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Data-Driven Morphological Feature Perception
of Single Neuron With Graph Neural Network

Tianfang Zhu, Gang Yao , Dongli Hu, Chuangchuang Xie , Pengcheng Li , Xiaoquan Yang,
Hui Gong, Qingming Luo , and Anan Li , Member, IEEE

Abstract— Clarifying the morphological characteristics
of neurons can promote the understanding of brain func-
tion. However, traditional morphometrics fail to capture the
modeling of each point in reconstructed neurons, leading
to limited ability to distinguish massive nerve fibers and
restricted application scenarios. To address these chal-
lenges, we propose MorphoGNN, a single neuron morpho-
logical embedding based on a graph neural network in this
study. MorphoGNN learns the point-level structure infor-
mation of reconstructed nerve fibers by considering their
nearest neighbors on each hidden layer. This enables Mor-
phoGNN to capture the lower-dimensional representation of
a single neuron through an end-to-end model. In order to
meet the requirements of various tasks, both supervised
and self-supervised training strategies are designed to
learn the characteristics that fit artificial semantics or the
morphological patterns of neurons, respectively. We quan-
titatively compare our embeddings with other features in
neuron classification and retrieval tasks and demonstrate
cutting-edge performance. Additionally, we introduce our
embeddings to the task of reconstruction quality classifi-
cation and neuron clustering, where they can help detect
reconstruction errors and obtain similar subtyping results
to existing work. Furthermore, our method can be handily
combined with other modal features, such as microscopic
image features and traditional morphometrics. Ablation and
robustness tests are also conducted to analyze the impact of
several network components and low-quality reconstructed
neurons on the performance of our method. The code is
available at https://github.com/fun0515/MorphoGNN.

Index Terms— Neuron morphology, graph neural net-
work, point cloud, neuron reconstruction.
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I. INTRODUCTION

THE rapid advances in brain-wide optical microscopy [1],
[2], [3] have enabled researchers to obtain huge amounts

of brain slice images, and a single mouse brain can generate
several terabytes of data [4]. Digital tracing methods [5], [6]
can then be used to reconstruct the whole structure of a single
neuron from brain-wide three-dimensional images. As neu-
ronal reconstructions are non-Euclidean data, they are typically
represented in the form of SWC files [7]. These files contain a
set of three-dimensional points connected in the brain space,
which describe the tree-like morphological structure of the
neurons. Although no two neurons have exactly the same
morphology, neurons with similar structural characteristics
often possess similar functions. Therefore, extracting the mor-
phological and structural features of neurons plays a crucial
role in the study of brain function [8], [9], [10].

Dozens of morphometrics [11], [12] have been proposed
to extract neuronal morphological features, including the total
neuron fiber length, number of sections, branch order, radial
distance, and density maps.. Classifiers can use these mea-
surements to categorize neurons, but they are challenged by
massive neuron data. Each measurement only describes a cer-
tain local morphological characteristic of neurons. In order to
completely describe the structure of neurons, as many param-
eters as possible are often comprehensively used. Recently,
researchers have focused on the more complex morphological
features beyond these metrics. For example, the topological
morphology descriptor [13] combines the topology of neuronal
fibers with their spatial location, enabling it to distinguish
neuron trees and randomly generated tree structures. How-
ever, designing morphological characteristics based on the
experience of neuroscientists is not only cumbersome, but
also incomplete in the use of morphological information.
This deficiency leads to the limitation of identification abil-
ity. Thus, learnable methods have been proposed to cap-
ture neuron features at an advanced level. Cellular morphol-
ogy neural networks [14] can convert reconstructed neurons
into lower-dimensional vector representations. Neurons are
described by a series of two-dimensional images from multiple
viewpoints, and the representing features are extracted from
the images by convolutional neural networks. This method
uses image features to indirectly represent neuron morphology,
which may introduce additional interference information from
the visualization stage. MorphVAE [15] samples walks from
neuron structures and learns the hidden representation at the
branch-level through a variational seq2seq-autoencoder. This
learning method directly processes the topological structures
of neurons, but lacks the use of structural information between
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points. Approaches that learn neuron morphology at the
point-level remain to be studied. Moreover, there is also a lack
of quantitative comparison of multiple morphological features
under the same framework.

We have noticed that the reconstructed neuron data presents
a similar structure to the point cloud, and several point
cloud-based processing and analysis methods [16], [17]
have been proposed in recent years. Multi-view convolu-
tional neural networks [18] have demonstrated that a col-
lection of two-dimensional views can accurately describe
three-dimensional objects. Graph neural networks(GNN)
[19], [20] capture the dependency relationship in the graph
by information transfer between nodes, and they have also
been introduced into the field of point cloud processing.
Wang et al. [21] dynamically updates the graph structure
between layers to learn the lower-dimensional features of
the point set and applied it to classification and segmen-
tation tasks. These point cloud methods provide learning
techniques for three-dimensional spatial points, which lay
the foundation for extracting point-level morphological fea-
tures of neurons, thus fully exploiting the neural structure
information.

In this study, we propose MorphoGNN to learn the morpho-
logic representation of a single neuron. The main contributions
are as follows:

• To our best knowledge, we propose a comprehensive
framework that employs the GNN model to directly
learn the morphologic information of a single neuron
for the first time, covering the stages of pretreatment,
analysis, utilization and evaluation. Through a data-driven
approach, we capture the point-level geometric characters
of neurons, leading to improved performance on a variety
of morphological tasks.

• We also design both supervised and self-supervised
training strategies to obtain the morphological features
that suitable for multiple tasks. For diverse neural
data, we incorporate dense connection, double-pooling
operator, and a joint loss function into this network
architecture. Their effects are analyzed through ablation
experiments, and network robustness is also studied to
clarify the impact of low-quality neurons on model
performance.

• Our method is quantitatively assessed on neuron classi-
fication and retrieval tasks, demonstrating superior per-
formance compared to traditional morphometrics and
other baseline methods. Specifically, our method achieves
an accuracy of 75.5% in judging the quality of recon-
structed samples. By utilizing our extracted features,
we are able to obtain neuron cluster results simi-
lar to those reported in previous studies. Experimental
results also indicate that our morphological embedding
is highly compatible and easily combinable with other
features.

The basic principle, formula derivation, as well as network
architecture of MorphoGNN are expounded in section III.
Section IV introduces the experiment datasets and processing
details, and presents the results of several morphological appli-
cations. Ablation study and network robustness are discussed
in section IV-H. Finally, the limitation of our method and the
possible follow-up work are discussed in section V.

II. RELATED WORK

A. Morphometrics
Brain-wide and high-resolution optical microscopes [1],

[2] enable the acquisition of complete morphological images
of neuronal axons and dendrites, providing a rich source
of morphometrics for describing neuronal topology. Along
with fundamental morphometrics such as total neuron fiber
length, number of sections, and density maps [11], [12], recent
morphological studies have concentrated on more refined
and intricate features. For example, Gillet et al. [22], [23]
encode the branches of axons and dendrites of nerve fibers,
and calculate the similarity between trees by comparing the
corresponding relationships of branches. Kanari et al. [13]
and Sizemore et al. [24] describe neuronal topology based
on persistent homology and fiber evolution in brain space,
respectively. Le Gao et al. [25] propose a method for mea-
suring the similarity between two neurons based on the
distance that each point of one neuron maps to another in
the other neuron. While this method cannot be used as a
morphological description of individual neurons, it can be used
to measure differences between projection patterns of paired
neurons. Laturnus et al. [12] construct a binary classifier based
on logical regression and PCA preprocessing, systematically
comparing the effects of density maps, persistent images,
morphological statistics, and morphological distribution. Typ-
ically, these morphometrics focus on specific characteristics
of neuron morphology, and researchers often combine them
based on their experiences to study a particular task. The
development of a method capable of automatically designing
morphological features suitable for application could greatly
assist neuroscience research. Additionally, the comprehensive
and systematic comparison of morphological representations
is also an important area for future research.

B. Learning Based Morphometrics
Learning based methods have made significant contributions

to the biomedical fields, including brain region segmenta-
tion [26], [27], medical image registration [28], [29] and
neuron reconstruction [30], [31]. However, these successful
applications are based on regular data, such as medical images.
The irregularity of neurons presents a challenge for applying
deep learning techniques to morphological data, resulting in
less work on morphological features based on learning meth-
ods. Inspired by [18], Schubert et al. [14] use a set of images
to describe a section of nerve fibers They analyzed the images
through a two-dimensional convolutional neural network to
extract morphological features indirectly. This learning-based
method has an advantage over traditional morphometrics,
as neuroscientists no longer need to consider feature design,
but rather focus on the tasks they want to perform. The
network automatically learns appropriate features according
to the set targets. Schubert’s method is tested for a series of
automatic tasks such as glia detection on electron microscope
data. However, the multi-view based method is vulnerable
to interference during the visualization stage of neurons,
which can affect the learning of morphological information.
MorphVAE [15] operates on walks within the tree structure of
a neuron and it can generate new morphologies by sampling
new walks from the latent space. This approach processes
reconstructed neurons at the branch-level. However, the fixed
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Fig. 1. Overview of the proposed MorphoGNN. This paper proposes a data-driven model for learning the morphological embedding of reconstructed
neurons. Through the preprocessing steps, the nerve fiber is converted into a standard point cloud format. We employ a graph neural network to model
the geometric relationship between points, and then capture the point-level morphological features of neurons. Two training strategies are provided
to satisfy different morphological tasks. By fitting different labels, the model can supervised learn neuron characteristics suitable for different scenes.
When labels are unavailable or need to describe their own morphological patterns, the model can be trained via self-supervision by constructing the
training target to recovering neural shapes from hidden representations.

walking length and quantity may limit its flexibility in pro-
cessing complex morphologies. Currently, research is needed
to develop an approach that directly learns the morphological
characteristics of a single neuron at the point-level.

III. METHOD

The overall framework of our proposed morphological
embedding for a single neuron is shown in Fig. 1. After
normalization and farthest point sampling(see in section IV-B),
the morphology of each neuron can be represented as a point
cloud P =

{
pi ∈ R3

= {xi , yi , zi } |i = 1, 2, . . . , n
}
, xi , yi ,

and zi represent the three-dimensional coordinates of these
nodes, respectively. Then a graph neural network is employed
to generate morphological features of reconstructed neurons.
To increase the applicability of our network, we offer both
supervised and self-supervised learning strategies: (i) fitting
existing classification labels or (ii) decoding neuron shapes
from hidden features. This chapter details our methodology,
including the principles behind learning point-level morpho-
logical features, the refined network structure, and the joint
loss function employed.

A. GNN Encoder
Inspired by [21] and [16], we design a graph neural network

that learns the geometric relationship between reconstructed
points and then directly generates the representation embed-
ding of the neuronal fibers, instead of manually designed
morphometrics.

The problem focused in this paper can be described in (1):

h = fn(P)

P =

{
pi ∈ R3

= {xi , yi , zi } |i = 1, 2, . . . , n
}
, (1)

where fn represent a embedding function. The function is
supposed to capture the global features h of the reconstructed
irregular neural fiber P .

Specifically, we update the graphs dynamically by the K-
nearest neighbors(KNN) method and continuously learn node
features for the higher dimensions. Node features at different
hidden layers are linked to avoid vanishing-gradient. Then
a double-pooling operator is utilized to capture the global
features of neuronal fibers. The following are detailed expla-
nations of key elements of the proposed method.

B. Local Graph Update
The points in cloud form a graph with the nearest K points,

then new features of the central node are learnt from its
neighbor nodes. As node features are updated, the graphs are
dynamically recomputed between layers. A local graph Gl

composed of vertices V and edges E at layer l can be defined
as in (2):

Gl
= (V l

K , E l
K ), V l

K ⊂ RC , E l
K ⊂ V l

K × V l
K , (2)

where C and K represent the dimension of node features and
the number of neighbors, respectively. We define the geometric
relationship between center node and neighbor nodes as edges,
which can be calculated by (3):

Gl
= (V l

Kl+1
, E l

Kl
)

V l
Kl+1

= {pc, pi |i = 1, 2, . . . , Kl}

E l
Kl

= {ei |i = 1, 2, . . . , Kl}

ei = pi − pc, (3)

where ei is the directed edge from one of the neighbor
nodes pi to the updating node pc.

C. Local Feature Update
The initial feature of each node for a single neuron is a

three-dimensional vector (xi , yi , zi ), and the local feature is
updated to a higher dimension via the EdgeConv [21] layers.
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Fig. 2. Architecture of GNN encoder. Our encoder is a modular graph neural network that takes the three-dimensional coordinates of n points as input
and outputs the global feature of neurons. EdgeConv{N} denotes that after this EdgeConv layer, node features are expanded to N dimension. MLP
represents for multi-layer perceptron. Point features at different levels are densely connected to reduce vanishing-gradient. Then the morphological
embedding is combined of the outputs of a max-pooling and an average-pooling layer.

For a local graph, the local feature of the updating point pc
can be generated by (4):

s′
c = max{g(e1), g(e2), . . . , g(eK )}

g(ei ) = Leakey ReLU (8 · sc +2 · (si − sc)), (4)

where 8 and 2 are trainable parameters, while g(ei ) rep-
resents the hidden vector of the edge ei from the neighbor
node pi to pc. The new local feature s′

c can be obtained
through a max-pooling operation for all edge vectors. Since ei
is combined of the old local feature sc, initially coordinates,
and the morphologic information of the neighborhood si − sc,
s′

c can be considered as the morphological features of neurons
in another representation.

D. Double-pooling Operator
The dimension C increases rapidly over several updating

iterations on the node features S. To improve the local feature
utilization, the global feature of neurons is computed by two
kinds of pooling operators for node features, which could be
described as shown in (5):

h = max{S}||avg{S}, S ⊂ N × C, (5)

where h and N denotes the features and the number of
points of a single neuron, respectively. And || represents the
concatenation operator. Max-pooling captures the prominent
feature, while average-pooling preserves the overall feature
strength. Their outputs are concatenated so the final shape of h
is 1 × 2C .

E. Encoder Network Architecture
The network architecture of the encoder is depicted in

Fig. 2. We begin by increasing the dimension of neuron
node features from 3 to 256 through four EdgeConv layers.
These features are then aggregate into the global features
of nerve fibers using a double-pooling operator. To reduce
vanishing-gradient and enhance feature utilization, node fea-
tures at different levels are densely connected. The input of
each EdgeConv layer, except for the first, is derived from

the outputs of each previous EdgeConv layer. To obtain rich
global features, we pass the output of the last EdgeConv layer
through a maximum-pooling layer and an average-pooling
layer, respectively. Their outputs are then concatenated to form
the final feature vector of nerve fibers.

F. Supervised Classifier
To fit different category labels, MorphoGNN can indepen-

dently learn neuron features suitable for different tasks, such as
morphological classification or quality classification, instead
of manually designing morphometrics by the experience of
neuroscientists. For classification, we aim to find a function fc
that maps the features into a probability distribution Pd as
defined in (6):

Pd = fc(h), h = fn(p1, p2, . . . , pn) (6)

In some cases, such as quality classification in section IV-F,
we need to jointly classify with the corresponding microscopic
image features, which can be described in (7):

Pd = fc(h, h′), h = fn(p1, p2, . . . , pn), (7)

where h′ denotes image features learned by other methods.
In addition to the cross-entropy function commonly applied

in classification tasks, we also use triplet loss [32] to deal with
complex and diverse neurons. Considering the morphological
embedding hi of a single neuron, h p and hn are defined to
represent the embeddings of the same and different categories
in the training batch, respectively. So triplet loss L t can be
calculated by (8):

L t = max(d(hi , h p)− d(hi , hn)+ margin, 0), (8)

where d is a function to calculate the euclidean distance
between two embeddings. And margin is a constant that
always greater than 0, making d(hi , h p) smaller and d(hi , hn)

larger. As described in (8), triplet loss shortens the distance
of similar morphological embeddings and lengthens the dis-
tance of heterogeneous morphological embeddings, so as to
identify neurons with minor inter-class differences. The total
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TABLE I
INFORMATION OF THE 7-CLASS NEURONAL MORPHOLOGICAL DATASET

criterion L can be expressed as the weighted sum of two loss
functions as below (9):

L = w1Lc + w2L t , (9)

where Lc represent the cross-entropy loss function, w1 and
w2 are the weights of the two loss functions.

G. Self-Supervised Decoder
Certain neural tasks, such as unsupervised neuron cluster-

ing, necessitate unsupervised training. And in some cases,
acquiring precise neuron labels can prove to be challenging.
In such situations, MorphoGNN can adopt a self-supervised
approach to learn the morphological feature of a single neuron.
We achieve self-supervised learning by decoding the spatial
structure of neurons from their hidden features h, and then
computing the reconstruction log-likelihood [33] with input
neurons P . The reconstruction loss Lrecon can be described
in (10):

Lrecon(P;φ,ψ) ≜ EEφ(h|P)[logDψ (P|h)], (10)

where Eφ and Dψ are the encoder and decoder of Mor-
phoGNN. And φ and ψ represent the trainable parameters of
encoder and decoder, respectively. The network architecture
of the decoder follows the flow-based model [34], [35], [36],
composed of the modules of an autoregressive layer, an invert-
ible 1×1 convolution layer, and an actnorm layer.

IV. EXPERIMENT

This section outlines the data and training process for the
proposed MorphoGNN and presents the model’s quantitative
performance, as well as that of other baseline models, across
various tasks. We also provide a detailed report on the results
of the network ablation and robustness tests in this section.

A. Data Description
Three datasets are utilized to evaluate our model’s perfor-

mance: a 7-class morphological dataset, a dataset comprising
6357 long-range mouse neurons, and a neuron reconstruction
blocks dataset. These datasets are employed to assess morpho-
logical classification and retrieval, clustering, and reconstruc-
tion quality classification, respectively.

The 7-class dataset contains 1393 reconstructed neurons
collected from NeuroMorpho.Org [37] and we denote this
dataset as Neuro7. These neurons are labeled with their mor-
phological category, so they can be used for supervised learn-
ing. However, the raw morphological data is non-standardized
due to the various sources of the contributors. As shown in
Table I, we selected seven representative types of mouse nerve
cells, each of which results from multiple research groups.

Aspiny neurons come from three groups [38], [39], [40]. Spiny
neurons are all from [38]. Reference [41] contributes all of the
amacrine and bipolar neurons. Stellate neurons also consists
of three groups [42], [43], [44], while basket neurons are
from [45] and [46]. Finally, pyramidal neurons are totally
taken from four groups [47], [48], [49], [50]. The number of
points that make up a neuron structure varies from 1 × 103 to
6 × 103 in this dataset.

In addition to Neuro7 dataset, we also utilize an open-source
dataset consisting of 6,357 long-range neurons mapped from
the mouse prefrontal cortex, which have been previously
identified into three large subtypes and sixty-four small groups
based on their projection pattern [25]. In this paper, we attempt
to classify these same neurons using our proposed morphologi-
cal embedding and compare our results with existing methods.

Moreover, we introduce a reconstructed neuron dataset con-
sisting of microscopic images collected from a collaborative
platform, where neural segments were manually reconstructed
by researchers from three-dimensional optical microscopic
image blocks. The reconstructions were subsequently verified
by other researchers to ensure their accuracy. This dataset
consists of 3,000 paired samples, with an equal proportion
of correct and incorrect samples. Each neuron segment is
comprised of 1024 points, corresponding to a 64 × 64x64
image block. These three datasets are randomly split into
training and validation sets at a 7 : 3 ratio.

B. Morphological Data Preprocessing
Prior to network training, morphological data undergoes

a two-step preprocessing procedure to transform them into
regular point clouds.

Farthest point sampling is used to address the issue
of inconsistent point numbers per sample and to accelerate
training by enabling minibatches of differently sized neurons
to be grouped together. We iteratively select the farthest point
from the existing set of sampling points to obtain neurons of
any size. Additionally, to ensure that graphs used for training
contain the same number of points, we fill in some small
reconstructed neurons with zero points (0, 0, 0) until they
reach the same size as the other neurons.

Normalization is another necessary step in preprocessing
neuronal morphological data. The absolute location of neurons
in the brain space can lead to a wide difference between the
coordinates of the reconstructed points. Furthermore, there is
no unified standard for the brain spatial location of neurons
that have not been uniformly registered. The following for-
mula (11) is used to normalize the neuron point coordinates:

v′

i = vi − (vmin + vmax )/2, vi = (xi , yi , zi )

V = {
v′

i
max(v′

i )
|i = 1, 2, . . . , n} (11)
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Fig. 3. Sampling and normalization for neurons. From left to right are
the original neuron, sampling 2048 points and sampling 1024 points.

, where vmax and vmin are the maximum and minimum initial
coordinate values vi over a single neuron, respectively. And
V represents the normalized coordinates set. we identify the
smallest unit cube that can surround the original neuron and
use it as the new origin for normalization. Fig. 3 shows that
the normalized neuron retains its original shape, with its center
serving as the spatial origin, and that the coordinate value of
each point falls within the range (−1, 1).

C. Implementation Details
Here we explain the experiments setup, especially the train-

ing process of our network. For supervised training, we employ
the Adam optimizer [51] with a learning rate of 10−3 and
momentum of 0.9 to train the entire network. The network
is trained for 300 epochs, with a batch size of 16, and every
20 epochs, and the learning rate is decreased by half every
20 epochs. The cross-entropy and triplet loss are used jointly,
with a weight ratio of 1 : 1. For self-supervised training, we set
the initial learning rate of the Adam optimizer to 2×10−3 and
reduce it by half after every 500 epochs. The network is trained
for 3500 epochs, using a batch size of 32. All experiments are
conducted on a single NVIDIA RTX 5000 GPU with 16GB
of graphics memory, as well as four NVIDIA Tesla V100
graphics cards, each with 16GB of memory.

D. Morphological Classification
We first evaluate the performance of our proposed features

and traditional morphometrics on the 7-class neuron dataset.
Sixteen basic neuronal morphometrics [52] are used to form
the feature vector of each neuron, including total length, num-
ber of tips, number of sections, number of segments, number
of bifurcation points, maximum branch order, maximum neu-
rite length, maximum radial distance, and maximum/median
section tortuosity, as well as maximum/median/minimal
section length and maximum/median/minimal remote bifur-
cation angle. These measurements are then used for neuron
classification via a simple multi-layer perceptron network with
the same settings as other methods. We trained MorphVAE
via supervised learning on our dataset to achieve its best
performance. Additionally, since reconstructed neurons are
transformed into standard point clouds after preprocessing,
we include three recent point cloud networks for comparison.
Table II shows the overall accuracy(OA) and mean class
accuracy(MA) of these methods.

Our network achieves the highest overall accuracy(85.58%)
and mean class accuracy(79.45%), which are about 2.5%
and 6.8% higher than those of PointNet++. The mean class
accuracy of each method is significantly lower than the overall
accuracy due to the less-obvious differences between classes

TABLE II
RESULTS OF MORPHOLOGICAL CLASSIFICATION ON NEURO7

Fig. 4. UMAP visualization of different features.

and imbalanced class populations. Interestingly, the perfor-
mance of morphometrics is close to, and even surpassed, some
learning-based features, including PointNet++ and DGCNN.
This could be attributed to the loss of some morphological
information, such as the absolute size of neurons, in the
preprocessing step, which limits the performance of learning-
based methods. However, this drawback can be overcome by
combining them with morphometrics. When our embedding
and 16 morphological statistics are concatenated for classifica-
tion, the overall accuracy and mean class accuracy are further
improved by 5.8% and 6.6%, respectively. We use UMAP [53]
to visualize the features extracted by these methods(see in
Fig. 4), where each point represented the feature of a single
neuron after dimensionality reduction. The features of the
same class extracted by our method are close to each other and
far away from other types. However, some morphologically
similar categories, such as spiny and aspiny, are still not clearly
distinguished.

E. Retrieval on Morphological Dataset
Current Large neuronal morphological databases [37],

[54] typically support search based on meta information
such as contributors and species. However, relying on such
meta-information can result in a loss of valuable morpholog-
ical details. Here we demonstrate the effectiveness of direct
query based on embedding similarity between neurons.

These networks trained in section IV-D are used previously
to extract features from each neuron to build the feature
databases. Fig. 7(c) shows the time required to build the
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Fig. 5. Samples of reconstruction quality classification.

database using different features. PointNet++ model with
complex multi-scale learning takes the longest time to build a
feature database, approximately 25 times longer than PointNet.
The time consumption of traditional morphometrics is the
second longest, approximately three times that of to DGCNN.
To only measure the performance of features, we retrieve simi-
lar neurons by simply calculating the cosine similarity between
paired features. The accuracy of each retrieval operation is
defined as the proportion of the same types among the ten
most similar neurons retrieved. We searched each neuron in
the Neuro7 dataset in turn, recorded the overall accuracy, and
mean class accuracy. Fig. 7(a) shows the five most similar
neuron fibers retrieved from the same neuron fiber by the
six methods. The retrieval results of other methods are mixed
with various kinds of neurons, while our method retrieved five
neurons of the same class. As shown in Fig. 7(b), PointNet++

and MorphoGNN achieve the best retrieval performance. The
retrieval performance of traditional morphometrics is between
that of DGCNN and MorphVAE. Among them, our method
achieves the highest overall accuracy(84.19%) and mean class
accuracy(77.41%), respectively.

F. Reconstruction Quality Classification
Our research investigates the potential of combining our

morphological embedding method with optical microscopic
images in neuron reconstruction. Quality control has always
been an important part of neuron reconstruction, tradition-
ally achieved through multi-person collaboration where one
team reconstructs nerve fibers and another team evaluates the
accuracy of the reconstruction. While effective, this approach
is labor-intensive and relies heavily on human resources.
To reduce costs, we explore the possibility of automated
methods that can assist in certain steps of the process. To this
end, we leverage a collaborative reconstruction platform (see
in section IV-A) that provides labeled data for training and
testing our proposed method. Fig. 5 shows some data samples
used in the reconstruction quality classification. One criterion
to judge the quality is whether the reconstructed nerve fibers
match the signals in microscopic images.

Fig. 6 displays the quality classification framework, which
comprises two channels: MorphoGNN and 3D U-Net [55].
These channels model the morphology of neurons and their
corresponding microscopic images, respectively. We con-
catenate the features of these two modal data for quality
classification. Table III summarizes the results of the recon-
struction quality classification, divided into two types: using

Fig. 6. Dual-channel network for reconstruction quality classification.
We model neurons and their corresponding microscopic images respec-
tively, and then concatenate their features for classification.

TABLE III
RESULTS OF RECONSTRUCTION QUALITY CLASSIFICATION

only neuronal channel and using both channels. When only
the morphology of neurons is modeled, the precision of the
network for correct samples is low(60.95%), while the recall
rate is high(90.27%). This indicates that the network tends to
judge all samples as correct. However, when both channels
are combined, the judgment results of positive and negative
samples are relatively balanced, resulting in an average preci-
sion of 75.57%. This method can automatically judge simple
samples and identify uncertain ones that require manual labor
for further assessment. Overall, our proposed method shows
promise in reducing the labor required for neuron recon-
struction and providing accurate judgments of reconstruction
quality.

G. Neuron Clustering

Morphological subtyping is a top-down process. With the
refinement of criteria, neurons with the similar anatomical
characteristics can be clustered into the same subtype. Identi-
fying neuron subtypes advances the understanding of brain
structure and function, so it has always been a hot spot
in neuroscience research [56], [57]. The difference between
neuron clustering and neuron classification is that the former
is an unsupervised task, where the subtypes of neurons are
not known in advance. Current neuron clustering mainly
relies on the manual features designed by neuroscientists that
reflect the fields they are interested in. For instance, [25]
mainly considers the information of brain spatial location and
morphology to calculate the pairwise similarity of 6357 long-
range neurons reconstructed in the mouse prefrontal cortex.
These individual neurons are precisely identified into three
large subtypes, including intratelencephalic neurons(IT), cor-
ticothalamic nuerons(CT) and pyramidal tract neurons(PT),
as well as 64 small groups further.



3076 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 10, OCTOBER 2023

Fig. 7. Retrieval results based on different methods. (a) is an example of five most similar neurons retrieved based on different features for a
randomly selected query neuron. (b) shows the retrieval accuracy of six methods, which is defined as the proportion of the same types among the
ten most similar neurons retrieved. (c) compares the time-consuming of different methods to establish the feature database.

Fig. 8. Neuron clustering based on self-supervised learning features. (a) shows the reconstructed shape by the self-supervised model from the
hidden features of neuron samples seen and not seen during the training stage. (b) displays the process of enhancing the description of neuronal
information through combining our morphological embedding with traditional morphometrics. (c) compares the cluster similarity between our features
and the existing work. The evaluation metric is intersection of union(IoU). (d) illustrates the influence of weight on the result of neuron clustering
when our features combined with traditional morphometrics.

Here we compare the results of the three major subtypes of
these prefrontal cortical neurons hierarchical clustered based
on our morphological embeddings with [25], using the evalu-
ation metrics of intersection of union(IoU) and accuracy. IoU
describes the coincidence between subtypes. When the existing

cluster results are taken as absolutely correct references, accu-
racy can also be calculated. MorphoGNN is trained through
self-supervised learning(see in section III-G). We construct the
objective function by decoding the three-dimensional structure
of neurons from hidden representations. Fig. 8(a) illustrates
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TABLE IV
ABLATION TEST OF NETWORK COMPONENTS ON NEURO7. HERE

✓ INDICATES THIS COMPONENT IS APPLIED IN THE NETWORK

the reconstruction performance of neurons seen and unseen
in the training stage. Our hidden representations can restore
an approximate structure of neurons, which is hard to achieve
by traditional morphometrics. However, there is still a gap
between reconstructed structures and real neurons, and design-
ing special constraint terms to make the structure skeleton may
improve this defect.

As shown in Fig. 8(c), the mean IoU and accuracy of
two cluster results are only 91.15% and 96.70% when our
morphological embeddings are used for hierarchical clustering.
This is because the two methods focus on different areas.
Our model focuses on the relative morphology of neurons,
lacking the information on absolute size and brain spatial
location, which are deeply concerned in [25]. Hence we intro-
duce some additional information to strengthen our features.
Specifically, we weighted concatenate several simple morpho-
metrics, including soma location, radial distance, and total
length, to complement this shortcoming(see in Fig. 8(b)). The
influence of weight is shown in Fig. 8(d). After simple mor-
phometrics are jointed, the mean IoU and accuracy increase
to 96.49% and 98.62%, respectively(see in Fig. 8(c)). This
obvious increase shows that our morphological embedding is
an open architecture, which is easy to combine with other
features. When more abundant additional information is added,
the cluster results may be further improved. Overall, our study
demonstrates the potential of using morphological embeddings
for neuron clustering and the importance of incorporating addi-
tional information to improve the accuracy of the clustering
results.

H. Ablation and Robustness Test
We further investigate the effect of several components

specially designed in our network on the final performance.
Table IV shows the classification performance of multiple
versions of MorphoGNN on the Neuro7 dataset, including
dense connection, double-pooling operation and triplet loss.

Dense connection greatly impacts on network performance,
improving overall accuracy from 82.47% to 85.58% and
mean class accuracy from 74.07% to 79.45%. The double-
pooling operation also plays a notable role. Compared with
it, no matter which single pooling operation is adopted, the
mean class accuracy can be reduced by up to 2.8%. Moreover,
maximum-pooling performs better than average-pooling when
capturing global features. The triplet loss function brings an

TABLE V
RESULTS OF CLASSIFICATION WITH SELF-SUPERVISED TRAINING.

ST AND SST REPRESENT SUPERVISED

AND SELF-SUPERVISED TRAINING

TABLE VI
ABLATION TEST OF LOSSES ON NEURO7

additional 4.1% and 5.3% improvement in overall accuracy
and mean class accuracy for the network, respectively.

In the biomedical domain, unsupervised learning has
become increasingly important. Therefore, we further inves-
tigate the effects of self-supervised training proposed in this
study. Specifically, we add self-supervised training to the mor-
phological classification task in section IV-D and compare it
with the original classification accuracy to determine whether
self-supervised training could improve the performance of
supervised classification tasks. Table V shows that the added
self-supervised training slightly improves the overall accuracy
of PointNet (1.00%) and DGCNN (1.36%), but at the cost
of about 20 million more network parameters. However,
the overall accuracy of MorphoGNN decreased by 1.21%
after adding self-supervised training. To clarify this issue,
we conduct further ablation experiments on the loss functions
of MorphoGNN. Table VI illustrates that the reconstruction
loss of self-supervised training conflicts with the triplet loss.
While triplet loss and reconstruction loss can each improve the
overall accuracy by 4.09%, when used together, the overall
accuracy is only improved by 2.99%. These results indicate
that self-supervised training does not always improve the
performance of supervised tasks, and combining them requires
careful research.

Due to inevitable defects in imaging and reconstruc-
tion, incomplete and inaccurate morphological data are often
obtained. Discarding all these samples is costly, so algorithms
are expected to be robust to low-quality reconstructed neurons.
In this section, we also discuss the performance of those
deep networks mentioned in this paper against two attacks:
point dropping and point-wise Gaussian noise. The former
randomly drops points in a single neuron to simulate incom-
plete reconstruction, while the latter adds point-wise noise to
make the reconstructed shape deviate from reality. The neurons
in the testset of Neuro7 are attacked on varying degrees,
and the classification accuracy of these pretrained networks
is recorded.
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Fig. 9. Influence of two attacks on the classification performance of
learning based methods. This experiment is done on the Neuro7 dataset.
The abscissa of (a) is the ratio of discarded points, while that of (b) is the
variance of Gaussian noise.

Fig. 9 shows the overall accuracy and mean class accuracy
of deep networks against different degrees of point dropping
and Gaussian noise attacks. The classification accuracy of all
networks shows a downward trend, indicating that network
performance is generally weakened when the morphology
of neurons is destroyed. For instance, when MorphoGNN is
attacked by Gaussian noise with a variance of 4 × 10−4,
its overall accuracy and mean class accuracy are decreased
by around 19% and 23%, respectively. When 40% points
are lost, these two metrics of MorphoGNN are reduced by
14% and 18%, respectively. The performance degradation of
networks against point dropping is slower than that against
random noise. When the variance of Gaussian noise increases
to 2.5 × 10−4, the overall accuracy and mean class accuracy
of DGCNN rapidly drop to less than 80% of the initial
network. However, the same network’s performance is hardly
decreased when the ratio of dropped points gradually increases
to 35%. The same trend is shown on PointNet++. The better
robustness to point discarding may be because some zero
points are filled into neuron data during data preprocessing(see
in section IV-B). Although the dropping operation is before
filling zero points, these filled points can be regarded as a
disturbance to the number of effective points added in the
training stage, which makes networks less sensitive to point
dropping than random noise. However, lightweight deep net-
work such as PointNet is almost stable under different degrees
of attacks. Overall, experimental results show that low-quality
neurons significantly weaken network performance. Therefore,
promoting network robustness is a necessary area for future
work.

V. CONCLUSION

We present MorphoGNN, a novel method for capturing
the morphological embeddings of reconstructed neuron fibers
based on a proposed deep network, aiming to improve the
utilization of existing approaches on the morphological infor-
mation of neurons by a data-driven approach. By learning
point-level geometric information, our proposed network can
capture the feature of a single neuron and be quantita-
tively compared with other existing morphological features.
We demonstrate that the network can be trained via both
supervision and self-supervision. Moreover, the learned mor-
phological embeddings can be combined with the features
from microscopic images as well as traditional morphomet-
rics, thereby adapting to multiple tasks. We demonstrate the
effectiveness of our approach in neuron classification, retrieval,
reconstruction quality classification, and neuron clustering on
three thousand-level morphology datasets.

Limitations and future work: We construct a
self-supervised objective function by reconstructing the
shape of neurons from hidden representations, but our current
model is not capable of accurately reconstructing the neuron
structure due to the absence of a constraint function that
reflects the prior knowledge of neuron structures. Our method
does not consider that branches of neurons are usually slender
and directional in order to transmit electrical signals, which
may account for the imprecise reconstruction. Furthermore,
the shape generated by our method is a point cloud rather
than a topological tree structure, which necessitates further
work to predict the connection between points. Additionally,
our method does not incorporate information regarding the
spatial location of the brain, resulting in the cluster results of
mouse prefrontal cortex neurons being slightly different from
those obtained in previous research. Although combining
our approach with existing morphometrics can alleviate this
deficiency, a significant gap still remains. Therefore, the
integration of multimodal information, such as morphology,
brain location, genomics, and proteomics, is necessary to
fully comprehend the structure and function of neurons, and
ultimately achieve a census of all brain cells.
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