• One-to-one, when there is an exact match between g j and
pi : A(g j ) = {pi } and A′(pi ) = {g j }.

• Over-segmentation, when one instance in the ground truth
is divided into two or more in the prediction: |A(g j )| >

1 and ∀pi ∈ A(g j ),A′(pi ) = {g j }.
• Under-segmentation, when two or more instances in the

ground truth are merged in the prediction: |A′(pi )| >

1 and ∀g j ∈ A′(pi ),A(g j ) = {pi }.
• Missing, for instances of the ground truth that are not

captured in the prediction: A(g j ) = ∅.
• Background, for instances associated with the back-

ground, i.e. false positives: A′(pi ) = ∅.
• Many-to-many, all other cases.

In summary, background associations are typically expressed
as a percentage of the total number of predicted instances,
whereas the remaining associations are expressed as a
percentage of the total number of ground truth instances. Con-
sequently, the cumulative percentage of these non-background
associations amounts to 100%.

B. Discussion on 3D Instance Segmentation Metrics

To better understand the pros and cons of each metric,
we created a toy example with ground truth mitochondria
instances of different sizes and realistic model predictions (see
Fig. 4). The ground truth volume contains only six instances:
one large (MOAS type), three medium, and two small mito-
chondria based on their cable lengths. The prediction presents
an over-segmentation of small and medium instances, a merger
of two mitochondria, and several split errors in the MOAS.
The corresponding AP-75, association, and accuracy values
are shown in Table II.

1) AP-75 Overvalues Small-Size Instances: In our ISBI chal-
lenge, we developed an efficient implementation of AP-75
for 3D volumes. Due to the lack of confidence prediction
for each instance, we sorted mitochondria instances by size,
resulting in small instances having the lowest confidence
values. Therefore, when a small instance is merged with a
medium one in the prediction, the small instance is considered
an FN. Additionally, the large instance in the ground truth is
split into several instances that do not reach the minimum IoU
of 75% with the ground truth, so most of those instances are
considered as medium FPs. This means the large mitochon-
drion is only matched with the blue instance that represents its
bottom part (since it is the largest among all pieces). Although
the prediction contains several small FPs, as well as more
small and medium FPs considering the rest of the MOAS
pieces not matched with it (e.g. all but the blue instance),
the AP-75 values for small instances are still high. Note that
other drawbacks of the AP metric were discussed in recent
papers [59] from different angles.

2) Accuracy Metric Provides a Good Overall Evaluation: As
shown in Table II, the association metrics are useful for
understanding the fate of the ground truth instances in the
prediction but do not provide information on the overlap
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Fig. 5. 3D visualization of MOAS instances for error inspection. We show
the ground truth and segmentation results from the two top-performing
models (IIPPR and VIDAR) in one MOAS instance per dataset. Different
colors represent different instances.

between the prediction and the ground truth. On the other
hand, the matching metrics do provide this information by
considering a prediction as a TP if the IoU with ground
truth is greater than 75%. However, the association metrics
have multiple values, rather than just a single one, which
complicates the direct comparison of the performance of
different methods. For example, it is not clear whether a low
under-segmentation rate is better or worse than a low over-
segmentation rate, or whether many-to-many is worse than the
previous two. These questions depend on the specific task at
hand. Therefore, it is useful to have a single number, such
as accuracy, to enable easy comparison of the performance of
different models. In the toy example, there are many small FPs
in the prediction, as previously mentioned, which results in
low values for all matching metrics except recall. For medium
instances, only the one merged with the small instance is not
considered a TP due to its low IoU (< 0.75).

3) Association Metrics Provide a Detailed Breakdown of
Errors: Examining the association metrics helps us to under-
stand where and how the prediction fails. A missing value
of zero in all cases indicates that all ground truth instances
have been captured by the prediction. More specifically, out of
the two small mitochondria in the ground truth, one has been
correctly predicted and is labeled as one-to-one. The other
one was merged with a medium mitochondrion, resulting in
both small and medium being labeled as under-segmentation.
The remaining three medium mitochondria are also labeled as
one-to-one. Also, the ground truth MOAS that was divided
into medium-sized pieces in the prediction is labeled as over-
segmentation.

V. ANALYSIS OF CURRENT PROGRESS ON MITOEM

In this section, we leverage on the evaluation metrics defined
in the previous section to analyze in detail the performance of
the participant and baseline methods in the challenge.

TABLE III
MATCHING-BASED METRICS OF ALL METHODS ON THE MitoEM

CHALLENGE LEADERBOARD. THE RANKINGS PRESENTED IN THIS

TABLE ARE ORDERED BY OVERALL ACCURACY, THUS DIFFERING

FROM THE ORIGINAL CHALLENGE LEADERBOARD, AS DISCUSSED IN

THE MANUSCRIPT. THE BASELINE METHODS FROM THE CHALLENGE

ORGANIZERS (MARKED WITH *) ARE SHOWN BUT NOT INCLUDED IN

THE RANKING. THE BEST SCORES ARE SHOWN IN BOLD

A. Overall Performance

1) Matching-Based Evaluation: The matching metric values
corresponding to the top submissions of all methods on the
leaderboard are presented in Table III. The IIPPR method
demonstrates superior performance compared to VIDAR in
most cases, except for recall. This trend is also observed
in other methods, where high recall comes at the cost of
precision. For instance, U3D-BC, VGG, and U2D-BC exhibit
much higher recall than precision values, indicating a larger
number of false positives. A detailed breakdown analysis of
matching-based metrics for each instance category (small,
medium, and large) can be found in Table VI in the Appendix.
Notably, all methods exhibit better segmentation of small
and medium mitochondria compared to large mitochondria in
both MitoEM-R and MitoEM-H datasets. Furthermore, it is
evident that segmenting large mitochondria in MitoEM-H is
more challenging than in MitoEM-R, as confirmed by visual
inspection in Fig. 2.

2) Association-Based Evaluation: Table IV presents the asso-
ciation metric values for all ranked methods, including our
own baseline methods. The absolute numbers of association
types per instance category for each participant method is
illustrated in Fig. 10 in the Appendix. In both human and
rat tissues, the IIPPR method achieves the highest one-to-
one value, representing the percentage of correctly associated
ground truth instances. Furthermore, as shown in Table IV,
IIPPR exhibits very low over-segmentation values, in con-
trast to other methods such as U3D-BC, EMBL, or VGG.
This aligns with their previously observed high recall values
(Table III), which are a result of a larger number of false
positive instances. However, accurately assessing the methods
solely based on the percentage of correctly assigned instances
(one-to-one value) is insufficient, as it can be accompanied by
a high number of background associations, as observed in the
VGG or U2D-BC methods.

To gain further insights into the types of association errors
made by the top three methods (IIPPR, VIDAR, and EMBL),
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TABLE IV
ASSOCIATION-BASED METRICS (IN %) OF ALL METHODS ON THE MitoEM CHALLENGE LEADERBOARD. BASELINE METHODS FROM CHALLENGE

ORGANIZERS (MARKED WITH *) ARE SHOWN BUT NOT INCLUDED IN THE RANKING. THE TERMS ‘CORRECT’, ‘MISSING’, ‘OVER’, ‘UNDER’, AND

‘MANY’ REPRESENT ‘ONE-TO-ONE’, ‘MISSING’, ‘OVER-SEGMENTATION’, ‘UNDER-SEGMENTATION’, AND ‘MANY-TO-MANY’ ASSOCIATIONS,
RESPECTIVELY. THE ‘BACKGROUND’ PERCENTAGE IS CALCULATED RELATIVE TO ALL PREDICTED INSTANCES, WHILE THE REMAINING

ASSOCIATION VALUES ARE CALCULATED RELATIVE TO THE NUMBER OF GROUND TRUTH INSTANCES

AND COLLECTIVELY ADD UP TO 100%. THE BEST SCORES ARE INDICATED IN BOLD

Fig. 6. Summary of association errors in MitoEM for the top three methods: IIPPR, VIDAR, and EMBL. The pie charts illustrate the proportions of
association errors relative to the ground truth instances. The bar plots below depict the absolute magnitudes of the association errors (left), and the
total number of false positives (FP) and false negatives (FN) for each method (right).

we present two analyses in Fig. 6: (1) an overview of the errors
relative to the ground truth instances, and (2) their absolute
magnitudes for method comparison. Generally, Fig. 6 reveals
that the relative magnitude of missing instances is similar
among the top three methods for both tissues. However, the
absolute magnitudes indicate better performance for IIPPR
and VIDAR compared to EMBL. The top methods tend
to exhibit over-segmentation rather than under-segmentation
(except for IIPPR in human tissue). This highlights the chal-
lenges faced by these methods in accurately segmenting the
most difficult instances in MitoEM, particularly the MOAS-
type mitochondria. This observation is also supported by
the high number of over-segmentation associations for large
mitochondria, as illustrated in Fig. 10 in the Appendix. Some
visual examples of over-segmentation of MOAS specifically
for the top two methods are shown in Fig. 5. Additionally,
examples of common errors for all methods in all mitochondria
categories are shown in Fig. 9 in the Appendix.

B. Comparison Across Skeleton Length
Overall, the complexity of mitochondria is influenced by

the length of the skeleton. The length of the skeleton can
vary depending on the type and size of the cell in which the

mitochondria are located. Based on the overall performance
of the methods, we have identified a clear issue of over-
segmentation of large mitochondria in both tissues. However,
we have not yet considered the number of instances that
the splitting or merging of instances involve. Therefore, it is
important to compare the number of instances associated
with over-segmentation, under-segmentation, and many-to-
many associations to determine which type of error has the
most significant impact.

Let us define the sets OS(A), US(A), and MM(A)

corresponding to the over-segmentation, under-segmentation
and many-to-many associations in A, respectively. We then
define the subset S of association splits as

S = {(pi , g j ) | (pi , g j ) ∈ OS(A) or

(pi , g j ) ∈ MM(A), |A′(pi )| ≥ |A(g j )|}. (13)

Similarly, we define the subset M of association mergers as:

M = {(pi , g j ) | (pi , g j ) ∈ US(A) or

(pi , g j ) ∈ MM(A), |A′(pi )| < |A(g j )|}. (14)

To compare the number of instances in each subset, we use
||S||p and ||M||g , where ||.||p is the number of elements
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Fig. 7. Split vs. merger instances distribution for the top two methods (VIDAR and IIPPR) on the MitoEM-H (top) and MitoEM-R (bottom) test sets.
Each data point represents the number of instances for mitochondria of different lengths, with vertical lines indicating the standard deviation. The size
of each data point is proportional to the number of instances within that length bin. Representative instances of various cable lengths are displayed
in the middle and connected to their respective bins by dashed lines. The skeleton length is evenly divided into 15 bins and measured in the ground
truth instances.

related to prediction instances in the subset (i.e. |A′(pi )|)
and ||.||g is the number of elements related to ground truth
instances in the subset (i.e. |A(g j )|). In Fig. 7, we present
the number of split and merger instances as a function of
the cable length (measured in the ground truth instances) for
both MitoEM-H and MitoEM-R, focusing on the results of
the top two methods (VIDAR and IIPPR). It can be observed
that, in all cases, the number of instances associated with
splits tends to increase with cable length, while the number
of instances associated with mergers remains relatively low
across different lengths. This observed trend can be attributed
to the presence of MOAS-type mitochondria, where larger
structures tend to consist of a higher quantity of smaller
constituent elements. Furthermore, it is worth noting that the
results for MOAS in human tissue exhibit a greater number
of splits compared to rat tissue. This discrepancy is likely
due to the thicker connections present in rat MOAS within
this specific dataset, as depicted in the middle of Fig. 7,
which make them easier to segment in 3D. However, it is
important to acknowledge that these differences in size may
not be representative of all humans and rats. Therefore, further
investigation and a larger sample size would be necessary to
validate and establish reference ranges for mitochondrial sizes
in these species.

Fig. 8 provides a detailed analysis to identify the types
of mitochondria that exhibit the highest failure rates for the

top three methods. When considering the absolute number
of cumulative association errors (missing, over-segmentation,
under-segmentation, and many-to-many), the results align with
the ranking presented in Table III, with IIPPR performing
the best, followed by VIDAR, and finally EMBL. However,
in terms of false negatives, VIDAR outperforms IIPPR. This
finding is consistent with the results discussed in Section V-A,
which indicate that VIDAR is capable of identifying more
instances, albeit at the expense of higher false positive rates
and lower precision.

VI. DISCUSSION ON REMAINING CHALLENGES

Despite the notable improvements achieved during the com-
petition, there are still several challenges that the research
community needs to address.

A. Model Challenge

In the current setting of full-supervised learning with
a 40-10-50% data split, the IIPPR method serves as a
strong baseline, achieving an overall accuracy score of 0.770.
However, for practical deployment on recent petabyte-scale
datasets [17], instance segmentation methods must achieve
even higher accuracy to make the proofreading process
feasible at scale (preferably above 0.9 based on our own
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Fig. 8. Summary of the absolute number of error types per instance
category for the three top-performing methods. The errors shown
include cumulative association (i.e., missing, over-segmentation, under-
segmentation and many-to-many ) errors (on the left) and false negatives
(on the right) for each method.

proofreading experience). In addition to the inherent chal-
lenges posed by the datasets, such as complex geometries
and crowded instances, there remains an open challenge in
accurately segmenting “large” instances, particularly MOAS
instances with super-thin connections, as they often result in
over-segmentation. To address this issue, the VIDAR team at
USTC’s lab has proposed the use of knowledge distillation
training [60] as a potential solution. Furthermore, while the
majority of methods show significantly better performance
for “small” instances compared to “large” instances in terms
of accuracy, all methods demonstrate much better results for
“medium” instances (refer to Table III in the Appendix).
This observation holds true even when the dataset contains a
larger number of “small” instances than “medium” instances,
as observed in the case of MitoEM-H. This indicates that the
current architectures are more suitable for a specific length
of mitochondria, leaving room for improvement in designing
methods that can handle various lengths effectively.

B. Limited Label Challenge

While the challenge was conducted within a fully supervised
learning framework, it is important to acknowledge that in
practical scenarios, the availability of labeled data is often
limited to around 5-10% of the entire volume. Therefore,
it is crucial to develop data-efficient methods that can achieve
high accuracy with a limited amount of annotation. This
includes exploring new data augmentation techniques [61],
investigating unsupervised learning approaches [62], explor-
ing semi-supervised learning methods, and leveraging active
learning strategies. By addressing the limited label challenge,
we can enable the development of models that effectively
utilize a small amount of labeled data to achieve accurate
segmentation results. We believe that our MitoEM dataset can

Fig. 9. Some examples of common segmentation errors by the analyzed
methods in small, medium and large mitochondria of MitoEM-H and
MitoEM-R tissue from the test set. Every instance is given a unique color.
The scale bar represents 0.5 µm.

also serve as a valuable resource for simulating and evaluating
these learning settings.

C. Proofreading Challenge
Regarding the suitability of a scoring system based on accu-

racy, one should assess the purpose of the segmentation result
and its subsequent processing. In particular, for large datasets
such as MitoEM, the current strategy assumes a proofreading
phase after automatic segmentation. In that sense, a metric that
does not penalize false positive predictions as much as false
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TABLE V
THE MitoEM CHALLENGE LEADERBOARD AS ANNOUNCED AT THE WORKSHOP AT ISBI 2021. THE METHODS ARE RANKED ACCORDING TO

THEIR AP-75 SCORES, WITH THE HIGHEST SCORES DISPLAYED IN BOLD. THE RANKINGS PRESENTED IN THIS TABLE ALIGN WITH THE

ORIGINAL CHALLENGE LEADERBOARD, BUT DEVIATE FROM THOSE PRESENTED IN THE PRESENT MANUSCRIPT DUE TO THE MODIFICATION OF

THE EVALUATION METRIC. THE BASELINE METHODS FROM THE CHALLENGE ORGANIZERS (MARKED WITH *)
ARE DISPLAYED BUT WERE NOT INCLUDED IN THE RANKING

TABLE VI
MATCHING-BASED METRICS OF ALL METHODS ON THE MitoEM CHALLENGE LEADERBOARD PER CATEGORY. THE BASELINE METHODS FROM

THE CHALLENGE ORGANIZERS (MARKED WITH *) ARE SHOWN BUT NOT INCLUDED IN THE RANKING. BOLD AND UNDERLINED NUMBERS

DENOTE THE 1ST AND 2ND SCORES, RESPECTIVELY

negative ones may be the most appropriate. In fact, eliminating
false positives is proven much faster than correcting false neg-
atives when proofreading 3D instances [63]. In a more general
framework, the association and matching metrics provided by
our in-depth analysis help us complete the big picture in terms
of evaluation.

VII. CONCLUSION

In this paper, we present the results of the ISBI 2021 chal-
lenge on MitoEM, the first large-scale instance mitochondria

segmentation challenge that thoroughly benchmarks state-of-
the-art methods in the field. To gain insight into the common
errors of the proposed methods and identify current challenges
that remain unresolved, we analyze the performance of the
methods using various types of evaluation metrics.

The release of MitoEM had the dual goal of attracting new
computer vision researchers to the problem of EM mitochon-
dria segmentation and pushing the state of the art forward.
We believe that the challenge was successful in this regard,
as the participants improve over our own initial baseline
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Fig. 10. Distribution of types of associations for all participant methods on the MitoEM-H (top) and MitoEM-R (bottom) test sets for small (left),
medium (center) and large (right) mitochondria. The methods are ordered from left to right by lowest-to-highest value of AP-75.

methods. Furthermore, the competition received a very positive
reaction from the community and had good attendance at its
corresponding workshop at ISBI 2021.

After conducting a comprehensive analysis of the chal-
lenge results, we identified consistent annotation errors and
addressed them by releasing an updated version of the ground
truth labels (V2). Furthermore, through a thorough examina-
tion of the state-of-the-art evaluation metrics, we identified
issues with the evaluation system based on the AP-75 metric
and updated the challenge and method ranking using accuracy,
which is a more robust metric that takes into account false
negatives and over-segmentations more effectively. Neverthe-
less, the current accuracy values are still insufficient for fully
automatic segmentation, therefore the challenge remains open
for submissions.

Finally, we would like to highlight the potential of our
large-scale annotated dataset for a wide range of applications
beyond its original purpose. The dataset can be used for tasks
such as deep feature pre-training, 3D shape analysis, and
testing novel approaches including active learning or domain
adaptation. The availability of this dataset provides valuable
opportunities for researchers to explore new directions and
tackle various challenges in the field of mitochondria segmen-
tation.

As future work, we will consider expanding the MitoEM
dataset to create new interations of the challenge using the
newly proposed score system, and thus enhancing the limited
generalizability of the results produced on only two EM
datasets.

APPENDIX

The original challenge leaderboard, which initially ranked
the methods based on AP-75 performance, is presented in

Table V. For a detailed breakdown analysis of matching-based
metrics per mitochondria category, we refer to Table VI, which
showcases the results of the top-performing submissions from
both the participant and baseline methods.

Fig. 9 illustrates visual examples of common segmentation
errors made by each participant method. The examples cover
all mitochondria categories and tissues, allowing for a visual
inspection of the errors made by different methods.

Additionally, to provide a comprehensive understanding of
the associations per mitochondria category (small, medium,
and large), we present the distribution of associations in
Fig. 10 for the best submissions among all participant methods.
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