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Abstract— Automatic recognition of fine-grained surgical
activities, called steps, is a challenging but crucial task for
intelligent intra-operative computer assistance. The devel-
opment of current vision-based activity recognition meth-
ods relies heavily on a high volume of manually annotated
data. This data is difficult and time-consuming to gener-
ate and requires domain-specific knowledge. In this work,
we propose to use coarser and easier-to-annotate activity
labels, namely phases, as weak supervision to learn step
recognition with fewer step annotated videos. We introduce
a step-phase dependency loss to exploit the weak supervi-
sion signal. We then employ a Single-Stage Temporal Con-
volutional Network (SS-TCN) with a ResNet-50 backbone,
trained in an end-to-end fashion from weakly annotated
videos, for temporal activity segmentation and recognition.
We extensively evaluate and show the effectiveness of the
proposed method on a large video dataset consisting of
40 laparoscopic gastric bypass procedures and the public
benchmark CATARACTS containing 50 cataract surgeries.
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I. INTRODUCTION

RESEARCH in developing advanced clinical decision
support systems in computer-assisted interventions (CAI)

and robot-assisted surgeries (RAS) for the demanding situa-
tions of a modern Operating Room (OR) [1], [2], [3] has seen
significant progress in the last decade. One of the primary
functions of these advanced systems is automatic surgical
workflow analysis, i.e., reliable recognition of the current
surgical activities. Surgical activity recognition could play a
key role in assisting clinical decisions, report generation, and
data annotation by providing valuable semantic information.

Depending on the level of granularity, a surgical procedure
can be decomposed into activities, such as the whole pro-
cedure, phases, stages, steps, and actions [4], [5]. Surgical
phases are defined as a set of fundamental surgical aims
to accomplish in order to successfully complete the surgical
procedure. Similarly, steps are defined as a set of surgical
actions to perform in order to accomplish a surgical phase.
These definitions help clinicians define an ontology for each
procedure, e.g. [6], [7] define ontologies for cataract and
gastric bypass procedures. Although the ontologies are well
defined, automatically recognizing these activities from avail-
able endoscopic videos is a topic of high interest.

Phase recognition has received a lot of attention and is a
very active area of research in the medical computer vision
community [8], [9], [10], [11], [12]. Alongside phases, there
has been substantial research focusing on fine-grained activi-
ties such as robotic gestures [13], [14], [15], [16], [17], [18],
[19], action triplets [20], and instrument detection and tracking
[11], [21], [22]. Recently, there has been a aof research works
focusing particularly on step recognition [6], [7], [23].

While steps define a surgical workflow at a more
fine-grained level than phases, the time required to annotate
a dataset with steps is significantly higher than with phase
annotations. For example, in Laparoscopic Roux-en-Y gas-
tric bypass (LRYGB) procedures, the workflow consists of
44 steps and 11 phases (Table II). Precisely defining and
annotating all the steps requires a considerably higher time
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Fig. 1. Sample images from Bypass40 and CATARACTS datasets. Each column of Bypass40 images present similar steps.

of experts due to the number of steps and more impor-
tantly lower inter-class variances between steps. Since recent
works in surgical phase/step recognition employ deep learning
models, they rely on the availability of large-scale annotated
datasets. Curation of these annotated datasets is difficult and
time-consuming as these tasks require domain-specific medical
knowledge.

To address this issue, a few works [24], [25], [26], [27]
have proposed methods based on semi-supervision. These
approaches involve either pre-training the model on proxy
tasks or training on synthetic labels generated by a teacher
model trained on a small subset for phase recognition. Unlike
these works, inspired by [22] and [28], we address the annota-
tion scarcity issue by proposing a weakly supervised learning
approach utilizing relatively economical annotations.

The main contributions of our work are summarized as
follows:

1) We propose a weakly supervised learning method
for surgical workflow analysis to tackle the problem
of fine-grained surgical activity (step) recognition.
We exploit the hierarchical step-phase relationships and

utilize easier-to-annotate weak phase annotations on
videos with missing step annotations.

2) We introduce a novel dependency loss to enforce the
weak supervision and encode the step-phase hierarchical
relationship as a matrix. By optimizing for this loss,
it encourages the model to learn possible step sequences
and transitions from videos with only phase annotations.

3) We present an end-to-end model consisting of ResNet-
50 and Single-Stage Temporal Convolutional Network
(SS-TCN) to learn both visual and temporal cues jointly.

4) We extend the CATARACTS1 dataset (containing
step annotations) with phase annotations. These anno-
tations will be released upon acceptance of this
manuscript.

5) We extensively evaluate our approach on two surgical
video datasets, namely Bypass40 [7] and CATARACTS
[29], demonstrating the effectiveness and generalizabil-
ity of our method.

1https://cataracts2020.grand-challenge.org/
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II. RELATED WORK

A. Surgical Activity Recognition

Research on developing deep learning methods for surgical
phase recognition has seen significant progress with initial
works of EndoNet [8] and DeepPhase [9] on cholecystectomy
and cataract surgeries, respectively. EndoNet proposed a Con-
volutional Neural Network (CNN) followed by a hierarchical
Hidden Markov Model (HMM) to perform both phase and
tool detection. Similarly, DeepPhase introduced an architecture
with ResNet [30] and Recurrent Neural Network (RNN),
instead of HMMs, for temporal modeling, for both phase
recognition and tool detection. EndoLSTM [31], [32] extended
EndoNet by utilizing a Long Short-Term Memory (LSTM)
for temporal refinement of spatial features. Similarly,
SV-RCNet [10] trained a ResNet and LSTM model end-to-end
and proposed a prior knowledge inference scheme for surgical
phase recognition. MTRCNet-CL [11] presented a multi-task
model to detect tool presence and perform phase recognition
along with a novel correlation loss to capture the relationship
between tool presence and phase identification. Recently,
TeCNO [12] adapted the multi-stage Temporal Convolutional
Network (MS-TCN) [33] architecture for online surgical phase
prediction by implementing causal convolutions [34].

On the other hand, step recognition has seen a spark in
research with the initial work of [23]. A Content-Based Video
Retrieval (CBVR) system, for real-time step recognition, was
proposed utilizing a novel pupil center and scale tracking
method as pre-processing of motion features. In [6], the CBVR
system along with surgical tool presence information was used
as input to statistical models consisting of Bayesian Network
and HMMs for multi-level online recognition of step and
phase. Recently, MTMS-TCN [7] adapted TeCNO utilizing
TCNs for multi-level online recognition of step and phase.
In this work, we build upon the architectures of TeCNO and
MTMS-TCN by utilizing a variant of MS-TCN in an end-
to-end fashion for online step recognition.

B. Weak Supervision

Weak supervision has seen a great interest in the medical
computer vision community to tackle the need for high-volume
annotated datasets that are difficult to generate. Some of
the interesting applications of weak supervision are seen in
surgical tool localization [22], tool segmentation [28], cancer-
ous tissue segmentation [35], and detection of the region of
interest in chest X-rays and mammograms [36]. To reduce
the number of labeled videos, most of the recent research
works in phase recognition have proposed approaches based on
semi-supervised learning. These approaches follow a similar
strategy of pre-training the models on different proxy tasks of
frame-sorting [24], predicting the temporal distance between
multiple frames [25], and predicting the remaining surgery
duration [26]. The most closely related work to this paper in
terms of objectives is [27], which proposed a teacher/student
approach for phase recognition in scenarios of extreme manual
annotation scarcity (≤25% of the training set). The teacher
model (trained on a small set) generated synthetic phase

annotations for a large number of videos on which the student
model was then trained.

Weakly supervised coarse-to-fine methods have received
considerable interest in the computer vision community [37],
[38], [39] for image classification. Reference [37] proposed an
image-based weakly supervised end-to-end model for object
classification consisting of a CNN followed by two self-
expressive layers. One self-expressive layer captures the global
structures through coarse labels and the other captures the local
structures for fine-grained classification. Reference [38] tack-
led the problem of learning finer representations from coarser
labels without any fine-grained labels. Their proposed method
consists of CNN based trunk-target network that learns coarse
representations from labels and finer representations with
nearest-neighbor classifier objective. Recently, [39] tackled the
problem of Coarse-to-Fine Few-Shot (C2FS) and proposed a
novel ‘angular normalization’ module that effectively com-
bines supervised and self-supervised contrastive pre-training
for C2FS.

Although these previous works in the vision community
propose weakly supervised learning methods exploiting hierar-
chical structures, the focus solely lies on object recognition in
natural images containing a single object in each image. In this
work, we focus on weakly supervised learning from videos
instead of images. We aim to recognize fine-grained activity,
as opposed to object, exploiting the temporal information
available in videos. In particular, we target fine-grained surgi-
cal activity recognition on videos from endoscopic procedures
on two different types of surgeries, i.e., gastric bypass and
cataract.

III. METHODOLOGY

The overview of our proposed method is presented in
Fig. 2. In this section, we first present our end-to-end Spatio-
temporal (ResNet-50 + SS-TCN) model for the task of fine-
grained activity, i.e, step, recognition. Then we introduce
the phase-step dependency loss for weak supervision of step
recognition using phase annotation.

A. Spatio-Temporal Model
Our weakly supervised step recognition network consists of

a ResNet-50 model for visual feature extraction followed by
an SS-TCN for modeling the recognition problem temporally.
The complete model is trained in an end-to-end fashion. The
overview of the model setup is depicted in Fig. 2.

For phase segmentation, ResNet-50 [40] has been success-
fully employed as the backbone in many previous works [10],
[11], [12], [27]. In this work, we utilize the same architecture
for visual feature extraction. We use a single-stage TCN
(SS-TCN), a single-stage variant of MS-TCN, to learn the
spatial coherence across video frames. The choice of SS-TCN
was motivated by the work of [7] where MS-TCN did not pro-
vide a significant improvement over SS-TCN for both the step
and phase recognition. Following the design of MS-TCN, the
SS-TCN contains neither pooling layers nor fully connected
layers and is constructed with only temporal convolutional
layers, specifically dilated residual layers performing dilated
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Fig. 2. Overview of our end-to-end Spatio-temporal model setup: ResNet50 + SS-TCN (Single-Stage Temporal Convolutional Networks). When
step labels are available, the model is trained through the supervised pathway (red) and weakly supervised pathway (purple) utilizing phase labels.
The model is trained end-to-end in a single learning stage.

convolutions. With the aim of online activity segmentation,
we perform at each layer causal convolutions [7], [12], [34]
that depend only on the current frame and n previous frames.

The complete model takes an input video consisting of T
frames x1:T . The ResNet-50 maps 224×224×3 RGB images
to a feature space of size N f = 2048. These frame-wise
features are collected over time and are inputs to the TCN
model that predicts ŷs

1:T where ŷs
t is the class label for the

current timestamp t , t ∈ [1, T ]. Since step recognition is a
multi-class classification problem that exhibits an imbalance
in the class distribution, softmax activation and class-weighted
cross-entropy loss are utilized. Additionally, the dependency
loss used when step labels are not available also relies on
softmax activation and weighted cross-entropy loss, utilizing
phase labels instead. The class weights for both steps and
phases are calculated using the median frequency balancing
[41] on the training set. The total loss is given by:

Ltotal = δstep · Lstep + (1 − δstep) · Ldep, (1)

where Lstep represents weighted cross-entropy loss for steps,
Ldep is the step-phase dependency loss (subsection III-B), and
δstep is a binary variable that indicates if the video contains
step labels.

B. Weak Supervision: Step-Phase Dependency Loss

Steps and phases are two types of activities describing the
surgical workflow that are defined at different levels of granu-
larity and possess an inherent hierarchical relationship [4], [7].
Steps are defined at a higher level of detail compared to phases.
This brings about lower inter-class variances between steps,
compared to phases, making it a more complex task to clearly

define and distinguish between them. The challenges can be
seen in the sample images presented in Fig. 1. For instance,
in the Bypass40 dataset, similar actions are performed across
different steps belonging to different phases. Dissection is
performed in at least 7 steps spread across 3 different phases.
Similarly, Stapling is performed in 5 steps across 4 different
phases. Designing and training a deep learning model to
distinguish between these similar steps poses a great challenge.
Even the state-of-the-art method, MTMS-TCN [7], trained on
a fully annotated dataset achieves an accuracy of ∼76% with a
precision of ∼56%, accentuating the difficulty of the problem.
The class imbalance further creates a challenge for training
deep learning models that require large datasets with plenty
of samples for each class.

In the scenario presented in this paper where the number
of annotations is scarce, the recognition difficulties increase
drastically. To overcome some of the challenges, this work
proposes a weakly supervised approach that utilizes labels of
less granular activities, i.e., phases. Phase information alone
could help the model in two ways. Firstly, phase information
could help the model reduce errors related to recognizing
similar looking steps, e.g., ‘S6: horizontal stapling’ and ‘S18:
gastrojejunal stapling’, belonging to two different phases.
Secondly, we can gather a smaller subset of probable steps that
could occur in a given phase eliminating the rest. For example,
given the phase to be ‘Phacoemulsification’ of cataract surgery,
only 5 out of 19 steps are likely to occur (Table I). Similarly,
a phase such as ‘P5: anastomosis test’ in the Bypass40 dataset,
reduces the possible steps to 7 out of 44 (Table II). Here,
the phase information provides cues to the model to learn
to distinguish between steps belonging to the subset rather
than the whole set. Thus we hypothesize that the additional
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TABLE I
PHASES AND STEPS FOR THE CATARACT PROCEDURE

TABLE II
PHASES AND STEPS FOR THE LAPAROSCOPIC RUE-EN-Y GASTRIC BYPASS PROCEDURE

available weak phase information could be very beneficial for
step recognition in the low data regime.

We propose to represent the relationship as a step-phase
mapping matrix Ms→p, where the elements mi j of the matrix
are binary indicator variables which are 1 if step si occurs in
phase p j . The matrix encodes the weak information about
which steps can occur in a particular phase and does not
provide details of their occurrence, duration, and/or order.
To enforce this weak link between steps and phases, the step
predictions ŷs

t of our Spatio-temporal model (as described
earlier) are linearly transformed by Ms→p into the phase
space. Then a weighted cross-entropy loss (LC E ) captures the
similarity between the phase labels (y p

t ) and the transformed
predictions (Ms→p × ŷs

t ) of the model. The dependency loss
(Ldep) is given by:

Ldep = LC E (y p
t , Ms→p × ŷs

t ). (2)

IV. EXPERIMENTAL SETUP

In this section, we discuss the experimental setup of our
method. First, we present the datasets used for evaluation.
Next, we discuss the experimental study followed by the
training setup and evaluation metrics.

A. Datasets

1) Bypass40: The Bypass40 dataset [7] consists of 40 videos
of LRYGB procedures with resolution 854 × 480 or 1920 ×

1080 pixels recorded at 25 fps. Each frame is manually
assigned to one of the 11 phases and one of the 44 steps [7].
For example, steps such as gastric opening, gastric tube place-
ment, horizontal stapling, and vertical stapling occur in gastric
pouch creation phase. A detailed list of phases and steps along
with their hierarchical relationship is presented in Table II. For
more information, we ask the readers to refer to [7]. We
split the 40 videos into 24, 6, and 10 videos for training,
validation, and test sets, respectively, and sub-sampled them at
1 frame-per-second (fps). This amounts to 150k, 40k, and 65k
images in each set. The images are resized to ResNet-50’s
input dimension of 224 × 224, and the training dataset is
augmented by applying horizontal flip, saturation, and rotation.

2) Cataracts: The CATARACTS dataset, proposed in [29],
contains 50 videos of cataract surgery. With the recent
CATARACTS2020 challenge, the dataset has been released
with step annotations. Similar to [6], we define a phase
ontology for available step labels. Cataract surgery consists
of 5 phases and 19 steps that are summarized in Table I.
The dataset is extended with phase labels that is automatically
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generated using the available step annotations and the ontology
presented in Table I. For each frame in a video, the phase label
is obtained by a simple lookup of the step label in Table I. The
only constraint while generating phase labels is when there
are steps that can occur in several phases. In this case, the
phase of the immediately preceding frame is assigned to the
current frame. Since the only steps that occur in more than one
phase are Idle, Incision, and Viscodilatation, and they do not
occur at the beginning or at the end of a phase, it is therefore
always possible to identify the correct phase by checking the
phase of the previous step. Since very few steps occur in
multiple phases, the automatically generated phase labels by
table lookup are accurate and do not require expert knowledge
or verification from a clinical expert.

We split the 50 videos (following the challenge2) into
25, 5, and 20 videos for training, validation, and test sets,
respectively. Each set consists of 66k, 3.5k, and 11.8k frames
extracted at 1 fps from the videos. The frames are resized from
1920 × 1080 to 224 × 224, and the training set is augmented
with horizontal flip, saturation, and rotation.

B. Study
To demonstrate the effectiveness of our approach, we train

and evaluate different configurations of the model. Given n
videos, of which k are annotated with steps and the rest (n−k)
are weakly annotated with phases, the Spatio-temporal model
is trained in the proposed weakly supervised setting utilizing
the dependency loss, presented as ‘DEP’. To analyze the
efficacy of ‘DEP’, we compare it against the Spatio-temporal
model trained only on k videos in a fully-supervised approach
for the task of step recognition, which we refer to as ‘FSA’.
Additionally, we add a state-of-the-art semi-supervised learn-
ing method proposed by Yu et al. [42] to our results. Yu
et al. [42], proposed a teacher/student semi-supervised learning
method where both the teacher and student models consisted
of spatial and temporal components, CNN-biLSTM-CRF and
CNN-LSTM respectively. As noted in Section II-B, [42] is a
closely related work in the literature to the work presented
in this paper. Hence, we have implemented and adapted
the method of Yu et al. [42] for the task of step recogni-
tion. We repeat all the experiments for different values of
k ∈ {3, 6, 12, 18}.

Furthermore, to analyze the influence of the number of
additional videos with phase labels on the model performance,
we conduct experiments where we fix k videos with step anno-
tations and vary the number of videos with phase annotations
from 0 to n − k (i.e., 3, 6, 12, etc.).

C. Training
The ResNet-50 model is initialized with weights pre-trained

on ImageNet. The complete ResNet-50 + SS-TCN model is
then trained end-to-end for the task of step recognition. Since
SS-TCN models the temporal information in an online setup,
features from all the past frames in the video needs to be
cached. To achieve this, a feature buffer is maintained to store

2https://www.synapse.org/#!Synapse:syn21680292/wiki/601563

features from the spatial model of the past frames. The feature
buffer is reset at the end of the video. In all the experiments,
the model is trained for 50 epochs with a learning rate of 1e-5,
weight regularization of 5e-4, and a batch size of 64. The test
results presented are from the best performing model on the
validation set. The models were implemented in PyTorch and
trained on NVIDIA RTX 2080 Ti.

D. Evaluation Metrics
To effectively analyze our models, we observe the accuracy

(ACC), precision (PR), recall (RE), and F1 score (F1) metrics
used in related publications [10], [11], [12]. Accuracy quan-
tifies the total correct classification of activity in the whole
video. PR, RE, and F1 are computed class-wise, defined as:

P R =
|GT ∩ P|

|P|
, RE =

|GT ∩ P|

|GT |
, F1 =

2
1

P R +
1

RE

,

(3)

where GT and P represent the ground truth and prediction for
one class, respectively. These values are averaged across all
the classes to obtain PR, RE, and F1 for each video in the test
set. All four metrics, computed per video, are averaged across
all the videos in the test set. Furthermore, where applicable,
standard deviations are also computed across all the videos in
the test set.

V. RESULTS AND DISCUSSIONS

A. Bypass40
1) Effect of Weak Supervision: To quantitatively evaluate our

method, the results of step recognition on the test set are
presented in Table III. The table contains the results of our
model with a varying number of videos in the training set
labeled with steps (3, 6, 12, and 18) along with the rest of
the training set containing phase annotations. The introduction
of dependency loss ‘DEP’ for weak supervision significantly
improves the performance over the model (FSA) trained only
on the step labeled subset of the dataset. We notice a 10-13%
improvement of the model trained with ‘DEP’ loss containing
only 3 videos annotated with steps. Similarly, we see a 10-13%
and 5-7% increase in performance in all the metrics of the
‘DEP’ model in experiments corresponding to 6 and 12 step
annotated videos, respectively. Interestingly, our ‘DEP’ model,
trained on a dataset with 50% of step and 50% of phase
annotated videos, achieves performance close to the upper
baseline ‘FSA’ model trained on the whole fully labeled
dataset.

Moreover, the results of Yu et al. [42] semi-supervised
method are also presented in Table III for different step
annotated videos (3, 6, 12, and 18) used to train both teacher
and student model. The student model’s performance increases
by 3-8% over ‘FSA’ in all the metrics for 6 videos with step
annotations. Furthermore, an increase of 6% and 2% is noticed
in recall and F1-score above ‘FSA’ with 12 step annotated
videos. However, the method falls short of our proposed
‘DEP’ method. We notice a 10-15%, 2-6%, and 1-6% increase
in performance in all the metrics of the ‘DEP’ model over
Yu et al. with 3, 6 and 12 step annotated videos, respectively.
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TABLE III
BYPASS40: EFFECT OF WEAK SUPERVISION ON VARYING AMOUNT OF STEP LABELED VIDEOS. ACCURACY (ACC), PRECISION (PR), RECALL

(RE), AND F1-SCORE (F1) (%) ARE REPORTED. ‘FSA’ DENOTES THE MODEL TRAINED FOR STEP RECOGNITION WITHOUT ANY

PHASE ANNOTATIONS. ‘DEP’ DENOTES THE DEPENDENCY LOSSADDED FOR WEAK SUPERVISION

USING PHASE LABELS ON THE REMAINING VIDEOS

TABLE IV
BYPASS40: EFFECT OF THE NUMBER OF PHASE ANNOTATED VIDEOS

FOR STEP RECOGNITION USING ‘DEP’ LOSS FOR WEAK

SUPERVISION. ACCURACY (ACC), PRECISION (PR),
RECALL (RE), AND F1-SCORE (F1) (%) ARE REPORTED

FOR SETUPS WITH 6, 12, AND 24 VIDEOS

FULLY ANNOTATED WITH STEPS

Although both methods use 100% of the training videos for
the task of step recognition, Yu et al. aim at exploiting the
knowledge learned by an offline teacher model to generate
pseudo labels for additional videos without step annotations
while ‘DEP’ aims to use weak supervision through phase
annotations. Hence, the method of Yu et al. is limited by the
knowledge learned by the teacher model which uses only k
step annotated videos although it learns from both current and
future frames. On the other hand, the superior performance
of the ‘DEP’ model indicates the additional cues present in
phase annotated videos, although weak, is advantageous and
that the proposed method effectively utilizes this information
in the lower data settings.

2) Effect of the Amount of Phase Annotated Videos: In
Table IV, we present the results of our model with a varying
number of phase annotated videos. Utilizing 6 videos contain-
ing step annotations, the addition of phase labeled videos as

weak supervision improves all metrics: accuracy, F1, precision,
and recall. With 6 videos annotated with phases, the model
performance increases by 7-8% in all metrics over the baseline
‘FSA’ model. The addition of more videos does not affect
the accuracy but further improves both precision and recall
by 4%. This is due to our weakly-supervised method, which
only provides supervision information if a step can occur in
the given phase. This information helps to distinguish steps
belonging to different phases, as opposed to steps belonging
to the same phase. Therefore, the precision and recall of
the model improve with more phase annotated videos, and
no significant improvement in accuracy is seen. We see a
similar trend when using 12 videos annotated with steps and
increasing the number of videos annotated with phase labels.
Thus, ultimately it is beneficial to train our method utilizing
all additional videos in the dataset with phase annotations for
weak supervision.

B. Cataracts

1) Effect of Weak Supervision: We quantitatively evaluate
our method and present the results of step recognition in
Table V. The table contains the results of our model, on a
similar set of experiments as with Bypass40, by varying the
number of videos in the training set labeled with steps (3, 6,
12, and 18) along with the rest of the training set containing
phase annotations. We see a similar trend as with bypass
where the ‘DEP’ model outperforms ‘FSA’. We notice a
13-22% improvement ‘DEP’ model considering only 3 step
annotated videos. Furthermore, we see a 6-13% and 1-3%
increase in performance in all the metrics of the ‘DEP’
model in experiments corresponding to 6 and 12 step anno-
tated videos, respectively. We see that our method achieves
a similar performance improvement on a relatively easier
surgical workflow, such as cataracts, consistently surpassing
the FSA in all labeled ratios. The semi-supervised method of
Yu et al. achieves performance improvement of 16%, 8%, and
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TABLE V
CATARACTS: EFFECT OF WEAK SUPERVISION ON VARYING AMOUNT OF STEP LABELED VIDEOS.ACCURACY (ACC), PRECISION (PR), RECALL

(RE), AND F1-SCORE (F1) (%) ARE REPORTED. ‘FSA’ DENOTES THE MODEL TRAINED FOR STEP RECOGNITION WITHOUT ANY

PHASE ANNOTATIONS. ‘DEP’ DENOTES THE DEPENDENCY LOSS ADDED FOR WEAK SUPERVISION

USING PHASE LABELS ON THE REMAINING VIDEOS

TABLE VI
CATARACTS: EFFECT OF THE NUMBER OF PHASE ANNOTATED

VIDEOS FOR STEP RECOGNITION USING ‘DEP’ LOSS FOR WEAK

SUPERVISION. ACCURACY (ACC), PRECISION (PR), RECALL (RE),
AND F1-SCORE (F1) (%) ARE REPORTED FOR SETUPS WITH

6, 12, AND 25 VIDEOS FULLY ANNOTATED WITH STEPS

1.5% over ‘FSA’ in F1-score for experiments corresponding
to 3, 6, and 12 videos, respectively. However, as seen ear-
lier, it falls short of ‘DEP’ by 5%, 0.5%, and 0.5% in the
F1-score for experiments corresponding to 3, 6, and 12 videos.
Interestingly, Yu et al. achieves high recall on both datasets
(Table III & V). On CATARACTS, it even outperforms the
‘DEP’ model in recall in all the experiments but falls short
significantly in precision. This could be credited to the student
model which learns from imperfect pseudo labels generated
by the teacher model. Since our proposed ‘DEP’ model learns
from true phase labels on additional videos its performance
increases in both precision and recall. This validates the
applicability of our approach to different surgical workflows.

2) Effect of the Amount of Phase Annotated Videos: We
present the results of our experiments, with a varying number
of phase annotated videos, on CATARACTS in Table VI.
We notice that utilizing 6 step annotated videos with additional

phase labeled videos improves all the metrics by 6-13%.
In particular, with 6 videos annotated with phases, we see
a performance increase of 5% in accuracy and F1-score and
8% in recall of the ‘DEP’ model over the baseline ‘FSA’. The
addition of more videos provides a fractional improvement
in accuracy but further improves both recall and F1-score by
1-4%. We see a similar trend when using 12 videos with step
annotations reaffirming our hypothesis that it is beneficial to
train our method utilizing all additional videos in the dataset
with phase annotations for weak supervision.

C. Weak Supervision on Step Predictions
To visualize the effectiveness of our method, we visualize

the step predictions of our method on the CATARACTS
dataset which contains fewer phases and steps thereby enabling
us to render a simple and clearer graphical diagram. We com-
pare the step predictions of our ‘DEP’ model against ‘FSA’ for
2 best and 2 worst videos in CATARACTS in Fig. 3 for differ-
ent labeled ratios (3, 6, and 12 videos with step annotations).
Along with the step predictions we present the errors in the
phase predictions for both models. The phase prediction error
plot is computed as the errors in phase predictions derived
from step predictions, using the step-phase mapping matrix,
against ground truth phase predictions. Fig. 3 clearly depicts
the effectiveness of our method for different labeled ratios.
By correcting for the phase labels through dependency loss,
our ‘DEP’ model is able to correct for corresponding step
labels without explicit supervision for step recognition (e.g.
S10, S15, S18). The top row of Fig. 3a shows this effect where
we see a marked improvement in recognition of steps S18 (first
video) and S10 (second video) by correcting for phase errors.

D. Limitations
In some cases, for example, S16 (Fig. 3a, 3b, 3c), correcting

for phase errors does not improve step recognition. The step is
misrecognized with another step that occurs in the same phase.
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Fig. 3. Step predictions on two best and two worst videos on the CATARACTS dataset for different labeled ratios. For each video, we visualize the
step prediction of ground truth, DEP model predictions, DEP model phase prediction errors, FSA model predictions, and phase prediction errors of
FSA model.
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This is an expected outcome due to the intrinsic limitations
of our weakly supervised method using coarser phase labels.
Given the phase to be ‘P2: gastric pouch creation’ (Table II),
it is impossible for a model to differentiate between ‘crura
dissection’ and ‘his angle dissection’ or between ‘horizontal
stapling’ and ‘vertical stapling’. As can be seen in Fig. 1,
the steps are quite similar in appearance and perform similar
actions on the same anatomy (i.e., stomach or small intes-
tine). This makes it challenging for a model to learn even
when all the annotations are available. Furthermore, the phase
information is too weak and does not provide any cues to
better distinguish between the steps because both are valid
steps in the current phase. Another limitation of our method is
that adding more videos with phase annotations is not always
beneficial. This limitation also stems from weak phase signals.
If the fully supervised ‘FSA’ model learns to separate steps
belonging to different phases, i.e., it has no or few phase-step
correspondence errors, then additional videos with phase labels
add no significant value as the model, during training, makes
no/few errors in phase-step correspondence that helps improve
feature learning. The significant errors by the model would be
the inter-class separation of steps belonging to the same phase.
Learning good representations to reduce these errors without
supervision is a challenging task that needs to be tackled in
future works.

Meanwhile, the effect of utilizing more phase annotated
videos as weak supervision for improving the model perfor-
mance on step recognition is presented in Tables IV & VI.
As observed in Sections V-A.2 & V-B.2, it is beneficial to train
the ‘DEP’ model utilizing all the additional phase annotated
videos in the dataset for weak supervision. We also observe
that in the lower data setting (6 videos with step annotations)
model performance improves even when the phase annotated
videos are increased from 12 to 18 (19 for cataracts). However,
our study doesn’t provide insights as to how many phase anno-
tated videos are truly required to achieve the best performance
by our proposed ‘DEP’ model. This is another limitation of
our study, irrespective of the complexity of the procedure, that
is hindered by the size of the available labeled datasets (24 in
Bypass40 & 25 in CATARACTS). Understanding the extent
of the ‘DEP’ model would require extending these datasets
which is an important direction that needs to be pursued in
future studies.

VI. CONCLUSION

In this paper, we introduce a weakly-supervised learning
method for surgical step recognition utilizing less demanding
phase annotations. To model the weak supervision between
steps and phases, we introduce a step-phase dependency loss
and train a ResNet-50 + SS-TCN model end-to-end. The pro-
posed method is extensively evaluated on a Bypass40 dataset
consisting of 40 LRYGB procedures and on the CATARACTS
dataset containing 50 cataracts surgeries. The proposed ‘DEP’
model significantly improves the step recognition metrics over
the baseline ‘FSA’ model for all the amounts of step annota-
tions available. We hope that this work will inspire and foster
future research in weak supervision for surgical workflow
analysis utilizing multi-level descriptions of the workflow.

Ethical Approval The surgical videos were recorded and
anonymized following the informed consent of patients in
compliance with the local Institutional Review Board (IRB)
requirements.

Informed Consent The patients consented to data
recording.
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