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Laplacian Salience-Gated Feature Pyramid
Network for Accurate Liver Vessel Segmentation

Zhan Gao, Qiuhao Zong, Yiqi Wang , Yan Yan, Yuqing Wang , Ning Zhu, Jin Zhang ,
Yunfu Wang, and Liang Zhao

Abstract— Liver vessels generated from computed
tomography are usually pretty small, which poses major
challenges for satisfactory vessel segmentation, including
1) the scarcity of high-quality and large-volume vessel
masks, 2) the difficulty in capturing vessel-specific features,
and 3) the heavily imbalanced distribution of vessels and
liver tissues. To advance, a sophisticated model and an
elaborated dataset have been built. The model has a newly
conceived Laplacian salience filter that highlights vessel-
like regions and suppresses other liver regions to shape
the vessel-specific feature learning and to balance vessels
against others. It is further coupled with a pyramid deep
learning architecture to capture different levels of features,
thus improving the feature formulation. Experiments show
that this model markedly outperforms the state-of-the-art
approaches, achieving a relative improvement of Dice score
by at least 1.63% compared to the existing best model
on available datasets. More promisingly, the averaged Dice
score produced by the existing models on the newly con-
structed dataset is as high as 0.734 ± 0.070, which is at
least 18.3% higher than that obtained from the existing
best dataset under the same settings. These observations
suggest that the proposed Laplacian salience, together
with the elaborated dataset, can be helpful for liver vessel
segmentation.

Index Terms— Vessels, segmentation, computed
tomography, neural network, pattern recognition and
classification.
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I. INTRODUCTION

L IVER vessel segmentation of medical images generated
from computed tomography (CT) provides rich infor-

mation for disease diagnosis, radiotherapy positioning and
surgical planning [1]. Therefore, various computational mod-
els have been developed for this task, including traditional
machine learning-based and deep learning-based.

The traditional methods mainly use image filters (e.g.,
Frangi [2], Hessian [3], Laplacian of Gaussian [4]), cluster-
ing algorithms [5], adaptive thresholding [6], active contour
models [7], [8] to pinpoint out liver vessels. While the deep
learning models are more prevalent and effective due to the
revolutionary design of network architectures as well as the
powerful devices. The fruitful innovations in this category
are mainly two-fold: new loss functions and novel architec-
tures. The former includes active contour loss [9], boundary
loss [10], Dice loss [11], Tversky loss [12], etc.; while the
latter attracts even more intensive efforts, e.g., the U-Net
based models [13], [14], attention-based model [15], multi-
path convolutional network [16], etc.

Although dozens of methods have been proposed from every
perspective, the performance is still unsatisfactory. In fact,
liver vessel segmentation has never been a trivial task because
vessels usually have tiny size, low contrast and heavy noise,
particularly the small size, which leads to the heavily skewed
distribution of vessels versus other liver tissues. Taking Fig. 1,
all the ratios between vessel pixels and liver pixels contained
in the raw images are less than 0.1, some even less than
0.05, presenting great challenges for shaping vessel-specific
feature learning. Another consequence of the smallness is the
difficulty of formulating contextual features from vessel areas.
Taking Fig. 1 again, many vessels only occupy dozens of, even
less than ten pixels, resulting in very limited information to
be retrieved. What’s more, it is a painstaking task to delineate
vessels from livers due to the tiny regions they occupy,
hence the scarcity of large-volume and high-quality data.
These challenges collectively lead to the poor performance
of existing models.

To overcome these shortcomings, we propose a novel
Laplacian-based salience generator that is efficient and effec-
tive in highlighting vessel-like areas and suppressing others.
For instance, by applying the filter to the liver images shown in
Fig. 1, the averaged vessel-to-liver weighted pixel-level ratio
is increased to 2.73 times higher than the original one. More
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Fig. 1. Effectiveness of the proposed Laplacian salience filter. The first
row contains the original images and the second is the Laplacian salience
filtered ones. The value at the bottom right corner is the ratio between the
weighted number of vessels and other liver tissues, where the weights
are equal before filtering and are determined automatically by Laplacian
salience after filtering.

importantly, the filter is insensitive to the phase of images,
which can also be observed in Fig. 1. By integrating the filter
into a pyramid deep learning architecture, the features can be
more effectively tailored to the vessel areas, and the skewed
distribution can be automatically balanced as well. In addition,
the pyramid network is able to capture different levels of
features and fuse them together for better vessel segmenta-
tion. The Laplacian salience automatically shapes the model
focusing on vessel-like regions by attaching higher weights to
these pixels and lower weights to others, thus paying more
attention to vessel-like areas. For multi-scale feature fusion,
it can adapt to various vessel sizes and compensate for weak
features learned from small vessels by large vessels, so that
the learned features can be applied to different situations.

Besides the sophisticated model, another big issue that
hinders the progress of liver vessel segmentation is the small
and imperfect dataset, which is also caused by the tiny size of
vessels. To construct a qualified large dataset, great endeavors
have been made by our team. In particular, 532 volumes of
contrast-enhanced abdominal computed tomography images
were collected, and the vessels were carefully delineated by
three radiologists elaborately.

The big jump in Dice scores generated by our model,
as well as from our data, demonstrates their goodness.
The source codes and data are available at https://github.
com/lzhLab/LiVS.

II. RELATED WORKS

A. Salience Map
A salience map highlights the focus of the human visual

system, which has been demonstrated to be effective in
dealing with inhomogeneous distributions as well as intra-
class variations in visual tasks [17]. There have two typical
branches related to salience, namely salience prediction and
salience application. Salience prediction has been extensively
studied from different perspectives, such as data-driven meth-
ods [18], [19], generative adversarial network-based mod-
els [20], [21], et al. Regarding salience application, it is mostly
used to facilitate downstream data analysis, where the salience
itself is mainly obtained by attention-based models and tra-
ditional machine learning-based methods. For instance, the

self-attention model [22] as well as its spatial variations [23],
[24] and channel variations [25], [26] have been proposed to
capture the salience of objects. Another work, the attention
gate [27], has also been proposed to suppress irrelevant regions
and highlight salient features. This study is similar to ours in
using salience but different in generating salience. Although
these implicit model-driven salience generators have been
proven to be effective in real-world tasks, they require a
large amount of high-quality training data. This restriction can
be overcome by traditional approaches, such as Conditional
Random Field-based [28], Bayesian inference-based [29], and
clustering-based [30], but at the cost of accuracy.

B. Loss Weighting

Loss weighting is dissimilar to salience. It assigns different
weights to different classes, samples, and even pixels, while
salience varies in weight across different regions, which may
be composed of multiple classes. Loss weighting for image
analysis can be categorized into three clusters typically, i.e.,
class-wise [31], [32], sample-wise [11], [12], [33], and pixel-
wise [9], [10]. The class-wise weighting assigns different
weights to different classes to balance the uneven distribu-
tions; the sample-wise weighting assigns different weights
to different samples, even if they are from the same class,
so that more attention could be paid to hard samples; and
the pixel-wise weighting is the most fine-grained strategy,
which can also apply different weights to different classes and
samples. Among them, pixel-wise weighting is more popular.
For instance, Focal loss [34] is a common weighting approach
for different pixels based on the predicted probability, while
contour loss [9] and boundary loss [10] have been adopted to
focus on ambiguous regions across different classes.

C. Tiny Object Segmentation

The cross-section of a vessel is a tiny blob since the
branches of vessels are thin tube-like structures. Therefore,
vessel localization in liver is similar to tiny object seg-
mentation. Several intrinsic difficulties hinder the accurate
segmentation of tiny objects, including information loss,
noisy feature representation, insufficient samples and sensitive
to disturbance [35]. To overcome these limitations, exten-
sive efforts have been made from various perspectives [36],
such as data augmentation [37], soft label assignment [38],
scale-specific segmentation [39], feature reassembly [40],
attention-based segmentation [41], similarity-aware learn-
ing [42], super-resolution-based segmentation [43], context-
aware modeling [44], focus-aware segmentation [16], etc. The
strategies presented here are not used separately, but in most
cases, they are combined together to achieve better perfor-
mance. For instance, Liu et al. [45] propose a dual-branch
network with dual-sampling modulated Dice loss for hard
exudate segmentation from color fundus images, in which each
branch is an exudate size-specific feature learner so that more
attention can be paid to small exudates. It also oversamples
small exudates that are difficult to segment. In another study,
Meng et al. [46] combine multi-scale feature fusion and the
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Fig. 2. Architecture of the Laplacian salience-gated feature pyramid network. It is mainly composed of two parts, including pyramid feature fusion
and the Laplacian salience-gated feature filtering. The pyramid network is for multi-scale feature extraction, while the Laplacian salience is to shape
the vessel-specific feature learning. Note that the Laplacian salience is applied to different scales of the input image other than the corresponding
feature maps, and the final feature map is the integration of the feature maps obtained from different scales with size matched.

Transformer for fine-grained segmentation of liver tumors and
vessels.

Note that object segmentation is a hot topic in computer
vision, and hundreds of models have been proposed. For more
details, please refer to the recent survey [36].

III. METHODS

Our model consists primarily of two parts: Laplacian
salience-gated filtering and pyramid feature fusion; cf. Fig. 2.

A. Laplacian Salience-Gated Filtering

1) Laplacian: The Laplacian, or Laplacian operator, is the
second derivative of the n-dimensional Euclidean space,
defined as

1 f = ∇ · ∇ f =

n∑
i=1

∂2 f
x2

i
, (1)

where f is a function of x = ⟨x1, x2, · · · , xn⟩. For two-
dimensional space,

1 f (x, y) =
∂2 f
x2 +

∂2 f
y2 . (2)

Note, the x and y are the relative distance to the interesting
point (xi , yi ), not the absolute coordinates.

Since the second derivative is very sensitive to noise, the
Laplacian is further smoothed by a Gaussian, resulting in

1 f s(x, y) = C1 f (x, y)e−
x2

+y2

2σ2 , (3)

with σ the standard deviation of the Gaussian envelope and C
the normalization factor.

2) Laplacian Wavelet: The Laplacian wavelet in 2D space is
the Laplacian (the scaling function) modulated by a complex
exponential (the wavelet function), defined as

g(x, y; λ, φ) = 1 f s(x, y) · ei( 2π
λ

(x cos θ+y sin θ)+φ), (4)

where λ is the wavelength and φ is the phase offset.
The Laplacian wavelet is isotropic in its original form, but

various patterns should be captured, so it is further refined as

g(x, y; λ, φ, γ, θ, σ ) = 1 f s(x ′, y′)ei( 2π
λ

x ′
+φ) (5)

= C1 f (x ′, y′)e−
x ′2

+γ 2 y′2

2σ2 ei( 2π
λ

x ′
+φ),

(6)

where x ′
= x cos θ + y sin θ , y′

= −x sin θ + y cos θ , γ is the
spatial aspect ratio between x and y, and θ is the rotation angle
from (x, y) to (x ′, y′). According to the convolution theorem,
the final operator applied to f can be further written as

g(x, y) = C(1 + γ −
x ′2

+ γ 2 y′2

σ 2 )e−
x ′2

+γ 2 y′2

2σ2 ei( 2π
λ

x ′
+φ). (7)

For simplicity, the parameters are ignored. In addition, the
normalization factor C can be dropped out.

3) Laplacian Salience: According to the Euler’s formula that
ei x

= cos x + i sin x , the above wavelet can be split into the
real and imaginary two parts, with

gR(x, y) = A cos(2π
x
λ

+ φ) (8)

g I (x, y) = A sin(2π
x
λ

+ φ), (9)

where

A = (1 + γ −
x ′2

+ γ 2 y′2

σ 2 )e−
x ′2

+γ 2 y′2

2σ2 . (10)

Let

3R(x, y) =

K∑
i

gR(x, y; λi , φi , γi , θi , σi ) (11)
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be the integral of K patterns, then by convolving 3R(x, y) on
an image f (x, y) the specific patterns contained in f (x, y) can
be fished out. Analogously, the patterns defined by 3I (x, y)

can also be obtained from f (x, y) by convolution as well.
Based on the above two integrated banks of filters, the

salience map s of an image f can be obtained by

s(x, y) = h(( f (x, y) − f̄ ) ∗ 3R(x, y))

+ h(( f (x, y) − f̄ ) ∗ 3I (x, y)) (12)

where f̄ is the mean intensity of f , ∗ represents convolution
operation and h(·) is a normalization function.

It is known that 3I (x, y) is particularly helpful in high-
lighting sudden changes, such as edges, steps and corners,
because of the sign change over the 0-point. To further
enhance the constrastiveness, the wavelength λ is optimized
to 2

√
3 + γ σ by solving the first-order derivative of 3I (x, y)

at 0. For 3R(x, y), it is used to smooth the saliency map so
as to withstand noise and intensity variations. Similarly, its
wavelength is optimized to 4

√
1 + γ σ .

The normalization and subtraction are critical to the gen-
eration of saliency maps. Normalization is necessary because
the optimized basic wavelets are different between the odd
and even waves, while subtraction is used to remove the
background so that the abnormal regions can stand out.

B. Pyramid Feature Fusion

1) Model Architecture: A novel salience-gated feature pyra-
mid architecture is proposed to distinguish vessels from other
tissues; cf. Fig 2. The feature pyramid network (FPN) [47] and
its variants have been intensively explored for object detection
and segmentation [48] due to its superiority in multi-scale
feature fusion. However, in its original form, it is unsuitable
for vessel segmentation due to the erosion, or even elimination,
of small vessels during downscaling. To this end, we refine the
architecture in two-fold: i) bottom-up zoom-in and top-down
zoom-out to enlarge tiny vessels and obtain more detailed
patterns, and ii) automatic highlighting of vessels boundaries
by a high-pass filter on the salience maps at different scales.

Let X ∈ Rw×h×c be an image with width w, height h,
and channel c. The bottom-up zoom-in of X is carried out
by passing it through a ResNet50 block [49] at each reverse
pyramid level. The input of the higher level is the output of
the lower level with up-sampling, which scales the output
two times larger. The top-down zoom-out is conducted by
adding the down-sampled output of the upper level and the
feature maps of the same level in the bottom-up path. See the
detailed illustration in Fig 2. The zooming operation (both in
and out) is repeated three times, but not more, because of the
following two main reasons: i) the size of feature maps grows
exponentially with zoom-in, thus easily leading to memory
exhaustion if scaled too deep; ii) three times of up-scaling
(23

× 23
= 64 times larger in the area) is sufficient to enlarge

a tiny vessel enough for exquisite segmentation.
2) Salience-Gated Feature Generation: Unlike traditional

feature generation, we modulate the feature maps with gates.
Let X (l) be an image, either the original input or its enlarged

form, at layer l, and F (l) be the feature maps produced at layer
l. The gate G(X (l)) to be applied to F (l) is calculated as

G(X (l)) = IFFT(FFThigh-pass(S(X (l)); ρ)), (13)

where S(X (l)) is the Laplacian salience of X (l), FFThigh-pass(x)

is the high-pass of fast Fourier transformation of x , IFFT(x)

is the inverse fast Fourier transformation of x , and ρ is the
threshold to determine the high-pass band. Based on G(X (l)),
the modulated feature map of F (l) is calculated by

F (l)′
= G(X (l)) ⊙ σ(F (l)), (14)

where ⊙ is the element-wise dot product, and σ(·) is an
activation function.

Intuitively, a salience map is helpful to focus on vessel
regions as well as those ambiguous regions that resemble
vessels. However, texture information is very limited and
varies significantly due to the large number of tiny vessels
presented. To this end, we further shape the importance of
feature maps on the boundary regions, hence the high pass
filter. There have two main reasons: i) the boundary regions are
more consistent across different vessels regardless of their size,
and ii) the boundary labels are imperfect, so more attention to
them improves segmentation.

3) Salience-Modulated Loss: The loss function of the model
is guided by the salience of the input image X , which is
computed by

L = −
1

M N

M∑
i

N∑
j

[αS(X i j )Yi j lnPi j

+ (1 − α)S(X i j )(1 − Yi j )ln(1 − Pi j )], (15)

where Y is the label, P is the prediction, S(X) is the salience
of X , and α is the balancing factor within the range of 0 to 1.

Our salience-modulated loss is ostensibly similar to Focal
loss [34], but de facto different. Ours is determined from
the raw input, reflecting the difficulty between vessels are
other regions; while Focal loss is determined from the model,
unveiling the models’ distinguishability, which unfortunately
can vary significantly with different inputs.

Note that, the loss modulation is slightly different from the
feature gating, in which the high-pass filtering is excluded in
the former one. This is because the final target is the entire
vessel area, while the features are primarily based on the
boundary regions.

C. Implementation Details

The proposed model is implemented in PyTorch and val-
idated on a cluster having four NVIDIA V100 GPUs. The
learning rate is optimized by Adam [50] with an initial value
of 10−2 and a reduction factor of 0.1, while the batch size
is 8.

The salience of some liver tissues, which are very different
from vessels, can be 0, so they can hardly contribute to model
training. To further boost the learning of non-vessel regions,
the lower bound of the salience is set to 0.05.
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IV. EXPERIMENTS

A. Datasets
Two types of datasets are used to evaluate the performance

of our model as well as others, including the widely used pub-
lic datasets and our newly constructed dataset. The public ones
are 3D-IRCADb (3D Image Reconstruction for Comparison of
Algorithm Database) [51] and MSD (Medical Segmentation
Decathlon) [52], while ours is LiVS (short for Liver Vessel
Segmentation).

The 3D-IRCADb contains 20 volumes of CT images having
2,823 slices with vessel masks, and MSD consists of 303 vol-
umes and 21,120 slices having vessel masks.

LiVS has 532 volumes and 15,984 slices, where each slice
is delineated by three senior medical imaging experts and the
final mask is determined by majority vote. Due to the small
size of vessels, the delineation of each vessel can oscillate
easily. To address this, the coincidence of each vessel among
the three masks is calculated. If the majority voting over any
mask is smaller than 0.5, the vessel is highlighted and sent
back to the three experts for further refinement. This process
is repeated until no disagreement exists. A detailed description
of each volume is available at https://github.com/lzhLab/LiVS.

Although SLIVER07 [53] (having 30 volumes and 4,159
slices) and CHAOS [54] (having 50 volumes and 2,874 slices)
have been frequently used in liver vessel segmentation, they
actually have no vessel mask, and all studies using these
datasets have to manually delineate vessel masks. Hence, they
are excluded from this study.

B. Evaluation Metrics
The performance is measured by Dice similarity coefficient

(DSC), volumetric overlap error (VOE), average symmetric
surface distance (ASSD) and Hausdorff distance (HD), which
are defined as:

DSC = 2|P ∩ G|/(|P| + |G|) (16)
V O E = 1 − |P ∩ G|/(|P ∪ G|) (17)

ASSD =

∑
x∈∂ P d(x, ∂G) +

∑
x∈∂G d(x, ∂ P)

∂ P + ∂G
(18)

H D = max{max
x∈∂ P

d(x, ∂G), max
x∈∂G

d(x, ∂ P)}, (19)

where P is the prediction, G is the ground truth, ∂ X is the
boundary of X , d(x, ∂Y ) is the minimum Euclidean distance
between x and ∂Y defined as d(x, ∂Y ) = miny∈∂Y d(x, y).

Among them, DSC and VOE are overlap-based measure-
ments, while ASSD and HD are boundary distance-based
metrics. In practice, DSC is the most widely used one as it is
more robust.

C. Performance Qualification
The performance of our newly proposed model is examined

on the three datasets, and head-to-head comparisons with
existing state-of-the-art models are also carried out on the
three datasets with the same sets of training, validation, and
testing data as well. Two types of existing models are adopted,
i.e., 2D-based and 3D-based. The typical 2D models borrowed

TABLE I
LIVER VESSEL SEGMENTATION PERFORMANCE ON 3D-IRCADB

in this study include U-Net [13], FPN [47], MFSNet [55],
DCSAU-Net [56], CaraNet [41], DualNet [45] (with backbone
of HED [57] and dual-sampling modulated Dice loss), Trans-
FusionNet [46], and M2MRF [40] (the cascade version), while
the 3D models are 3D U-Net [14] and V-Net [11]. The detailed
results are as follows.

1) Performance on 3D-IRCADb: The detailed performance
is shown in Table I. It can be observed that the average
performance of our model on 3D-IRCADb is 0.68, 0.48,
1.59 and 10.12 for DSC, VOE, ASSD and HD, respectively.
This performance is significantly better than those generated
by existing models, improving DSC by 1.63% compared
to the second-best. This improvement is indeed remarkable
considering the difficulty of vessel segmentation, although the
absolute value looks trifling. Notably, the performance of the
2D models (U-Net, FPN, MFSNet, DCSAU-Net, CaraNet,
DualNet, TransFusionNet, M2MRF and ours) is markedly
better than that of the 3D models (3D U-Net and V-Net),
viz., greater than 0.6 versus smaller than 0.4. We speculate
that this is mainly attributed to the small number of training
data in 3D-IRCADb, i.e., only 20 volumes. This observation
inspired us to construct a large-volume dataset.

2) Performance on MSD: MSD is 15 times larger than 3D-
IRCADb in terms of volume; Therefore, we expect significant
improvement of all models on MSD compared to those eval-
uated on 3D-IRCADb. Unfortunately, except for V-Net, the
DSCs do not have apparent improvement, and some show even
worse results; see Table II. For example, the DSC obtained
from U-Net is slightly smaller than those generated from 3D-
IRCADb. Regarding most of the mentioned networks and our
model, they produce better results on MSDS. Noteworthily,
V-Net lifts the DSC from 0.374 to 0.612, indicating that it
benefits most from the large number of training data. Although
our model generates the most accurate results than others, the
unstable results obtained by all these models suggest that the
data quality needs to be improved. To this end, we carried out
comprehensive experiments on our newly constructed large-
volume and high-quality data; see next.

3) Performance on LiVS: Promisingly, the performance of all
models on LiVS has experienced a significant jump, increasing
the average DSC by 0.157±0.105 and 0.113±0.042 compared
to 3D-IRCADb and MSD, respectively; see details in Table III.
This is obviously a tremendous advancement in liver vessel
segmentation.
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TABLE II
LIVER VESSEL SEGMENTATION PERFORMANCE ON MSD

TABLE III
LIVER VESSEL SEGMENTATION PERFORMANCE ON LIVS

Interestingly, V-Net performs much better than other exist-
ing models, suggesting that it is suitable for vessel seg-
mentation from liver images provided with large-volume and
high-quality input data. In addition, 3D U-Net also generates
significantly better results than that of MSD, indicating that
the quality of LiVS is indeed better than MSD although they
have a similar scale of data volume.

As for our model, the DSC score is as high as 0.803,
which is lifted by 2.6% to 38.0% in terms of DSC compared
to existing models. This observation suggests that the newly
designed model effectively captures actual vascular regions
and suppresses other liver tissues in feature learning, even
without 3D information.

D. Salience Quantification
Performance qualification has demonstrated the effective-

ness of the proposed Laplacian salience. Here we quantita-
tively analyze the impact of the salience on images. To this
end, we calculate the ratio r of the weighted number of
pixels between vessels and other liver tissues, precisely r =∑

Mx,y=1 wx,y Mx,y/
∑

Mx,y=0 wx,y(1− Mx,y), where M is the
mask of an image with Mx,y = 1 for vessels at position (x, y),
Mx,y = 0 for other liver tissues, and Mx,y = −1 for those
outside the liver regions. The weight wx,y at position (x, y)

is 1 for every pixel before Laplacian salience filtering, and is
automatically determined by the proposed Laplacian salience
after filtering.

Fig. 3 shows the distribution of r before and after Laplacian
salience filtering. Before filtering, the averaged ratio between
vessel and liver is 0.055±0.046, while this value is markedly
tripled to 0.163 ± 0.151 after filtering. It means that the pro-
posed Laplacian salience filtering is effective in highlighting

Fig. 3. Ratio between vessels and liver tissues before and after the
proposed Laplacian salience filtering.

TABLE IV
IMPACT OF LAPLACIAN SALIENCE MODULES. EXPERIMENTS ARE

CARRIED OUT ON LIVS

vessel-like regions and suppressing others, which can also be
observed visually in Fig. 1. Another noteworthy point is that
the newly conceived filter can discriminate different classes,
samples and pixels simultaneously. That being said, the imbal-
anced distribution of classes, the difficulty of samples, and the
ambiguity of pixels can all be addressed simultaneously based
on the filter.

E. Ablation Study
1) Salience Filter: The proposed Laplacian salience genera-

tor has two important modules, including a Laplacian salience
generator and a high-pass filter. The former is to generate the
image-wise salient map highlighting vessel-like regions, while
the latter is to further shape the learning on the ambiguous
regions. To investigate their influence, we toggle the two
modules while leaving other parts unchanged. Results show
that the combination of the two yields the best performance
with DSC lifted by 4% compared to the baseline. Even with
the Laplacian salience itself, the performance is still better
than the original FPN model. More details can be found in
Table IV.

2) Salience Loss: Obviously, salience can be incorporated
into both the feature maps and the loss functions. If it is
used in feature maps, the learned features will be shaped
to vessels with higher attention; if it is used to modulate
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Fig. 4. Visualized 3D vessel structures built from different datasets. The density and thickness of branches produced from LiVS are evidently better
than others. For 3D-IRCADb, the vessels are obviously over labeled; while MSD is under labeled on the contrary.

TABLE V
ABLATION STUDY FOR LOSS FUNCTION ON THE LIVS DATASET

the loss functions, regions with higher salience values will
be more sensitive to variations. To examine which is more
influential and effective, we switch on/off the modules and
conduct experiments on LiVS.

Results in Table V show that the salience-gated fea-
ture together with the BCE loss achieves the best perfor-
mance, while the salience-modulated loss training without the
salience-gated feature gains the second best. If the model
includes both the salience-gated feature and the salience-
modulated loss, it unexpectedly generates slightly worse
results. We speculate that the combination of salience gate
and salience loss hinders the efficient learning of non-vessel
features due to the very little attention paid to these regions.

Another interesting point is that the original FPN can also
benefit from the use of our salience-modulated loss. This
suggests that our salience is helpful in capturing vessels even
if they are very small.

3) Pyramid Level: The feature pyramid network has proved
to be effective in capturing various abstract features. However,
the size of vessels is usually very small. Hence, very deep
down-sampling will reduce or even eliminate vessels from
the input images. To examine which level generates the best
performance, we have varied the down-sampling times and
conducted experiments on LiVS.

Results show that the sidelength reduced to 1/8 of the
original produces the best performance. That is, the number
of down-sampling pyramid levels is 3. Note, however, that
the original input is first enlarged by a super-resolution layer,
thus the level is increased to 5, cf. Fig. 2. Not surprisingly,

TABLE VI
PERFORMANCE OF OUR MODEL ON LIVS WITH DIFFERENT PYRAMID

LEVELS

either increasing or decreasing the number of down-samplings
produces worse results. For more details, please refer to
Table VI.

As a comparison, the performance of the original FPN is
shown in Table VI as well. It can be seen that our pyramid
architecture, coupled with salience, generates much better
results than FPN, even with a shallower network.

F. Mask Examination

It is obvious that obtaining elaborated masks of vessels
from liver images is very challenging because of their tiny
size, heavy noise and low contrast. From the performance
analysis (Section IV-C), we can see that both the volume and
the quality of the datasets are critical to achieve satisfactory
vessel segmentation. Precisely, LiVS has the largest number
of volumes as well as the best quality, resulting in a big
jump in DSC scores compared to MSD and 3D-IRCADb.
Regarding the other two, they all have their own merits, with
MSD having a larger volume and 3D-IRCADb having a better
quality. Hence the performance of the two is comparable.

For ease of understanding, we constructed several vessel
structures generated from the masks of the three datasets; see
Fig. 4. Clearly, the 3D vessel structures constructed from LiVS
show that the thickness of the branches is proportionate and
the density of the vessels looks rational. Particularly, even
skinny and tiny vessels can be visualized. Regarding 3D-
IRCADb, many vessel branches are intertwined and mixed
together, which is evidently impractical. For MSD, the vessel
masks are heavily under-labeled, resulting in very sparse vessel
structures, which is also unrealistic.
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Fig. 5. Prediction visualization on LiVS. Three typical hard scenarios of vessel segmentation are presented, including vessels with low contrast,
skinny branches and broken branches. The predictions are in red, while the original labels are in blue, and their superimposition is in green.
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Note, this investigation is not to point out the imperfect
quality of the existing or our own data. Instead, we attempt to
draw attention to vessel mask purification.

G. Case Visualization

Three main hard situations in vessel segmentation are low
contrast, skinny branches and broken branches. To illustrate
the performance, prediction results generated from LiVS by
existing state-of-the-art models as well as ours are exemplified
in Fig. 5. For vessels with low contrast, CaraNet, TransFu-
sionNet and ours produce markedly better results than others.
For those with skinny branches, only TransFusionNet and our
model can generate satisfactory results, and other models miss
the very skinny branches. For the broken branches, V-Net
and ours perform better than the others. In short, only our
newly proposed model can handle the three thorny scenarios
simultaneously. This further demonstrates that the proposed
Laplacian salience is sensitive to vessels and effective in vessel
segmentation.

V. CONCLUDING REMARKS

Accurate liver vessel segmentation faces two difficulties,
namely the scarcity of high-quality and large-volume data
as well as the sophisticated model adhering to small vessel-
like regions, hence the poor performance of existing models.
To this end, we have made great efforts to prepare a qualified
large liver vessel dataset having 532 volumes and 15,984
slices. To investigate its goodness, a Laplacian salience-gated
feature pyramid network is proposed, which can automatically
focus on vessel-like regions and compensate for the skewed
distribution of vessels in liver tissues. In addition, it can also
put more effort into poorly discriminable regions, so that low-
contrast vessels, skinny branches and broken branches can be
effectively fished out. Experimental results show that the newly
proposed model significantly outperforms other state-of-the-art
models on both our newly proposed data and existing data.
More promisingly, the Dice scores generated from our data
are improved by at least 18.3% compared to those produced
from other datasets. These observations suggest that our newly
conceived model, as well as the data, can be of great help in
advancing liver vessel segmentation.
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