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Joint Optimization of Class-Specific Training-
and Test-Time Data Augmentation

in Segmentation
Zeju Li , Konstantinos Kamnitsas , Qi Dou , Chen Qin , and Ben Glocker

Abstract— This paper presents an effective and general
data augmentation framework for medical image segmenta-
tion. We adopt a computationally efficient and data-efficient
gradient-based meta-learning scheme to explicitly align
the distribution of training and validation data which
is used as a proxy for unseen test data. We improve
the current data augmentation strategies with two core
designs. First, we learn class-specific training-time data
augmentation (TRA) effectively increasing the heterogene-
ity within the training subsets and tackling the class
imbalance common in segmentation. Second, we jointly
optimize TRA and test-time data augmentation (TEA), which
are closely connected as both aim to align the train-
ing and test data distribution but were so far consid-
ered separately in previous works. We demonstrate the
effectiveness of our method on four medical image seg-
mentation tasks across different scenarios with two state-
of-the-art segmentation models, DeepMedic and nnU-Net.
Extensive experimentation shows that the proposed data
augmentation framework can significantly and consis-
tently improve the segmentation performance when com-
pared to existing solutions. Code is publicly available at
https://github.com/ZerojumpLine/JCSAugment.

Index Terms— Data augmentation, meta-learning, image
segmentation.

I. INTRODUCTION

DATA augmentation is a de facto technique in neural
networks and has shown to improve model general-

ization [34]. It is essential for medical image segmentation
algorithms to perform well on unseen test data. Depending
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Fig. 1. Data augmentation improves segmentation model performance
by aligning the training and validation/test data distribution. As illustrated
in (b) [8], (c) [7], [16], [18], [25], [28] and (d) [20], [33], current methods
optimize the data distributions by using a validation set as a proxy for
unseen test data. Our framework brings improvements by integrating two
conceptually simple and intuitive ideas: (e) We adopt different kinds of
training-time data augmentation (TRA) for training samples from different
classes, effectively extending the training data distribution and alleviating
the class imbalance issue. (f) We jointly optimize TRA and test-time
data augmentation (TEA) during every training iteration, making the data
distributions overlaps more.

on when it is performed, we can divide data augmentation
into training-time data augmentation (TRA) and test-time data
augmentation (TEA). TRA aims to increase the variation
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captured by the training dataset by adding perturbed samples
with the goal to capture the unseen test data distribution.
TEA robustifies the final prediction by averaging predictions
of predefined, assumed non-causal variations of test data,
to which the model should be robust [35]. An alternative
approach for TEA is to modify the test data to achieve higher
accuracy with the pretrained model by transforming the test
samples to match the distribution of the training data, which
is the opposite direction of TRA. Here, we consider to make
TRA and TEA complement each other towards the goal of
more accurate and robust predictions.

Common data augmentation strategies are usually designed
based on heuristics and manually tuned configurations with
respect to reducing validation error [16], [18]. However,
strategies designed for one task may not be optimal for
another task or dataset. Consequently, data augmentation
without considering data and task characteristics may not
always improve the model performance. In particular, dif-
ferent medical image segmentation tasks may require dif-
ferent data augmentation settings, due to changes in image
acquisition protocols, modalities, and anatomical structures
of interest [16]. It is tedious to hand-engineer suitable
augmentation strategies for each individual task. There-
fore, methods have been proposed to automatically learn
effective augmentations directly from the available training
data [7], [20], [25], [28], [33], [36], [37].

However, we argue that there are two major limitations
constraining the performance of current data augmentation
strategies. First, previous studies [7], [20], [28], [33] mostly
focus on either TRA or TEA separately, without considering
their connections, despite the two being closely linked. This
could lead to suboptimal results as the test condition can be
adapted through TEA which is not taken into account by
TRA when the two are considered in isolation. Second, most
TRAs adopt the same transformations for all the samples with-
out considering the different properties existing in different
classes. Specifically, the foreground samples in segmentation
are more prone to overfitting than background samples because
they underrepresented due to class imbalance [26]. Current
data augmentation strategies fail to model the heterogeneity
of samples from different classes and the resulting model per-
formance may suffer from overfitting under class imbalance.

In this study, we aim to bridge the gap between TRA
and TEA by presenting a gradient-based meta-learning frame-
work to automatically discover optimal TRA and TEA
strategies, simultaneously. As illustrated in Fig. 1(a,b,c,d),
data augmentation improves model generalization by align-
ing the training and underlying test data distribution. Our
data augmentation framework (c.f. Fig. 1(e, f)) further takes
class properties and test condition into account, funda-
mentally restructuring the data distributions aiming for an
increased overlap. We validate our method with medical
image segmentation because of its imbalanced nature and
clinical importance.

The contributions of this study can be summarized as
follows: 1) We build a bridge between TRA and TEA through
joint optimization of data augmentation policies during the

training process, which improves alignment of training and
test sample distributions and yields better generalization.
2) We introduce a method that automatically finds dif-
ferent TRA policies for training samples from different
classes, implicitly addressing the class imbalance problem.
3) We design a transformation set for TRA with 15 cascaded
transformations and 47 operations in total, as well as a
transformation set with 83 operations for TEA. These trans-
formation sets cover most transformations in medical image
segmentation and can also be easily extended and applied
to other applications. 4) Extensive experiments performed on
four datasets with two state-of-the-art segmentation models
show that our method can consistently improve segmenta-
tion performance in various applications and demonstrate the
potential to replace the heuristically chosen augmentation
policies currently used in most previous works.

II. RELATED WORK

A. Data Augmentation Model

The majority of data augmentation strategies consist of a
set of transformations defined based on domain knowledge to
represent the heterogeneity of the test data. Examples include
rotations, flipping, and intensity shifts [6], [21]. On the other
hand, there are also heuristic perturbation techniques such
as cutout [9] and mixup [38] that, even though they lead to
unrealistic synthetic samples, have been empirically found to
improve model generalization. More realistic transformations
can be generated based on properties matching [39] or gen-
erative adversarial networks [13]. Although these techniques
showed promising performance, the design of data augmen-
tation is difficult because it requires prior knowledge about
the task at hand. Optimal strategies, however, may differ
significantly between different tasks, datasets and types of
input modalities, and thus will be difficult to hand engineer [7],
[16]. In this study, we aim to automate the process of designing
data augmentation.

Currently most TRA methods adopt the same transfor-
mations to all the training samples except [26], which pro-
posed to increase the variance of foreground samples by
heuristically reducing the number of transformed samples for
the background classes in order to alleviate class imbalance.
However, they found different hyper-parameters are optimal
for different datasets, and the chosen transformations and
hyper-parameters were based on heuristics. In contrast, our
method automatically learns different transformations for dif-
ferent classes and discovers the rules from the training data
by itself.

B. Learning Based Training-Time Data Augmentation

There have been many attempts to optimize TRA along with
the training process to obtain task-specific TRA policies. Most
of the studies are developed based on the idea of adversar-
ial training [12]. The basic adversarial augmentation might
not improve generalization on real data as the constructed
samples are not realistic. Recent methods attempt to improve
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real data heterogeneity by adopting an advanced augmenta-
tion model [4] or restricting the search space [31], which
require strong prior knowledge. Different from these, some
methods were proposed to generate artificial samples with
task constraints [3], which encourage a generative model to
produce additional well-classified images with class properties
to enlarge the training data distribution. However, the well-
classified samples might not be very useful when the training
data is sufficient as they would not make significant changes
to the learning of the decision boundary.

Our method is closely related to the line of research which
optimizes TRA based on the validation performance such that
the learned model can best generalize. Those methods find the
sets of augmentation policies that are optimal for a specific
training database, out of a pool of possible transformations,
based on reinforcement learning [7], [37], meta-learning [25],
[36], or density matching [28]. In our study, we consider to
learn the parameters of a probability distribution over TRA
with a meta-learning scheme. The meta-learner parameters
are optimized with the aim of enabling the task segmentation
network to perform better on a validation set. In this way,
the meta-learner is explicitly trained to select augmentations
that improve generalization. Our method improves existing
solutions by the joint optimization of TRA and TEA as well
as learning a separate augmentation per class. In addition, the
defined transformation pool in our work is more comprehen-
sive than previous studies for medical image segmentation,
making it more practical to improve upon current heuristic
solutions.

C. Learning Based Test-Time Data Augmentation
In TEA, class-posterior probabilities from multiple predic-

tions are averaged after applying predefined transformations to
the test sample, which was found to be effective to improve
accuracy. Recently, some methods were proposed to learn TEA
by choosing the transformations obtaining low loss values on
the validation set based on a pre-trained model [20], [33].
Test-time adaptation is another kind of learning based TEA
where the pre-trained model is adapted to fit a single
test sample based on denoising autoencoder [19] or self-
supervision [14]. These learning based TEA strategies can
be seen as a post-processing to the segmentation and do not
contribute to the learning of the model. In contrast, our method
proposes to combine the optimization of TRA and TEA during
training, which leads to not only learning the optimal TRA and
TEA transformations that complement each other, but also
learning optimal model parameters given the specific set of
data transformations.

III. METHOD

A. Preliminaries
We consider the image segmentation problem with c total

number of classes. A training dataset DT = {(xi , yi )}
N
i=1

with N samples is given, where xi is a training image and
yi corresponds to the segmentation label map with individual
labels yi p ∈ {1, . . . , c} for each image pixel p. Assuming a
segmenter fθ parameterized by θ , our aim is to learn optimal

θ∗ parameters, such that fθ∗(·) minimizes the empirical risk
over the training data. For any training loss function Ltrain ,
the empirical risk of the segmentation model fθ is defined
as RLtrain ( fθ ) =

1
N

∑N
i=1 Ltrain( fθ (xi ), yi ). Apart from DT ,

we usually have a validation dataset DV = {(x̃i , ỹi )}
M
i=1

with M samples along with a validation loss Lval , which
is taken as a proxy for unseen test data and used to tune
the hyper-parameters including learning rates [24], network
architecture [40] and data augmentation policies [7]. Note that
DV could come from a different distribution from DT , based
on different assumptions of unseen test data.

B. Sampling Transformations
For a sample xi (or x̃i ), we will apply transformation

Ti (·) which is specific to the i-th sample. Ti is obtained by
sampling from a set of K operations {O1, . . . ,OK

} based on
the corresponding probability distribution p = [p1, . . . , pK ]

⊺.
In this study we represent with a different O j operation not
only transformations of different type (for example rotations,
contrast enhancement, etc.) but also transformations of the
same type but different magnitudes (for example rotations of
different degree). We do not further optimize the predefined
magnitudes of transformations during training. Our method
will optimize during training the sampling distribution p of
different transformations for data augmentation, so that we
learn which transformations are most appropriate for the given
dataset and task.

In order to include the distribution into the gradient based
optimization through the non-differentiable sampling pro-
cess, we reparameterize the categorical distribution using the
Gumbel-Softmax trick [17]. We calculate the probability of
assigning sample xi (or x̃i ) with operation O j as:

si j =
ep j +gi j∑K

v=1 epv+giv
, for j = 1, . . . , K , (1)

where gi j is a sample drawn from the Gumbel distribution,
i.e., gi j = − log(− log(ε)), in which ε is a random number by
drawing ε ∼ Uniform(0, 1). It then holds that

∑K
j=1 si j = 1

and 0 ≤ si j ≤ 1, ∀ j . In this way, the stochasticity involved
in the sampling process is removed from the computational
graph of network’s training and the process of choosing aug-
mentation Ti based on probability distribution p now becomes
differentiable. Specifically, Ti is chosen as O j∗ where j∗ =

argmax j (si j ). The sampling probability p, which we would
like to optimize, can still not be updated via backpropagation,
both due to the non differentiable argmax and because the
transformations are non-differentiable in the general case.
To work around this, we also calculate a weight wi that
corresponds to the sample xi (or x̃i ) with:

wi = max
j

(si j ) + (1 − max
j

(si j )),︸ ︷︷ ︸
does not require gradient

(2)

which is a function of the sampling probability si j . We then
incorporate the weight into the empirical risk as R′

Ltrain
( fθ ) =

1
N

∑N
i=1 wiLtrain( fθ (Ti (xi )), yi ). In this manner, wi and si j

are part of the total loss and hence can be straightforwardly
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Fig. 2. The optimization process of the proposed method. In this study, data augmentation is formulated as the probability distribution of multiple
predefined transformations, as demonstrated in ①, ② and ③. During the same iteration, class-specific TRA is optimized based on meta-gradients
with ⑤ while TEA is optimized based on the validation losses of Z transformed samples with ⑥.

optimized. During the forward propagation, we utilize wi to
evaluate the chosen transformation Ti without affecting the
training procedure, as wi is always equal to 1. During back-
propagation, wi that is associated with a relatively effective
Ti is prone to be increased. As we enforce the computation
of the second term in Eq. 2 to never require gradient, we can
use wi as a means to optimize si j and thus p with gradient
descend.

For distinction between TRA and TEA, in the following
paragraphs we define the probability distribution and trans-
formation of TRA as pT and T̂i while denoting the ones of
TEA as pV and Vi unless otherwise noted. Note that we are
considering the problem of image segmentation, therefore the
spatial transformations are always applied to yi simultaneously
but we omit this for simplicity.

C. Overview of the Training Process

We aim to reduce the generalization gap explicitly by
optimizing a probability distribution over data augmentations
pT (or pV ) based on the gradient from the validation data
∇ pTLval (or ∇ pVLval ). Thus, pT (or pV ) is automatically
adapted to the underlying task-specific characteristics.

We develop a training framework based on meta-learning
via second-order optimization to accomplish this. The opti-
mization process of the proposed method is illustrated in
Fig. 2. During the sampling process, we first obtain the
transformed training data with ① and optimize the model to
fθ∗ with ④ based on a single optimization step; then we pass
the transformed validation data with ② through fθ∗ to compute
the second-order gradients ⑤ and backprop to ①, to learn TRA
that leads to learning θ∗ that best generalizes on validation
data transformed with TEA; meanwhile, we also apply varied
transformations of TEA to a single validation sample with
③ and we try to learn TEA pV which can transform a

single validation sample x̃i to have the lowest validation error
with ⑥.

D. Learning of Class-Specific Training-Time Data
Augmentation

1) The Design of Predefined Transformations: Following the
design of data augmentation in many medical image segmen-
tation frameworks [16], [18], we design the transformation
set with L=15 cascaded operations including rotation, mirror-
ing, gamma correction, histogram transformations, blurring,
sharpening, adding noise, and simulating low resolution. The
operation magnitudes are decided by uniformly sampling from
predefined ranges. We summarize the detailed information
about the operations in supplementary material. Specifically,
the probability distribution and transformations of TRA is
extended as pT = ( p1, . . . , pL) and T̂i = {T 1

i , . . . , T L
i }.

We ensure that our design of TRA is able to accomplish
the same functionality with the built-in data augmentation
in prevailing frameworks such as DeepMedic [18] and nnU-
Net [16], therefore our method can act as a replacement
for heuristic TRA. We initialize pT with heuristic policies
provided by these frameworks, as shown in Fig. 3.

2) Class-Specific Data Augmentation: We adopt different
TRAs for training samples from different classes. Specif-
ically, we extend the probability distribution to p̂T =

( pT
1, . . . , pT

c) which contains different probability distribu-
tions for c classes. In this way, TRA becomes more flexible
and powerful as it gains the ability to draw T̂i from different
distributions for different classes.

In practice, we determine the class of a training patch with
the central pixel of the patch. Note that in this study we only
regard the training samples to come from 2 classes consisting
of foreground (tumor, lesion, and organs) and background.

3) Policy Optimization With Meta-Gradients: Similar to pre-
vious works on learning TRA [7], [25], we aim to learn TRA
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Fig. 3. The heuristic data augmentation policy and the learned probability distributions over augmentations based on different segmentation models
for brain stroke lesion segmentation with 100% ATLAS training data. We also visualize an example of the transformed foreground (FG) training sample
with different sampling distributions for TRA. Our framework provides application-specific and class-specific data augmentation policies. We find
the learned policies would adopt larger transformations to the FG than the background (BG) samples, implicitly alleviating the class imbalance
issue.

based on the performance of validation data and formulate the
optimization of TRA as a bi-level optimization problem:

min
p̂T

1
M

M∑
i=1

Lval( fθ∗(x̃i ), ỹi ) (3)

s.t. θ∗
= argmin

θ

1
N

N∑
i=1

wiLtrain( fθ (T̂i (xi )), yi ). (4)

We propose to solve this based on gradient descent
following [11] and [32]. We train the model with a
training batch containing n samples and a validation batch

consisting of m samples. For simplicity, we shorten
1
n

∑n
i=1 wiLtrain( fθ (T̂i (xi ), yi )) as Ltrain(θ, p̂T ) and

1
m

∑m
i=1 Lval( fθ∗(x̃i ), ỹi )) as Lval(θ

∗) in the following
paragraphs. Based on the chain rule, the gradient of validation
loss w.r.t. p̂T is derived as:

∇ p̂T
Lval(θ

∗) = (
∂θ∗

∂ p̂T
)⊺∇θLval(θ

∗), (5)

where ∇ p̂T
= ( ∂

∂ p̂T
)⊺ and ∇θ = ( ∂

∂θ
)⊺. The calculation of

∂θ∗

∂ p̂T
can be derived based on implicit function theorem [1].



3328 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 11, NOVEMBER 2023

However, the calculation would introduce a Hessian which
is not practical to calculate with the parameters of deep
nerual network as the number of parameters is too large.
There are many methods to approximate the gradient without
Hessian calculation [11], [29], [32], in this study we choose
to approximate θ∗ by using a single training step [10], [29].
Specifically, we approximate the optimal θ∗ via a standard
training step with:

θ∗
≈ θ − α∇θLtrain(θ, p̂T ). (6)

Here, α is the step length which we set equal to the
learning rate of the task model. Eq. 6 defines the approximated
optimal θ∗ when trained using the training data with sampled
data augmentation T̂i . In this manner, we can evaluate the
effectiveness of the data augmentation policy p̂T based on the
performance of the updated model fθ∗ on a held-out validation
dataset. We differentiate this equation w.r.t. p̂T from both sides
and yield:

∂θ∗

∂ p̂T
= −α∇

2
θ, p̂T

Ltrain(θ∗, p̂T ), (7)

where ∇
2
θ, p̂T

=
∂∇θ

∂ p̂T
. By substituting Eq. 7 into Eq. 5, now

we can update p̂T with:

p̂t+1
T = p̂t

T − β∇ p̂t
T
Lval(θ

∗)

= p̂t
T + αβ∇

2
p̂t

T ,θ
Ltrain(θ∗, p̂t

T )∇θLval(θ
∗), (8)

which can be interpreted as a gradient of the gradient from
the task-driven training. In the above, β is the learning rate
for determining the probability distribution. In this way, we
can optimize the distribution p̂T explicitly with the aim to
improve generalization of the segmentation model using the
validation data. Eq. 8 includes a second-order gradient. As the
distribution p̂T is represented with only a few parameters
(K , which is in the order of 10-100), we find the complexity
of the gradient computation to be O(| p̂T ||θ |) which is feasible
and can be handled by prevailing toolboxes such as PyTorch
and Tensorflow.

After updating p̂T , we update fθ to fθ∗ to fit the updated
TRA policy for the next iteration. We optimize p̂T along with
the training of the task model, and at the end of the training
we may have higher performance than any model learned with
a random or manually configured augmentation policy.

4) Gradient Normalization: We normalize the gradient from
different classes of training samples, as we notice that the
contributions of training samples from different classes to the
reduction of the validation loss varied a lot. For example,
the foreground samples are more effective for reducing the
validation loss, resulting in increased probabilities of the
policies associated with the foreground samples. Specifically,
if we rewrite the gradient in Eq. 5 by the chain rule as:

∇ p̂T
Lval(θ

∗) =

n∑
i=1

∇wiLval(θ
∗)(

∂wi

∂ p̂T
)⊺, (9)

we would find the magnitude of ∇wiLval(θ
∗) is signif-

icantly larger for the foreground samples than the back-
ground samples. To resolve this, we rewrite Eq. 9 as

∇ p̂T
Lval(θ

∗) =
∑n

i=1 hi (
∂wi
∂ p̂T

)⊺ with the normalized gradient
hi :

hi = ∇wiLval(θ
∗) −

∑n
j=1 1[y jc=yic]∇w jLval(θ

∗)∑n
j=1 1[y jc=yic]

(10)

where yic is the central pixel label of the segmentation label
map yi and 1y jc=yic ∈ {0, 1} is an indicator function which
is equal to 1 if and only if y jc = yic. Thus, the gradients are
normalized for different classes. Another benefit of gradient
normalization is that we can guarantee that the probability of
transformation which is not sampled in one iteration would
remain unchanged.

5) Sampling Normalization: We notice that the optimization
process could also be biased towards transformations with high
probability. Because the more frequently one transformation is
sampled, its probability would be increased more as long as it
is more effective than the majority of the transformations in the
same batch. As a consequence, it would be likely to be trapped
in a local minimum and the probability of any preferable
transformation which is frequently sampled by chance could
be increased a lot. Therefore, we also normalize hi with the
sampling frequency and obtain ĥi as:

ĥi =
hi∑n

v=1 1[argmax j (sv j )=argmax j (si j )]
. (11)

E. Learning of Test-Time Data Augmentation

1) The Design of Predefined Transformations: We design the
transformation set for TEA with K=84 kinds of deterministic
operations including identity along with 41 spatial transfor-
mations, 30 intensity transformations, and 12 noise transfor-
mations. We summarize the detailed information about those
transformations in supplementary material. We initialize pV
referring to the heuristic policies used in nnU-Net [16] which
comprises mirroring and 180◦ rotation in three directions, as
shown in Fig. 3.

2) Policy Optimization Based on Reverted Predictions: The
optimization of TEA is straightforward. We aim to optimize
the function with normal gradient descend:

min
pV

1
Z

Z∑
k=1

w̃kL̃val(Vk
−1( fθ (Vi (x̃i ))), ỹi ), (12)

where Z is the number of samples TEA transformations
in a batch. We update pV by choosing the transformations
which have the lowest validation loss with the same validation
sample:

pt+1
V = pt

V − γ∇ pV

1
Z

Z∑
k=1

w̃kL̃val(Vk
−1( fθ (Vk(x̃i ))), ỹi ),

(13)

where γ is the learning rate to update the probability and L̃val
is the validation loss function for TEA optimization, which can
differ from Lval .
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3) Sampling Normalization: Similar to TRA, we notice that
the optimization of pV would be biased due to the sampling
results. We simplify 1

Z
∑Z

k=1 w̃kL̃val(Vk
−1( fθ (Vk(x̃i ))), ỹi )

to L̃val(θ), and derive the gradient based on the chain rule:

∇ pV L̃val(θ) =

Z∑
k=1

h̃k(
∂w̃k

∂ pV
)⊺. (14)

Similarly, we normalize the gradients based on sampling
frequency and calculate h̃k as:

h̃k =
∇w̃k L̃val(θ)∑Z

v=1 1[argmax j (sv j )=argmax j (sk j )]

. (15)

F. Inference of Test-Time Data Augmentation

Given unseen test data, we adopt the learned TEA policy
to transform the image. Specifically, in order to simplify the
inference process, we do TEA at test time with the weighted
sum of operations that have the highest z probability, where z
is a hyper-parameter indicating the number of operations to be
selected for aggregation. We choose z=8 for 3D U-Net while
z=4 for DeepMedic. The weight of operation O j is set as
the corresponding sampling probability which is calculated as
ep j /

∑K
v=1 epv .

G. Joint Learning of Training- and Test-Time Data
Augmentation

We propose to jointly optimize TRA and TEA, and specif-
ically we optimize p̂T with the transformed validation data
based on pt

V and rewrite Eq. 3 and 4 as:

min
p̂T

1
M

M∑
i=1

Lval( fθ∗(Vi (x̃i )), ỹi ) (16)

s.t. θ∗
= argmin

θ

1
N

N∑
i=1

wiLtrain( fθ (T̂i (xi )), yi ). (17)

Note that we optimize both p̂T and pV in one training
iteration. Bridging the optimization process of p̂T and pV has
two advantages: First, we can reduce the risk of overfitting on
the validation data as it is extended with augmented samples.
Second, the model can generalize well to the transformations
we adopt at test time. The full procedure is summarized in
Algorithm 1.

Additional implementation details are provided in the sup-
plementary material. We find that the policies do not need to
be updated in every iteration, making training more efficient.
In practice, we observe the training time would only increase
by about 20% compared to standard training. Typically, when
a model takes 4 days to train with an NVIDIA 1080TI GPU
for the segmentation task, our method costs 20 hours to find
the optimal data augmentation strategies. This is computational
efficient than AutoAugment [7] which could takes thousands
of hours.

Algorithm 1 Joint Optimization of Class-Specific Training-
and Test-Time Data Augmentation in Segmentation
Require:
DT = {(xi , yi )}

N
i=1: training data, DV = {(x̃i , ỹi )}

M
i=1:

validation data; fθ (·): the segmentation model, T̂i (·): TRA
which is determined by drawing from class-specific proba-
bility p̂T , Vi (·): TEA which is determined by drawing from
probability pV .
α, β, γ : learning rate to update θ , p̂T and pV .

1: Initialize p̂T , pV with heuristic policies referring to the
ones in DeepMedic [18] or nnU-Net [16].

2: for each iteration do
3: Sample a batch of training data BT = {(xi , yi )}

n
i=1 from

DT and a batch of validation data BV = {(x̃i , ỹi )}
m
i=1 from

DV .
4: for a number of steps do ▷ Note: One step is sufficient

in our experiments.
5: Sample a set of {T̂i (·)}

n
i=1 with Gumbel-Softmax

distribution parameterized by pT
j based on sample class.

6: Sample {Vi (·)}
m
i=1 and {Vk(·)}

Z
k=1 with Gumbel-

Softmax distribution parameterized by pV .
7: Calculate θ∗ with an optimization step via Eq. 6.
8: Optimize p̂T based on normalized meta-gradients:

p̂t+1
T = p̂t

T − β∇ p̂t
T

1
m

∑m
i=1 Lval( fθ∗(Vi (x̃i )), ỹi ). ▷

Learning of TRA.
9: Optimize pV based on normalized gradient via

Eq. 13. ▷ Learning of TEA.
10: end for
11: Update θ to θ∗. ▷ Training the segmentation model.
12: end for

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

A. Experimental Setup

1) Data Pre-Processing: We normalize all datasets using the
pipeline of nnU-Net. Specifically, we adopt case-wise Z-score
normalization for magnetic resonance (MR) images, and we
normalize computed tomography (CT) images with dataset-
wise Z-score normalization based on foreground samples after
clipping the Hounsfield units (HU) values from 0.5% to 99.5%.

2) Network Configurations: Our experiments are performed
with DeepMedic [18] and a well configured 3D U-Net [16].
We choose cross-entropy (CE) as Ltrain for DeepMedic and an
equal combination of CE and soft Dice similarity coefficient
(DSC) for 3D U-Net. We find that the optimal choice of Lval
varies for different datasets and summarize the information in
supplementary material. We adopt soft DSC for L̃val for all the
experiments. We choose the batch sizes n and m to be 10. We
set the primary patch size as 37×37×37 for all the experiments
with DeepMedic and a patch size of 64×64×64 for all the
applications with 3D U-Net except prostate segmentation. We
choose a patch size of 64×64×32 for prostate segmentation
with 3D U-Net because images in this dataset have fewer
slices. We train the networks for 1,000 epochs except for
kidney and kidney tumor segmentation where we train for
2,000 epochs, as we observed that the networks need more



3330 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 11, NOVEMBER 2023

iterations to converge on this task. All the reported results are
the average of two runs with different random seeds.

3) Brain Stroke Lesion Segmentation: We firstly evaluate the
proposed method with binary brain stroke lesion segmentation
using the dataset of Anatomical Tracings of Lesions After
Stroke (ATLAS) [27]. The images have a voxel spacing of
1.0×1.0×1.0 mm. With a total of 220 T1-weighted MR
images, we randomly select 73 (50%) or 145 (100%) for
training, 31 for validation, and 44 for test.

4) Kidney and Kidney Tumor Segmentation: Secondly, we
evaluate the proposed method with kidney and kidney tumor
segmentation using the training dataset of Kidney Tumor
Segmentation Challenge (KiTS) [15] which contains 210
CT images. We resample all images to voxel spacing of
1.6×1.6×3.2 mm. We randomly select 70 (50%) or 140
(100%) for training, 28 for validation, and 42 for test. We omit
the segmentation results of kidney as find most methods per-
form well (DSC > 95.0) on the task of kidney segmentation.

5) Abdominal Organ Segmentation: We also evaluate the
proposed method with the task of abdominal organ segmenta-
tion [22] which contains 14 classes including spleen (SP), right
kidney (RK), left kidney (LK), gallbladder (GB), esophagus
(E), liver (LIV), stomach (STO), aorta (AO), inferior vena
cava (IVC), portal vein and splenic vein (V), pancreas (PA),
right adrenal gland (RA) and left adrenal gland (LA). We
resample all images to a voxel spacing of 1.6×1.6×3.2 mm.
We randomly select 20 for training, 4 for validation, and 6 for
test.

6) Cross-Site Prostate Segmentation: Additionally, we uti-
lize our method to align training data and validation data of
prostate segmentation from different domains [30]. Specifi-
cally, we utilize 30 T2-weighted MR images from site A [2]
which were collected with 1.5T Philips MRI machine with
endorectal coil and 19 T2-weighted MR images from site
B [23] which were collected with 3T Siemens MRI machines
without endorectal coil. We resample all the images to a
voxel spacing of 0.8×0.8×1.5 mm. We investigate the scenario
where the target domain (site B) has limited labeled data. We
select 20 cases from site A for training and 6 cases for test.
We select 1 case from site B for validation and use 18 cases
for testing. Note that for cross-site prostate segmentation, we
report results with models trained with both training data and
validation data as this serves as a fairer baseline compared to
using training data only.

B. Compared Methods
1) Heuristic: We compare with the heuristic TRA and TEA

which are set as the default configurations in DeepMedic [18]
and nnU-Net [16]. We also report a few results based on
models trained using both the training and validation data with
heuristic TRA.

2) Learned TRA: We compare with methods that adopt the
data augmentation policies based on the validation perfor-
mance without considering class dependency [7], [25], [28].

3) TRA With Different Transformation Magnitudes: We also
compare with RandAugment [8], which only changes the
transformation magnitudes based on grid searching. Specif-
ically, we keep the data augmentation probability and

TABLE I
AVERAGE DSC RESULTS OF BOTH DEEPMEDIC AND 3D U-NET FOR

DIFFERENT SEGMENTATION TASKS UNDER VARIED SETTINGS USING

DIFFERENT DATA AUGMENTATION METHODS. ORGANr IS THE

AVERAGE PERFORMANCE OF ALL RARE ORGAN CLASSES

replace the operations of the same type with different
magnitudes, yielding RandAugment-S, RandAugment-M and
RandAugment-L. We summarize the results with RandAug-
ment in supplementary material.

4) Learned TEA: We compare with methods which optimize
TEA based on a pretrained segmentation model [20], [33].
Specifically, after training the model with proposed TRA, we
refine TEA as described in Section III-E.

C. Quantitative Results

Taking the manual segmentation as the ground truth, we
calculate evaluation metrics including DSC, sensitivity (SEN),
precision (PRC), 95% Hausdorff distance (HD) (mm). We
calculate the mean DSC results of different models under dif-
ferent settings for different datasets in Table I. We summarize
more detailed results in Table II, III, IV and V, separately.
In order to assess the overall segmentation performance of
different methods, we rank the methods according to different
metrics under the same experiment setting and report the
average rank (AVG rank) of the four metrics. The learned
probability distributions over augmentations for brain lesion
segmentation based on different models with 100% ATLAS
training data are summarized in Fig. 3. As shown for TRA
policies, the darkness of different pie chart segments stands
for the magnitudes of the operations. For example, the lightest
grey segments refer to the operation without any transforma-
tions and the darkest (black) segments represent the operations
with large transformations. We summarize all the learned
policies under different settings in supplementary material.

1) The Effectiveness of Class-Specific TRA: Heuristic TRAs,
which were tuned based on varied segmentation tasks [16],
[18], significantly help improve the segmentation performance
in all cases compared with models trained without TRA. This
indicates that TRA is vital for medical image segmentation as
limited training data and class imbalance can easily lead to
model overfitting [26].

Learned TRA, which is optimized with validation data,
can provide application-specific policies and is more effective
than heuristic TRA in most cases. We find that the models
trained with learned TRA can even outperform the ones trained
with heuristic TRA that use both training and validation
data, as shown in Table II. This may indicate that it will



LI et al.: JOINT OPTIMIZATION OF CLASS-SPECIFIC TRAINING- AND TEST-TIME DATA AUGMENTATION 3331

TABLE II
EVALUATION OF BRAIN STROKE LESION SEGMENTATION ON ATLAS BASED ON DIFFERENT NETWORK ARCHITECTURES WITH DIFFERENT

AMOUNTS OF TRAINING DATA USING DIFFERENT DATA AUGMENTATION METHODS. BEST AND SECOND BEST RESULTS

ARE IN BOLD, WITH BEST ALSO UNDERLINED

TABLE III
EVALUATION OF KIDNEY TUMOR SEGMENTATION BASED ON DIFFERENT NETWORK ARCHITECTURES WITH DIFFERENT AMOUNTS OF TRAINING

DATA USING DIFFERENT DATA AUGMENTATION METHODS. BEST AND SECOND BEST RESULTS ARE IN BOLD, WITH BEST ALSO UNDERLINED

be more effective to increase the heterogeneity within the
training data by adopting application-specific TRA than adding
a small amount of training data. We find RandAugment with
specific magnitude could be more effective than the learned
one in some cases. Specifically, RandAugment-L is better
than the learned ones for kidney tumor segmentation under
specific setting, as shown in Table III. This might indicate
that learned TRA is prone to overfitting the validation data
and the optimized policies are not guaranteed to be optimal
for unseen test data, as also found in [8].

In contrast, class-specific TRA can better model the het-
erogeneity of the real data by taking class imbalance into
account, and thus overfit less and perform better on unseen
test data than alternative methods. We argue that class-specific
TRA is important as it concerns the imbalanced nature of
the segmentation datasets and directly regularizes the training
data in an implicit way. As shown in Fig. 3, compared with

heuristic TRA, the learned policies tend to generate larger
transformations for foreground samples while adopting smaller
transformations to background samples. In segmentation, fore-
ground classes are typically underrepresented and a learned
baseline model would be biased towards the majority class.
As a result, the model would map the foreground samples
near the decision boundary and cause false negatives, as shown
in [26]. Class-specific TRA can mitigate the class imbalance
problem by inducing larger variance within the foreground
samples, making the model learn a better decision boundary,
consistently leading to better segmentation results with higher
sensitivity. Particularly, we find class-specific TRA would
improve the segmentation performance of rare classes more
significantly (c.f. Table IV) as it can enhance the rare class
representation by increasing the heterogeneity of foreground
sample variation. We also find that the probabilities of spatial
transformations change more significantly compared to
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TABLE IV
EVALUATION OF ABDOMINAL ORGAN SEGMENTATION BASED ON DIFFERENT NETWORK ARCHITECTURES USING RANDOM DATA AUGMENTATION

METHODS. BEST AND SECOND BEST RESULTS ARE IN BOLD, WITH THE BEST ALSO UNDERLINED. AVGr IS THE AVERAGE

PERFORMANCE OF ALL RARE CLASSES INCLUDING GB, E, AO, IVC, V, PA, RA AND LA

TABLE V
EVALUATION OF CROSS-SITE PROSTATE SEGMENTATION BASED ON DIFFERENT NETWORK ARCHITECTURES USING DIFFERENT DATA

AUGMENTATION METHODS. BEST AND SECOND BEST RESULTS ARE IN BOLD, WITH THE BEST ALSO UNDERLINED

intensity transformations. This might indicate that spatial
transformations are more effective in increasing the hetero-
geneity within training data. We validate our methods for
prostate segmentation under domain shifts where the training
and test data is collected under different conditions. We find
directly fine-tuning the segmentation models with limited
target data provides worse results than training with data from
both domains. We report the segmentation results of both
site B and site A with cross-site prostate segmentation in
Table V. Although the learned data augmentation is optimized
based on the validation data from site B (target domain), the
models can still generalize well on site A. In addition, as

we show in supplementary material, we find that our method
can help the models generalize better on unseen test domains
which are different from either site A or site B. This indicates
that our method is robust to domain shifts and can be a safe
choice to calibrate the segmentation performance of different
domains within multi-domain learning.

2) The Effectiveness of Joint Optimization: We find heuristic
TEA can help the pretrained models produce better overall
segmentation results with higher precision. This is because the
ensemble of multiple predictions can reduce false positives as
the models are unlikely to produce the same kind of false
positives with all the transformed images. However, when
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Fig. 4. Visualization of different datasets and segmentation results with different data augmentation methods. The proposed data augmentation
framework can help the model produce overall better segmentation results with higher sensitivity. Best viewed in color.

TRA is optimized based on validation data without TEA,
heuristic TEA might not work well as the model may overfit
to the original data distribution and thus fail to generalize to
the transformed data. Specifically, we observe that heuristic
TEA would decrease the model performance for 3D U-Net
trained with 50% ATLAS training data (-0.3 in terms of DSC,
c.f. Table II) and Deepmedic trained for prostate segmentation
(-0.1 in terms of DSC, c.f. Table V) using learned class-
specific TRA. In comparison, learned TEA can refine the
transformations to fit the pretrained models and improve the
results for most cases.

However, learned TEA alone does not affect model train-
ing and cannot change the results significantly compared to
heuristic TEA. In contrast, our method optimizes TRA based
on TEA along the training process, jointly aligning the data
distributions resulting in larger overlaps. For example, as
illustrated in Fig. 3(a), the learned TEA policy would increase
the probability of flipping in sagittal planes for DeepMedic
trained with 100% ATLAS training data. It might be because
the left and right hemispheres of human brains are generally
symmetric. Correspondingly, TRA would tune the training data
distribution with more samples flipped in the sagittal planes. In
this way, the segmentation models not only have lower risks of
making the same false positives but also generalize better on
varied transformed samples. As a result, we find that the joint
optimization further boosts the segmentation performance by
achieving higher precision and sensitivity.

We argue that the joint optimization is crucial for data
augmentation as it explicitly aligns the training and test-time
conditions. Otherwise, the model may get stuck into a local
minimum where we cannot find effective test-time transforma-
tions to fit the training data distribution. For example, we find
that when compared with segmentation without TEA, learned
TEA brings limited improvements for 3D U-Net trained with
50% KiTS training data (0.4 in terms of DSC, c.f. Table III)
and DeepMedic trained for prostate segmentation (0.2 for site

B in terms of DSC, c.f. Table V). This indicates that the
predictions on most chosen transformations cannot contribute
much to the results on top of the predictions of the original test
images. In contrast, the joint optimization leverages the varied
test-time transformations and improve the segmentation (0.9
and 2.8 separately in terms of DSC).

We notice that the learned TEA policies would generally
prefer the original images (identity). In addition, the transfor-
mations which are not included in heuristic TEA are hardly
useful. These findings indicate that we may not need to apply
large transformations to the test data to improve generalization.

We visualize some segmentation results in Fig. 4. Similar
to the findings in a previous study [26], the model trained
with imbalanced dataset would be prone to undersegment
the foreground samples as a result of overfitting under class
imbalance. Our class-specific TRA model can significantly
reduce false negatives and improve the sensitivity of segmen-
tation results. We observe heuristic TEA could cause under-
segmentation while the joint optimization can further help the
model improve segmentation performance by identifying more
foreground samples. We further validate our methods with
cardiac segmentation in MR images in supplementary material
to prove that our methods can work well with anisotropic
images under domain shifts.

D. Limitations

Our data augmentation algorithm aims to optimize the sam-
pling distributions for TRA and TEA, and thus, automatically
adapt data augmentation policies to given task. However, it
might not be very effective when the predefined policies are
already nearly optimal. For example, we observe that our
methods do not bring much improvements for kidney tumor
segmentation based on 3D U-Net when trained with 100%
training data. This is possibly because that the predefined
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policies were already optimized given it is the winning solution
for the challenge.

We notice that class-specific TRA could be less effective
with 3D U-Net on prostate segmentation. This may be due
to the sampled patches always containing foreground, as the
image size of this dataset is relatively small, and the structures-
of-interest are relatively large. In this case, the optimization
could be misled by the class-specific constraints. In practice,
this could be alleviated by adopting a smaller patch size,
and some investigations can be found in the supplementary
material. Moreover, we could consider to restrict the regions
of loss calculation to make our algorithms compatible with
similar cases where the patch size is large up to the image
size. This would need to be explored in future work.

The joint optimization of TRA and TEA will not be
effective when TEA decreases the segmentation performance.
For example, we find that the joint optimization cannot bring
much improvements for DeepMedic with abdominal organ
segmentation where most transformations for TEA do not
seem to help much and the augmented validation data would
improperly influence the TRA optimization. Therefore, we
suggest validating the effectiveness of TEA before adopting
the joint optimization.

Although we the proposed method can consistently improve
the segmentation performance under varied scenarios, we
observe that not all the results show statistical significance
when compared to heuristic baselines. This might be due to
the small size of the test set. We show that our methods
show significant improvements when more test data is avail-
able (c.f. Table I). We observe that distance based metrics
such as HD is unstable for the evaluation of imbalanced
regions-of-interest (ROIs) because small false positive predic-
tions could largely increase those metrics. After eliminating
the false positive predictions with component-based post-
processing, our method can always perform better in terms
of both DSC and HD, as we demonstrate in supplementary
material.

We present and validate our method in the context of
medical image segmentation. We think that it has the potential
to be extended to long-tailed image classification tasks where
different classes have different properties and TEA is also
important for better generalization. We show some initial
experiments in supplementary material and will leave the
in-depth investigation for future works.

V. CONCLUSION

We presented a general data augmentation framework for
medical image segmentation. Compared with current solutions,
our method aims to bridge the gap between training and test
data distributions by class-specific TRA and joint optimiza-
tion of TRA and TEA. We observe promising improvements
in various tasks and models, making the proposed frame-
work an attractive alternative to heuristic data augmentation
strategies. We believe that the learned policies can provide
valuable insights for practitioners to inform dynamic data

collection and future designs of image transformations for data
augmentation.

REFERENCES

[1] Y. Bengio, “Gradient-based optimization of hyperparameters,” Neural
Comput., vol. 12, no. 8, pp. 1889–1900, Aug. 2000.

[2] N. Bloch et al., “NCI-ISBI 2013 challenge: Automated segmentation
of prostate structures,” Cancer Imag. Arch., vol. 370, no. 6, pp. 1–5,
2015.

[3] K. Chaitanya et al., “Semi-supervised task-driven data augmentation for
medical image segmentation,” Med. Image Anal., vol. 68, Feb. 2021,
Art. no. 101934.

[4] C. Chen et al., “Realistic adversarial data augmentation for mr image
segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervent. Cham, Switzerland: Springer, 2020, pp. 667–677.

[5] O. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: Learning dense volumetric segmentation from sparse anno-
tation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Inter-
vent. Cham, Switzerland: Springer, 2016, pp. 424–432.
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