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Abstract— Multiplex immunofluorescence is a novel,
high-content imaging technique that allows simultaneous
in situ labeling of multiple tissue antigens. This tech-
nique is of growing relevance in the study of the tumor
microenvironment, and the discovery of biomarkers of dis-
ease progression or response to immune-based therapies.
Given the number of markers and the potential complexity
of the spatial interactions involved, the analysis of these
images requires the use of machine learning tools that
rely for their training on the availability of large image
datasets, extremely laborious to annotate. We present
Synplex, a computer simulator of multiplexed immunoflu-
orescence images from user-defined parameters: i. cell
phenotypes, defined by the level of expression of markers
and morphological parameters; ii. cellular neighborhoods
based on the spatial association of cell phenotypes; and iii.
interactions between cellular neighborhoods. We validate
Synplex by generating synthetic tissues that accurately
simulate real cancer cohorts with underlying differences
in the composition of their tumor microenvironment and
show proof-of-principle examples of how Synplex could
be used for data augmentation when training machine
learning models, and for the in silico selection of clini-
cally relevant biomarkers. Synplex is publicly available at
https://github.com/djimenezsanchez/Synplex.

Index Terms— Tumor microenvironment, multiplex imag-
ing, simulation, modeling, spatial interactions.

I. INTRODUCTION

SOLID tumors can be understood as abnormal organs with
a microenvironment populated by transformed cancer cells

and normal immune and stromal cells [1]. Understanding how
the composition of this complex microenvironment relates
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to tumor status or progression is the key to personalized
anticancer therapies [2]. This requires answering questions
such as: which cell phenotypes populate the tumor or the
stromal compartment? How do these phenotypes spatially
interact? Is this interaction related to the patient’s response
to therapy?

Novel multiplexed imaging (MI) technologies allow simul-
taneous visualization of a high number of protein markers
in tissue sections. By using signature panels of tumor and
immune biomarkers [3], [4], MI can for the first time reveal
in situ, the cellular composition of the tumor microenviron-
ment [5]. The quantification of these cellular phenotypes and
their interactions, what is commonly known as the spatial
phenotyping of the tumor, exceeds the capabilities of the
human brain. Therefore, automated machine learning (ML)-
based image analysis algorithms are being developed with the
aim of learning the spatial tumor phenotype and linking it to
the patients’ diagnosis or prognosis.

Supervised ML methods can be used to study the role
of specific tumor microenvironment elements (TMEs) using
conventional histopathology (H&E) or immunostained tissue
sections. This requires expert manual annotations of those
TMEs, which are fed to a model that automatically learns
their underlying tissue patterns [6]. Unsupervised methods,
in turn, can be used to discover clinically relevant TMEs [7].
To this end, topological networks are created using the infor-
mation extracted from the tissues (e.g., the intensity of the
biomarkers and morphological features) [8], [9]. ML methods
must be trained and/or validated using annotated datasets.
Indeed, annotated H&E and conventional immunohistochem-
istry sections have been used for cell segmentation [10], cell
proliferation analysis [11], tumor segmentation [12], or tissue
classification and grading [13]. In MI, however, due to the
extreme complexity of the manual annotation of single cells
and cell-to-cell interactions between numerous cell pheno-
types, properly curated MI datasets are still lacking.

An alternative to the use of annotated datasets is the use
of synthetic datasets generated from patient data [14], [15].
Filogen [16], a simulator of 3D confocal time-lapse sequences
of migrating cells, has been used to train cell tracking algo-
rithms [17]. Generative adversarial networks (GANs) have also
been trained with annotated real fluorescence microscopy data
to create realistic 3D stacks of fluorescent cells [18]. Moreover,
in silico computational models of the tumor microenviron-
ment [19] have been used for virtual drug screening [20],
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Fig. 1. Overview of Synplex. a. The Neighborhood simulation module takes user-defined neighborhood interactions and neighborhood frequencies
to generate a mask of stochastically simulated neighborhoods. b. The Cell Phenotype simulation module takes user-defined phenotype interactions,
phenotype frequencies, and phenotype morphology to generate a simulated mask of phenotypes. c. The Marker Expression simulation module
takes user-defined marker expressions localized in the nucleus and/or cytoplasm, and the configuration of the microscope used in the simulation,
to generate a realistic tissue texture.

drug repurposing [21], or artificial gene synthesis [22]. These
models integrate known cellular phenomena [23] to guide
biologists in their scientific discovery [24]. PhysiBoSS [25]
for instance, simulates the population-wide effect of environ-
mental and genetic alterations of individual cells, helping with
the design of in vitro and in vivo experiments [26].

Here we present Synplex [27], the first synthetic tissue
simulator of MI-stained tumors. Essentially different from
the above-mentioned models that simulate isolated cells, cell
cultures, or simple inter-related tissue societies made of one
or few cell phenotypes, Synplex realistically simulates the
in situ tumor microenvironment at three increasing levels of
spatial complexity: i. cell phenotypes defined by the expression
of markers and cell morphology; ii. cellular neighborhoods
defined by their cell phenotypes and their interactions; and
iii. areas described by the spatial interaction between cellular
neighborhoods. Synplex is fed with user-defined parame-
ters that describe the properties of the tumor microenviron-
ment. From these parameters, Synplex produces sets of MI
images and their corresponding ground truths, i.e., masks that
identify regions with specific cell phenotypes and neighbor-
hoods. We show that this process produces realistic, statistical

variability between images that can simulate a disease, and
present two proof of principle experiments of the potential
use of Synplex for data augmentation and in silico selection
of biomarkers.

II. METHODS

Synplex consists of three independent modules (Fig. 1). The
first module creates a tissue mask with a predefined pres-
ence of cellular neighborhoods and fixed rules of interaction
between neighborhoods. The second module populates each
neighborhood with different cell phenotypes -predefined by
the expression of specific markers and morphological features-
and phenotype interactions. The third module simulates the
image acquisition process of the tissue through a properly
parametrized optical system.

A. Modeling of Cellular Neighborhoods (Fig. 1a)
To create a tissue neighborhood mask, Synplex takes four

input parameters: i) the number of cellular neighborhoods N ;
ii) the relative abundance of each neighborhood in the tissue
(Nab ∈ RN ); iii) the pairwise interactions between neighbor-
hoods (Nint ∈ RN×N ) with values ranging from 1 (attraction)
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to 0 (repulsion); and iv) the radius NCtx∈ Z, (pixels) of the
neighboring context of a pixel.

Synplex randomly initializes an image neighborhood mask
MNb ∈ [0, 1, . . . , N ]

mx×my , being mx and my the image
dimensions. It also initializes with 1’s (unassigned) an index-
ing image RNb ∈ [0, 1]

mx×my that keeps track of the pixels
that have been permanently assigned to a neighborhood. The
mask values of MNb are updated iteratively by the constrained
minimization of ℓN :

ℓN = sum

(
abs

(
Nint ⊙

(
Nab

MNbab

)2
))

(1)

where ⊙ is an element-wise multiplication. In each iteration,
Synplex optimizes a NCtx × NCtx region surrounding a ran-
domly selected pixel si, j . To this end, a submatrix Mc ∈

RNCtx ×NCtx is created with the values of MNb contained within
the target region, whose values are updated in MNb as follows:

i. If more than 95% of the pixels of Mc belong to a given
neighborhood type, the simulator permanently assigns si, j
to that neighborhood type and sets RNb(i, j) to zero.

ii. Otherwise, the simulator updates each value of Mc using

the following update rule: UNb = Nint ⊙
(
Nab

/
MNbab

)2,
which minimizes lN .

This iterative process continues until all pixels of MNb
have been permanently assigned to a neighborhood, i.e.∑

RNb = 0. This process is summarized in Algorithm 1.

Algorithm 1 Pseudocode for Modeling Cellular Neighbor-
hoods. Inputs: Nab, Neighborhood Abundance Matrix. Nint,
Neighborhood to Neighborhood Interaction Matrix, {mx, my}
Tissue Image Size in x and y-Axis, Respectively. N, Num-
ber of Neighborhoods. Output: MNb, Cellular Neighborhood
Mask

1: Random neighborhood mask: M Nb = randomMatri x(mx , m y, N)

2: Initialize vector of set indices: RNb = matri x_of _ones(mx , m y)

3: while
∑

RNb > 0

4: Update optimization rule: U Nb = N int ⊙

(
Nab

M Nbab

)2

5: Select one random pixel s| s ∈ RNb = 1
6: Get context of s: M c = {M Nb|M Nb : dist (M Nb, s) < NCtx /2 px.}

7: if max (histcounts (MC N )) > 95% then
8: Most abundant neighb: M Nb = argmax (hist (MC N )) : M N ∩ MC N
9: Reduce pool of pixels to iterate: RNb = 0 : R ∩ MC N

10: else
11: Update set of neighborhoods: M Nb = U Nb(MC N ) : M Nb ∩ MC N
12: end while

B. Modeling of Cellular Phenotypes (Fig. 1b)
To populate with cells the N neighborhoods created by the

previous module Synplex requires eight parameters: i) the
number of cell phenotypes P; ii) a per-neighborhood cell
phenotype abundance matrix, Pab ∈ RP×N ; iii) a matrix
Pint ∈ RP×P×N containing the interactions between the cell
phenotypes within each neighborhood with values ranging
from 1 (attraction) to 0 (repulsion); then for each cell phe-
notype: iv) the average eccentricity of the cells Pecc ∈ RP ,
ranging from 0 (round cells) to 1 (maximally elongated cells);
v) the average diameter (in pixels) of the cells Psi z ∈ RP ;

Fig. 2. Modeling of cell morphologies. a, b. Examples of modeled cells
with increasing levels of (a) polarity and eccentricity and (b) nucleus to
cell ratio and cell complexity.

vi) the average ratio between the size of the cell nucleus and
the total cell size PR_NucCell ∈ RP , ranging from 0 (absence
of nucleus) to 1 (absence of cell cytoplasm); vii) the average
cell morphological complexity Pcmplx ∈ RP , ranging from 0
(uniform ellipsoidal shape) to 1 (highly irregular shape); and
viii) the average cell polarity Ppolr ty ∈ RP , ranging from 0
(nucleus at the center of the cell) to 1 (nucleus touching the
contour of the cell). Examples of cells synthetically generated
with different morphology parameters are shown in Fig. 2.

Synplex creates and initializes five image masks: i) a cell
phenotype mask, MPn ∈ [0..P]

mx×my , where each pixel
is assigned to a cell phenotype [0..P], randomly initialized
from the user-defined values for each neighborhood in Pab;
ii) a mask of individual cells MPh_Cells ∈ Nmx×my , where
each pixel is part of one cell, or part of the background,
initialized with 0’s; iii) a mask of individual nuclei MPh_Nuc ∈

Nmx×my , where each pixel is part of one nucleus, cytoplasm,
or background, initialized with 0’s; iv) a matrix of updated
indices RPn ∈ [0, 1]

mx×my , initialized with 1’s, that is used to
keep track of the pixels that have been permanently assigned
to a cell phenotype; and v) a mask of cellular orientation
MOrnttn ∈ [0..1]

mx×my , where values indicate how cells
should be oriented. MOrnttn . In our case, stromal cells form
a rim around the tumor, as previously described [28].

Cell phenotype mask values in MPn,MPh_Cells , and
MPh_Nuc are updated iteratively by a constrained minimization
of ℓP :

ℓP = sum

(
abs

(
Pint ⊙

(
Pab

MPnab

)2
))

(2)

where MPnab ∈ RP×N is the current phenotype abun-
dance in MPn , and Pab and Pint constrain the function loss
to user-defined cell phenotype abundances and interactions.
Note that ⊙ is an element-wise multiplier. To minimize ℓP ,
the tissue simulator optimizes a subset of pixel values in
each iteration and subsequently updates MPnab using UP =

Pint⊙
(
Pab

/
MPnab

)2
∈ RP×P×N as the update rule.

In each iteration, the optimization process randomly selects
an unassigned pixel si, j , i.e., RPn(i, j) = 1, selects a region
of PCtx × PCtx pixels surrounding si, j in MPn and MNb
and stores it in MC P ∈ RPCtx ×PCtx and MC N ∈ RPCtx ×PCtx ,
respectively. To calculate the phenotype of s(i, j) we use the
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rule matrix UP ∈ RP×P×N . First, the simulator applies a
majority voting strategy on MC N to determine the most fre-
quent neighborhood (Ng) contained in the region surrounding
s(i, j), which is used to extract the Ngth plane from UP
creating U ′

P . Then, the simulator inputs the existing MC P into
U ′

P to obtain the updated phenotype.
Once the new cell phenotype is defined, a cell M ′

C P is
created: to this end, first a cell shape mask is created consist-
ing of an ellipse with Pecc(MP ), Psi z(MP ), and orientation
MOrnttn(i, j); then the complexity term is applied by adding
morphological sparse variations expanding and/or constraining
the cell structure by a factor Pcmplx ∈ RP ; finally, a nucleus
M

′′

C P is generated with its size calculated using the ratio of
the nucleus to the cell size PR_NucCell ∈ RP , and it is placed
inside the cell according to its polarity Ppolr ty ∈ RP . Each
parameter is multiplied by a random variable that takes value
from 0.9 to 1, to ensure the required cellular variability. The
decision on whether to permanently assign or not the generated
cell to the tissue is based on the distribution of values of RPn
in the PCtx × PCtx region:

i. If more than 95% of M ′

C P cell pixel values are yet to be
set, the simulator automatically adds the new cell to the
tissue. This way, the morphology of the cell (M ′

C P ) is
assigned to the mask of cells (MPh_Cells), the phenotype
of the cell (M ′

C P ) to the phenotype mask (MPn), and
the nucleus of the cell (M ′′

C P ) to the nucleus mask
(MPh_Nuc). Additionally, the matrix that stores which
pixel values have already been permanently assigned is
updated setting to 0’s all pixels of M ′

C P .
ii. If less than 95% of M ′

C P values remain to be set, i.e.,
there is no reasonable space to insert a new cell in
the tissue, the simulator has two options: to expand the
cytoplasm of existing neighboring cells, filling the empty
intercellular space, or to fill this space with stromal fibers.
This decision is based on the user-defined phenotype
abundance of stromal fibers, i.e., Pab(stromal f ibers),
and the actual abundance of stromal fibers in the tis-
sue, i.e., MPnab (stromal f ibers). If Pab(stromal f ibers)
is higher than MPnab (stromal f ibers), the pixels of
M ′

C P are set to the stromal phenotype. Otherwise, when
MPnab (stromal f ibers) > Pab(stromal f ibers), the pix-
els of M ′

C P are used to expand the cytoplasm of neighbor-
ing cells. Therefore, the predefined abundance of stromal
fibers controls the level of compactness of tissues.

This iterative process, illustrated in Algorithm 2, continues
until all pixel values are permanently assigned to a phenotype,
i.e.

∑
Rpn = 0.

C. Tissue Texture and Virtual Microscopy (Fig. 1c)

This module has three objectives: i) assign the prede-
fined marker expression intensity to each cell compartment:
nucleus, cytoplasm, and membrane; ii) create the tissue and
cell texture; and iii) simulate the effect of the acquisition
by a fluorescence microscope, accounting for both signal
noise and spectral leakage. To this end, Synplex needs seven
user-defined parameters: i) the average marker expression,
Mph ∈ RP×Mk , where each row specifies the intensity of

Algorithm 2 Pseudocode for Modeling Cell Phenotypes.
Inputs: P ab, Phenotype Abundance Matrix; P int , Cell Phe-
notype to Cell Phenotype Interaction Matrix; P ecc, Eccen-
tricity of Cell Phenotypes; P si z , Size of Cell Phenotypes;
P R_NucCell , Ratio of Nucleus Size to Cell Size of Phenotypes;
P cmpl x , Complexity of Cell Phenotypes; P pol r t y, Polarity of
Cell Phenotypes; {mx, m y}, Tissue Image Size in x and y-
Axis, Respectively; M Nb, Cellular Neighborhood Mask; and
P , Number of Phenotypes. Output: M Pn, Cell Phenotype
Mask; M P h_Cell s, Individual Cell Mask; M P h_Nuc, Individual
Cell Nuclei Mask

1: Initialize cell phenotype mask: M Pn = W eightedrandomMatri x(mx , m y , Pab)

2: Initialize individual cell mask: M P h_Cell s = matri x O f Zeros(mx , m y)

3: Initialize individual nucleus mask: M P h_Nuc = matri x O f Zeros(mx , m y)

4: Initialize cell orientation mask: M Ornt tn = Cell Orientation_T um(mx , m y , M Nb)

5: Initialize matrix of permanently assigned pixels: R = matri x O f Ones(mx , m y)

6: Initialize index of cells: Cell_Index = 0
7: while

∑
R > 0

8: Update optimization rule: U P = P int ⊙

(
P ab

M Pnab

)2

9: Select random pixel si, j |R (i, j) = 1
10: Get pheno. of s: MC P = M Pn([i − PCtx /2, i + PCtx /2], [ j − PCtx /2, j + PCtx /2])

11: Get neigbh: N g = majri t yV oting(MNb
[
i − PCtx /2, i + PCtx /2

]
,
[

j − PCtx /2,

j + PCtx /2
]
)

12: Get cell phenotype: P h = majori tyV oting
(

U
′

P
(
MC

))
|U

′

P = U P (:, :, N g)

13: Generate cell: M
′

C P = CellGenerator
(

Pecc,P si z ,P Ornt tn,P cmpl x , P h
)

14: Generate nucleus: M′′
C P = NucleusGenerator

(
M

′

C P ,P R_NucCell ,P pol r t y, P h
)

15: if mean(R([i − PCtx /2, i + PCtx /2], [ j − PCtx /2, j + PCtx /2]) ∩ M ′
C P ) > 95% then

16: Set new phenotype: M Pn =P h : M Pn ∩ M
′

C P
17: Set new cell: M P h_Cell s =Cell_Index : M Pn ∩ M

′

C P
18: Set new nucleus: M P h_Nuc =Cell_Index : M Pn ∩ M′′

C P
19: Reduce pool of pixels to iterate: R = 0 : R ∩ M

′

C P
20: Increment cell index:Cell_Index =Cell_Index+1
21: elseif mean

(
R ∩ M

′

C

)
< 50% then

22: if P ab(stromal Fibers) > M Pnab (st romal Fi bers) then

23: Set stromal fibers: M Pn = stromal Fibers : M Pn ∩ M
′

C P
24: else
25: Increase cell cytoplasm: M Pn = majori tyV oting(M Pn) : M Pn ∩ M

′

C P
26: end while

each of the Mk expected markers for one cell phenotype;
ii) the cell phenotype marker localization, Mloc ∈ [0, 1]Mk×3,
where each marker can be expressed in the nucleus, cytoplasm,
and/or the membrane; iii) the microscope’s signal to noise
ratio, MSN R ∈ RMk , measured in decibels (dB); iv) spectral
leakage, Mleak ∈ RMk×2, measured as the percentage
of spectral bleed-through between two contiguous markers
(i.e., one with longer fluorescent emission and the other with
a shorter emission); v) Perlin noise parameters to generate the
tissue texture for each marker, MPerlin ∈ RMk×3, where the
rows refer to markers, and columns contain the Perlin noise
initial and final frequencies and persistence values [29]; vi) the
Perlin noise parameters for the background, MPerlinBckg ∈ R3;
vii) the microscope’s point spread function width (in µm),
MP SF ∈ R.

Once the cell phenotype masks (MPh_Cells and MPh_Nuc)

are generated, we extract two masks: a cell membrane mask,
MPh_Mem , created by applying a Sobel edge detection oper-
ator on MPh_Cells ; and a mask of the cytoplasm, MPh_Cyt ,
created by applying an XOR filter between MPh_Cells and(
MPh_Nuc ∪ MPh_Mem

)
. Then, the cell phenotype marker

localization Mloc, and marker expression Mph , are used to
determine if one pixel should be stained by one or several
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markers and to apply the appropriate level of marker expres-
sion. This process generates a multispectral mx × m y × Mk
image

To create final realistic images, we add tissue texture using
Perlin noise. To this end a background/autofluorescence mask
is created using the parameters predefined in MPerlinBckg , that
simulates imaging artifacts, such as uneven illumination. Then,
for each marker, texture is added using the parameters defined
in MPerlin . Finally, to simulate the effect of a real optical sys-
tem, the image is convolved with the microscope’s point spread
function (PSF), approximated by a Gaussian function, MP SF .
Finally, the camera photodetection uncertainty is applied as
photon shot noise to achieve a specific SNR per marker MSN R ,
mein dB.

III. EXPERIMENTS AND RESULTS

To validate the potential of Synplex for generating artifi-
cial images containing realistic tumor microenvironments we
carried out two experiments. First, we generated a synthetic
dataset of 45 multiplex immunostained images from a set
of specific user-defined parameters and compared the syn-
thetic microenvironment features measured in the generated
images with the predefined values. Second, we used a set of
experimental parameters measured from an endometrial cancer
cohort, stained with a 6-marker panel [30] to generate 300 syn-
thetic tissue images, and compared the synthetically generated
cellular populations with those quantified in the real tissues.
Finally, we present two proof-of-principles examples: the use
of artificial tumor simulations for ML data augmentation and
for in silico selection of clinically relevant markers.

A. First Validation Experiment: Simulation of Tissue
Samples With User-Defined Parameters

Forty-five 1500 × 1500 × 6 (pixels × pixels × markers)
MI tissue images were simulated that contained 6 cellular
neighborhoods (Nb1-Nb6) with predefined abundance and
neighborhood-to-neighborhood interactions. Each neighbor-
hood contained a specific combination of 7 cell phenotypes
(Ph1-Ph7) and local phenotype interactions. Each phenotype
had a user-defined size, eccentricity, polarity, nucleus-to-cell
ratio, and complexity, as well as predefined intensities of
6 markers (Mk1-Mk6), expressed in the nucleus, cytoplasm
and/or membrane.

Finally, each marker had predefined Perlin noise, signal-to-
noise ratio (SNR) and spectral leakage to simulate realistic
images acquired through an optical system represented by a
point spread function.

1) Validation of Neighborhood Abundance and Interactions:
We first measured the relative abundance of each neighborhood
in the synthetic images, and compared those values with
the predefined abundances, obtaining a low Mean Squared
Error (MSE) of 0.98%. Then, we compared the neighborhood
interactions in the synthetic images with the user-defined
values (Fig. 3a). To this end we measured the level of attraction
between each pair of synthetic neighborhoods as the per-
centage of contour/boundary pixels shared by both neighbor-
hoods. Fig. 3b shows the interactions measured between Nb2

and other neighborhoods, confirming the predefined attraction
between Nb2 and Nb3. Fig. 3c likewise shows the interac-
tions measured for Nb5, showing the expected predefined
repulsion between Nb5 and Nb6. Finally, Fig. 3d shows,
as a representative example, the neighborhood mask of one
of the artificial images, showing the expected interactions.
In summary, Synplex accurately modeled the predefined neigh-
borhood interactions.

2) Validation of Phenotype Abundance and Interactions:
Then we compared the relative abundance of each cell
phenotype in each simulated neighborhood, with the user-
defined abundances. The MSE, averaged for all phenotypes
and neighborhoods was low (−1.46%). We illustrate this with
the predefined phenotype abundances of two representative
neighborhoods, Nb4 (Fig. 3e) and Nb6 (Fig. 3j) along with
the abundances measured in the synthetic images (Fig. 3f, k).
As shown, the phenotype abundances are comparable.

Next, we compared the simulated spatial interactions
between phenotypes with those defined by the user. Thus,
each simulated cell was considered ‘connected’ to another
cell if the latter lay within a 30-pixel radius. Then, the
interaction between each pair of phenotypes was measured
as the percentage of 1-hop connected cells of both pheno-
types relative to the total number of neighbors of the cell.
Fig. 3g and l show the phenotype interactions predefined
for Nb4 and Nb6, respectively. Fig. 3h shows the quantified
phenotype interactions between Ph2 and the other phenotypes
in Nb4 displaying, as expected, high attraction between Ph2
and Ph7. Similarly, Fig. 3m shows the quantified interactions
between Ph5 and the other phenotypes within Nb6 where,
as predefined, Ph5 displays strong repulsion to Ph6. Finally,
we present two qualitative examples of Nb4 and Nb6: Fig. 3i
shows evidence of attraction between Ph2 (green) and Ph7
(orange); Fig. 3n shows evidence of repulsion between Ph5
(magenta) and Ph6 (cyan). In summary, we show that Syn-
plex can create synthetic tissues with predefined interacting
phenotypes.

3) Validation of Phenotype Marker Expression: To validate
the accuracy of the simulations in regard to the texture of the
images, we measured the marker expression intensity in all the
cells of all synthetic images, finding high agreement between
user-defined and synthetic expression levels. We illustrate this
with two representative examples (Ph1 and Ph7). For Ph1
(predefined in Fig. 3o) we obtained an average Mk1 intensity
of 72.7±12.1% in the simulated images (Fig. 3p). This number
agrees with the predefined value, and its variability is consis-
tent with the SNR of this marker, preset to 45dB. Furthermore,
we obtained an intensity of 31.2±7.6% for Mk2, which is
consistent with the predefined bleed through (20%) between
Mk1 and Mk2 (Fig. 3o). Examples of all relevant Ph1 marker
expression effects can be visualized in Fig. 3q. Indeed, Ph1
cells express Mk1 in the nucleus, and spectral leakage from
Mk1 can be seen in marker Mk2. Cell phenotype Ph7 consists
of cells with nuclear expression of Mk1 and cytoplasmic
expression of Mk3 and Mk4. As expected for this phenotype
(predefined in Fig. 3r), the expression levels measured in
the simulated images showed a low standard deviation for
Mk3 (71.1±1.5%) and Mk4 (39.1±3.2%), consistent with a
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Fig. 3. Quantitative and qualitative assessment of the first validation experiment: Simulation of tissue samples from user-defined parameters.
a. User-defined neighborhood interactions (0 represents repulsion, 0.5 represents random interaction, 1 represents attraction) between pairs of
neighborhoods. b, c. Boxplots of the simulated neighborhood attraction and repulsion between pairs of neighborhoods. d. Example tissue image
with an overlaid neighborhood mask visualizing neighborhood attraction and repulsion. e, j. User-defined phenotype abundances in neighborhoods
Nb4 and Nb6. f, k. Simulated phenotype abundances in Nb4 and Nb6. g, l. User-defined phenotype interactions in Nb4 and Nb6, respectively,
(0 represents repulsion, 0.5 represents random interaction, 1 represents attraction) between pairs of phenotypes. h, m. Boxplots of the simulated
phenotype attraction and repulsion between pairs of phenotypes. i, n. Visual assessment of attraction and repulsion between phenotypes.
o-q. Quantitative and qualitative assessment of marker bleed through between Mk1 and Mk2 in Ph1 cells. r-t. Quantitative and qualitative
assessment of marker colocalization in the cytoplasm of Ph7 cells.

higher SNR of 55dB for both markers, whereas the standard
deviation was higher for Mk1 (72.9±9.8%), consistent with
a lower predefined SNR of 45dB. As expected, Mk1 bleed
through to Mk2 is clearly observed (Fig. 3s). Finally, Fig. 3t
show examples of cytoplasmic expression of Mk3 and Mk4.
In summary, Synplex accurately simulates cell phenotypes
with customizable single-cell features.

B. Second Validation Experiment: Simulation of Tissue
Samples From a Real Multiplex Image Dataset

Twelve high-grade endometrial carcinomas were stained
using a six-color multiplex panel targeting key elements of

the tumor microenvironment: CD8+ T cells, the transcription
factor FoxP3, the bona fide T cell activation marker CD137,
the programmed cell death-1 (PD-1), cytokeratin (CK), and
the nucleus (DAPI). Tissue sections were scanned using a Phe-
noImager HT, capturing 391 1468×1876×6 images. Clinical
information of these tumors, was available [31], most relevant
the classification of the tumors into two groups: ‘POLE-
mutated’ with high levels of immunological activity and good
response to treatment [32] (77 images from 3 patients), and
‘POLE-WT’ (wild-type) with low levels of immunological
activity and poor response to treatment (314 images from
9 patients) (Fig. 4a, b).
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Fig. 4. Second validation experiment: Simulation of tissue samples from a real Multiplex image dataset. a-e. Simulation process from a 6-marker
real adenocarcinoma cancer image dataset from two patient types (a) from which a total of 391 image fields were acquired (b). Neighborhoods
and phenotypes were quantified using QuPath (c) and were used by Synplex (d) to simulate 300 synthetic images (e). f, g. Scatterplots comparing
experimental and simulated neighborhood abundances (one point per image). h-k. Scatterplots comparing data type (experimental vs. simulated)
and patient type (Mutated vs. WT) for stromal CD8+ (h, i) and intratumoral CD8+/FoxP3+ (j, k) populations. Statistical differences were assessed
by means of a Mann-Whitney’s U test with a significance value of 0.05.

To characterize the tissue microenvironment of these
endometrial carcinomas, we quantified the cellular neighbor-
hoods and cell phenotypes of the tissues using QuPath [6], [33]
(Fig. 4c). Three types of neighborhoods were defined based
on intensity thresholds applied to the CK and DAPI markers
to distinguish i. a tumor neighborhood consisting of nucleated
CK+ cells, ii. a stromal neighborhood consisting of nucleated
CK- cells, and iii. a background neighborhood devoid of
cells. Then, six relevant cell phenotypes were defined using
a random tree classifier implemented in QuPath, to distin-
guish between CD8+, FoxP3+, CD8+FoxP3+, CD8+PD1+,
CD137+ populations, as well as cells with no marker
expression.

We measured the number of cells with those six phenotypes
in each of the three tissue neighborhoods. These quantifica-
tions had been previously used to associate cell populations
with POLE mutation status [30]. Relevant interactions between
these phenotypes had been previously discovered [34] namely,
attraction between CD8+ and FoxP3+ cells, CD8+FoxP3+

and FoxP3+ cells, CD8+ and tumor cells and, finally,
CD137+ and tumor cells.

Using the abundance and interactions between the quantified
phenotypes, the information about the optical setup, and some
image quality parameters (marker expression, marker SNR,
marker leakage, PSF width, Perlin Noise persistence and

frequency), Synplex created 300 (2000 × 2000 × 6) synthetic
images (Fig. 5d, e), 150 simulating the microenvironment of
POLE-Mutated patients, and 150 simulating the microenviron-
ment of POLE-WT patients.

Validation of the Simulation of the Patient Cohort: We first
compared the neighborhood abundances (tumor and stromal
areas) between the simulated and real images (Fig. 4f, g).
No statistically significant differences were found. We then
compared the abundance of the simulated cell phenotypes
located in the tumor and stromal compartments with the
experimental values quantified with QuPath (Table I). The
values are comparable, and more importantly, the differences
in the abundance of the cells with the immunological phe-
notypes of interest follow the same trend. We illustrate this
with two phenotypes that successfully discriminate between
patient types: Fig. 4h, i show that CD8+ cells are statistically
more abundant in POLE-mutated patients (p<0.001), both
in the simulated and experimental cohorts. Fig. 4j, k show
that Synplex accurately simulated the significantly higher
abundance of CD8+/FoxP3+ cells in WT vs. mutated patients.

Fig. 6 shows both artificial and real images from
POLE-mutated patients (Fig. 6a, b), displaying a tumor
microenvironment populated by a high number of PD1+

and CD8+ cells located in peritumoral areas, implying high
levels of inflammation, whereas artificial and real images of
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Fig. 5. Representative examples from the real and simulated endome-
trial carcinoma MI tissue samples. Please notice that the orange color
means co-localization of PD1 (red) and CD8 (yellow).

TABLE I
COMPARISON BETWEEN REAL AND SIMULATED CELL PHENOTYPES

POLE-WT patients (Fig. 5c, d) show lower level of immune
active cells in the stroma. In summary, Synplex was able
to generate sets of images from experimental data, realisti-
cally modeling the tumor microenvironment of the real tissue
images.

C. First Proof-of-Principle Experiment: Use of Tumor
Simulations for Augmenting Training Datasets in
AI-Based Patient Predictions Systems

ML pipelines must be trained with large patient cohorts.
In this section, we study if tumor simulations generated by
Synplex could increase the predictive performance of such
pipelines.

For this purpose, we trained NaroNet [30], a state-of-the-
art weakly-supervised interpretable DL pipeline, using real
tissues and the synthetically generated endometrial carcinoma
dataset described in the previous section, to predict patient

mutation status, i.e., POLE-mutated vs. POLE-WT. The real
dataset contained 12 patients, each composed, on average,
of 5 1876 × 1404 pixel images. Synplex simulated 50 patients,
each represented by an artificial 2000 × 2000 pixel tissue
image. To evaluate the patient prediction accuracy, we used
a leave-one-out cross-validation strategy where, iteratively,
images from all but one of the patients were used for training
and the remaining patient was used for testing. As shown
(Fig. 6a), the image-wise prediction accuracy increased from
an AUC of 0.89 when trained only with real data, to 0.92 when
trained using the combination of real and simulated data.

Next, given the importance of the image texture in the
learning process, we tested if the performance of our model
could be improved by using generative adversarial networks
(GANs) [35], [36] to learn the texture parameters from real
datasets instead of entering a parametrized set of values.
To this end, we used the pix2pix framework [35], which
translates images from one style to another, and has been
used in H&E-stained histopathology images before, trans-
lating segmentation mask images to realistic tissue tex-
tures [36]. When this strategy is applied to our environment,
we trained a GAN using 50 real images, where the input was
a 24-dimensional segmentation mask each channel repre-
senting the nucleus or the whole cell of 12 simulated cell
phenotypes. The output of the GAN consisted of the 6-marker
immunofluorescence image. The model was trained with the
hyperparameters proposed in ref. [35] during 600 epochs
(∼12 hours). Using the trained model, we obtained the realistic
tissue texture for the 50 synthetic images used in the augmen-
tation experiment. As shown, when NaroNet was trained with
both real and synthetic tissue images with GAN-generated
tissue texture, the predictive performance increased to an
AUC of 0.95. This increase is especially relevant given the
small, imbalanced sample size and the complexity of the
classification.

We show a real POLE-mutated image (Fig. 6b) where
patches with the highest relevance to predict the POLE muta-
tion correspond to a specific phenotype that consists of stromal
CD8 cells. These cells, as shown in Fig. 6c, are significantly
more abundant in patients with the POLE mutation in the real
images. Consistent with this finding, Fig. 6d shows the same
behavior in our simulated dataset. This confirms the similarity
between the real and simulated datasets and is consistent with
our QuPath quantifications (see Table I), where the stromal
CD8 population was associated with the POLE mutation.

D. Second Proof-of-Principle Experiment: In Silico
Selection of Biomarkers

Biomarker discovery requires preselecting markers opti-
mally related to a specific tumor characteristic. Although
a large amount of knowledge about protein expression and
cell-cell interactions exists in publicly available databases [37],
[38], experimentally selecting a predictive marker subset
is high time and resource consuming. We propose to use
Synplex to test in silico the best marker combination for
specific predictive tasks. To demonstrate this, we performed
a simple proof-of-principle experiment, to evaluate in silico
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Fig. 6. Proof of principle for the possible applications of Synplex using a real endometrial carcinoma dataset and its simulated counterpart. a ROC
curves showing prediction performance of NaroNet when combining real and simulated data for image-level prediction. b-d NaroNet’s interpretability
on (b) a real image showing the quantification of the stromal CD8+ phenotype that differentiates patients in both (c) real and (d) simulated images.
e Prediction performance of NaroNet classifying simulated (POLE-Mutated and POLE-WT) images when using different combinations of markers
(statistically significant differences are shown with black horizontal bars). f Examples of POLE-mutated and POLE-WT simulated images displaying
CD8 and FOXP3 markers, which were tested in silico and showed a high predictive power.

the ability of ML to predict patient types using different
combinations of markers.To this end, we trained NaroNet
using the 12 synthetically generated endometrial carcinoma
tumors, using different combinations of markers. In silico
prediction performance was then tested in the 12 real patients
with the expectation of seeing similar performances, with the
same set of NaroNet parameters. To ensure a fair comparison,
we used the same number of training epochs both in real
and synthetic experiments. Each leave-one-out experiment was
repeated three times and the resulting AUCs were averaged,
to ensure statistical robustness. We used groups of marker
candidates expected to have predictive value based on our
previous QuPath quantifications (Fig. 4h, j). The results are
shown in Fig. 6e. We performed a two-way ANOVA, using
the marker combination and the nature of the dataset (synthetic
or real) as factors in the analysis. The statistical results
showed no difference between using the real or the synthetic
database in the experiments, confirming the ability of Synplex
to accurately simulate a real disease paradigm. Furthermore,
statistical differences were found between some marker com-
binations: using DAPI+CK, DAPI+CD8 or DAPI+FOXP3
alone resulted in a significantly poorer prediction performance
than using the combination of FOXP3 and CD8 or using
all 5 markers. Interestingly, there was no significant pre-
diction performance difference when expanding the number

of markers from 2 (CD8 and FOXP3) to 5 (CD137, CD8,
PD1, FOXP3 and CK), meaning that our ML framework can
predict endometrial carcinoma POLE-mutated patients using a
2-plex staining without requiring the a priori available 5-plex
staining. As an example of this, we show (Fig. 6f) how CD8
and FOXP3 are differently distributed in POLE-mutated and
POLE-WT images. As a conclusion of this simple proof-of-
principle experiment, we envision Synplex as a discovery tool
to help predicting in silico which combination(s) of available
markers could provide a priori better accuracy for a particular
predictive task.

IV. DISCUSSION

We have presented Synplex, a novel simulator of synthetic
MI images that recreates tumor microenvironments contain-
ing predefined cell phenotypes and cellular neighborhoods.
Synplex consists of three sequential independent modules.
The first creates a tissue mask with a predefined presence of
cellular neighborhoods and fixed rules of interaction between
these neighborhoods. Each neighborhood is in turn defined
by a specific composition of cell phenotypes and interactions
between them. The second module populates each neighbor-
hood with the predefined cell phenotypes, defined by the
expression of specific markers and morphological features.
The third module creates the final images, giving them a
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realistic tissue texture by simulating the acquisition process
of the tissue by an optical microscope. As Synplex’ modules
are independent pieces of code they could be easily extended
and tuned for simulating other organs’ histology from acquired
MI images, such as whole-brain tissue mapping [39].

Synplex has been validated with two experiments. In the
first, synthetic tumor microenvironments were created follow-
ing user-defined parameters. Then the simulated cell popula-
tions and interactions were quantified to confirm the accuracy
of the simulation, by comparing those values with the prede-
fined values. This experiment confirmed that indeed, Synplex
successfully produces images containing the expected tumor
microenvironment. In the second experiment, we quantified
phenotypes and neighborhoods from images acquired using
a 6-marker panel on an endometrial carcinoma dataset and
fed the quantified values to Synplex to produce a synthetic
patient cohort that successfully replicated the disease paradigm
observed in the real image dataset. We showed that Synplex
simulates the behavior of entire tissue cohorts as well as the
tissue microenvironment elements that have higher predictive
value, showing the same statistical behavior both in the real
and simulated cohorts.

These results show that Synplex may help with the devel-
opment of new image analysis pipelines designed to analyze
MI tissue images. Indeed, artificial datasets generated using
Synplex could be used for the augmentation of annotated
image datasets destined to train ML pipelines. To support
this idea we have presented, as proof-of-principle, an example
of how the combination of synthetic and real images in
the training phase of a weakly supervised DL model boosts
the accuracy of the prediction of POLE mutation status in
a very small, unbalanced cohort of endometrial carcinomas.
Therefore, the use of synthetic samples, for a modality such
as MI in which the availability of image datasets is limited
and annotation is often impracticable, can indeed help train-
ing machine learning models to perform cell segmentation,
tissue segmentation, or patient classification. In contrast to
GAN-based augmentation methods that generate data with
little control of the simulated images, Synplex generates
images with quantifiable parameters accompanied by masks at
the cell and neighborhood level. Indeed, we used Synplex phe-
notype and neighborhood output to generate GAN-based tissue
texture, which is possible when real images are available.
Furthermore, Synplex can be used for benchmarking of new
bioimage analysis tools, a task which is often complicated due
to the scarcity of annotated data. This is especially true in the
case of MI imaging data. Here, the interactivity between cell
phenotypes or neighborhoods is often weak, and thus, tools
that aim to make relevant biomedical discoveries by quantify-
ing those relationships must be systematically validated. In this
context, Synplex allows researchers to create images with
adjustable parameters, generating artificial patient cohorts,
where patient types can be defined by specific variations in
elements from the tumor microenvironment. Therefore, it is
possible to fine-tune the abundance of a phenotype in the
tissue or the strength of the interaction between two cell pop-
ulations, thus creating different levels of difficulty to validate
algorithms.

Finally, the fact that Synplex simulates complex tumor
microenvironments fed with experimental data obtained from
quantitative studies that quantified tumor features individually
(e.g., fluorescent expression of each marker, the abundance
of each cell phenotype, etc.) could allow researchers to test
in silico which potential targets are more relevant for ML
methods designed to differentiate between tumors. We have
shown a proof-of-principle example of this, in which we
have determined in silico, using synthetic images, which
combination of markers from a 6-plex immune panel are the
most decisive for distinguishing between POLE mutated vs
POLE WT endometrial tumors, and we have confirmed this
finding using the corresponding real image dataset. This could
be straightforwardly extended to other experimental design
parameters (e.g., the number of tissue samples used per patient,
the number of images per tissue, the location of images –
peripheral or central tumor areas-, etc.). Therefore, artificial
patient cohorts could be created following different tissue
selection strategies to study in silico which design decisions
are more likely to produce better data for a given ML-based
predictive task. These in silico strategies would result in
significant time and monetary savings. This is especially true
in a MI setup, given the high number of possible combinations
that exist.
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