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Abstract— Background samples provide key contextual
information for segmenting regions of interest (ROIs). How-
ever, they always cover a diverse set of structures, caus-
ing difficulties for the segmentation model to learn good
decision boundaries with high sensitivity and precision.
The issue concerns the highly heterogeneous nature of
the background class, resulting in multi-modal distribu-
tions. Empirically, we find that neural networks trained
with heterogeneous background struggle to map the cor-
responding contextual samples to compact clusters in fea-
ture space. As a result, the distribution over background
logit activations may shift across the decision boundary,
leading to systematic over-segmentation across different
datasets and tasks. In this study, we propose context label
learning (CoLab) to improve the context representations
by decomposing the background class into several sub-
classes. Specifically, we train an auxiliary network as a
task generator, along with the primary segmentation model,
to automatically generate context labels that positively
affect the ROI segmentation accuracy. Extensive experi-
ments are conducted on several challenging segmentation
tasks and datasets. The results demonstrate that CoLab can
guide the segmentation model to map the logits of back-
ground samples away from the decision boundary, resulting
in significantly improved segmentation accuracy. Code is
available at https://github.com/ZerojumpLine/CoLab.

Manuscript received 2 September 2022; revised 16 December 2022;
accepted 30 January 2023. Date of publication 6 February 2023; date
of current version 1 June 2023. This work was supported by the ERC
under the EU’s Horizon 2020 Research and Innovation Programme under
Grant 757173. The work of Zeju Li was supported by the China Schol-
arship Council (CSC) Imperial Scholarship. The work of Cheng Ouyang
and Chen Chen was supported in part by the EPSRC Programme under
Grant EP/P001009/1 and in part by UKRI Innovate U.K. under Grant
104691. (Corresponding author: Zeju Li.)

Zeju Li, Cheng Ouyang, and Ben Glocker are with the BioMedIA Group,
Department of Computing, Imperial College London, SW7 2AZ London,
U.K. (e-mail: zeju.li18@imperial.ac.uk; c.ouyang@imperial.ac.uk;
b.glocker@imperial.ac.uk).

Konstantinos Kamnitsas is with the BioMedIA Group, Department
of Computing, Imperial College London, SW7 2AZ London, U.K.,
also with the School of Computer Science, University of Birmingham,
B15 2TT Birmingham, U.K., and also with the Department of Engi-
neering Science, University of Oxford, OX3 7DQ Oxford, U.K. (e-mail:
konstantinos.kamnitsas12@imperial.ac.uk).

Chen Chen was with HeartFlow Inc., Mountain View,
CA 94041 USA. She is now with the BioMedIA Group, Department
of Computing, Imperial College London, SW7 2AZ London, U.K. (e-mail:
chen.chen15@imperial.ac.uk).

Digital Object Identifier 10.1109/TMI.2023.3242838

Index Terms— Underfitting, multi-task learning, self-
supervised learning, image segmentation.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) are state-of-
the-art approach for semantic image segmentation. Their

large number of trainable parameters make them capable to fit
to different kinds of tasks yielding high performance in terms
segmentation accuracy [37]. Yet, in real world applications,
CNNs seem sometimes unable to capture and generalize from
complex, heterogeneous training sets when the amount of
training data is limited [28]. Specifically, in the case of med-
ical image segmentation, samples from the background class,
which provide essential contextual information for regions
of interest (ROIs), make up the majority of the training set
while containing diverse sets of structures with heterogeneous
characteristics, making it hard for the segmentation model to
learned accurate decision boundaries.

When trained with datasets with a highly heterogeneous
background class, the segmentation model is prone to under-
fit these contextual samples and fail to separate the ones
which share characteristics similar to the ROI samples. The
model then produces false positives (FP), yielding systematic
over-segmentation. In this study, we argue that underfitting
of the contextual information is a main cause of degraded
segmentation performance by affecting precision (calculated
as TP

TP+FP ). We observe that better context representation where
the background class is decomposed into several subclasses,
for example, using additional anatomy labels, significantly
improves the ROI segmentation accuracy. We show some
examples of human-defined context labels in Fig. 1(a). In the
case of liver tumor segmentation, for example, it is beneficial
to also have labels for the liver available in addition to the
tumor class. Empirically, we find that when training with
human-defined context labels, the segmentation model can
yield better performance in terms of Dice similarity coeffi-
cient (DSC) and 95% Hausdorff distance (HD), as shown in
Fig. 1(b). However, these human-defined context labels are not
always available and difficult and time-consuming to obtain.
In many applications, only the ROI labels, e.g., tumor class,
are available. Here, we propose context label learning (CoLab),
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Fig. 1. (a) Examples of ROI classes (in red color) along with
human-defined context labels and context labels generated automat-
ically by the proposed context label learning (CoLab) in background.
Here, human-defined context labels (e.g., liver, kidney, brain tissue)
provide additional anatomical information to benefit representation learn-
ing. In a similar manner, CoLab automatically finds and labels task-
related tissues/structures in background to benefit corresponding ROI
segmentation, see Fig. 8 for more details. (b) Self-supervised context
labels generated by CoLab can significantly improve the segmentation
of different structures with improved Dice similarity coefficient (DSC)
and reduced 95% Hausdorff distance (HD), compared to the one
trained w/o context labels. The performance gains are comparable and
sometimes even higher than the ones using human-defined context
labels.

which automatically generates context labels to improve the
learning of a context representation yielding better ROI seg-
mentation accuracy. As demonstrated in Fig. 1(b), CoLab can
bring similar improvements when compared with training with
human-defined context labels, without the need for expert
knowledge.

The contribution of this study can be summarized as
follows: 1) With the observations of six datasets, we conclude
that underfitting of the background class consistently degrades
the segmentation performance by decreasing precision.
2) We find that better context representations with a
decomposition of the background class can improve
segmentation performance. 3) We propose CoLab,
a flexible and generic method to automatically generate
soft context labels. We validate CoLab with extensive
experiments and find consistent improvements where the
segmentation accuracy is en par and sometimes better com-
pared to the case where human annotated context labels are
available.

II. RELATED WORK

A. Class Imbalance

CoLab is related to the class imbalance problem as back-
ground commonly constitutes the majority class in image
segmentation. However, methods to combat class imbalance
mostly focus explicitly on improving the performance of the
minority categories [15], [24], [36]. Most approaches ignore
the characteristics of majority background class as it is not
contributing much to the common evaluation metrics of sensi-
tivity, precision, and DSC of the ROI classes. CoLab focuses
specifically on the representation of the background class and
is complementary to methods tackling class imbalance such
as loss reweighting strategies [7].

Previous studies adopt coarse-to-fine strategies to reduce FP
in segmentation tasks with class imbalance [32], [35], [41].
However, ROI samples missed in the coarse stage cannot be
recovered with later stages. In contrast, CoLab is trained in an
end-to-end manner and can reduce varied kinds of FP.

B. Multi-Task Learning

CoLab, which is formulated as multi-label classification,
can be seen as a form of multi-task learning (MTL). Current
MTL methods train the model with different predefined tasks
together with the main task using a shared feature repre-
sentation [6], [20], [31]. Previous works also attempted to
incorporate spatial prior [11], [39] or task prior [38], [40]
into model training with some predefined auxiliary tasks
and optimization functions. In contrast, CoLab reformulates
the main task by decomposing the background class with
context labels and automatically generate the auxiliary task
in a self-supervised manner. We argue that CoLab can have
a direct impact on the main task by extending the label
space.

The main methodology of the CoLab strategy is inspired
by some recently proposed methods which aim to generate
the weights for pre-defined auxiliary tasks or labels through
a similar meta-learning framework [23], [27]. In this study,
CoLab is specifically designed for semantic segmentation
with heterogeneous background classes which is a common
scenario in medical imaging.

III. CONTEXT LABELS IN IMAGE SEGMENTATION

A. Preliminaries

We consider CNNs for multi-class segmentation with a total
of c classes. Given a training dataset D = {(xi , yi )}

N
i=1 with

N samples, where yi ∈ IRc is the one-hot encoded label for
the central pixel in the image sample xi ∈ IRd, such that
1 · yi = 1 ∀ i . A segmentation model fφ(·) learns class
representations of the input sample xi , noted as zi = fφ(xi ) ∈

IRc. We obtain the predicted probability pi that the real class
of xi is j via a softmax function with pi j = ezi j /

∑c
j=1 ezi j .

Typically the model is optimized by minimizing the empirical

risk RLseg ( fφ) =
1
N

∑N
i=1 Lseg( fφ(xi ), yi ) computed on the

training set. The segmentation loss Lseg can be defined as the
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sum of losses L over c classes:

Lseg( fφ(xi ), yi ) =

c∑
j=1

L(pi j , yi j )

=

c−1∑
j=1

L(pi j , yi j )︸ ︷︷ ︸
ROI classes

+ L(pic, yic)︸ ︷︷ ︸
background class

, (1)

where L is a criterion for a specific class, such as cross
entropy (CE) or soft DSC [25]. Here, we further decompose
Lseg into two terms, including an ROI loss (computed on
c − 1 foreground classes) and a background loss (computed
on the background class, only).

We aim to improve segmentation performance by augment-
ing the background class with auxiliary context classes. Specif-
ically, we propose to utilize context labels assigned to different
and decomposed background regions. In order to divide the
background class into t > 1 classes, we create another model
f̃θ (·) with z̃i = f̃θ (xi ) ∈ IRc+t−1 and predicted probability p̃i .
We also require an additional one-hot label ỹi ∈ IRc+t−1,
where we require ỹi j = yi j ∀ i , j ∈ {1, · · · , c − 1} and∑c+t−1

j=c ỹi j = yic ∀ i . With this notion, the segmentation loss
can be written as:

Lseg( f̃θ (xi ), ỹi ) =

c+t−1∑
j=1

L( p̃i j , ỹi j )

=

c−1∑
j=1

L( p̃i j , ỹi j )︸ ︷︷ ︸
ROI classes

+

c+t−1∑
j=c

L( p̃i j , ỹi j )︸ ︷︷ ︸
background classes

, (2)

In the following method section, we always consider a
simplified but common case where we only have one ROI class
(c = 2) for simplicity. In other words, we only consider binary
ROI segmentation with fφ(xi ) ∈ IR2, although the method can
be naturally extended to multi-class ROI segmentation. With
this assumption, Eq. 2 can be simplified as:

Lseg( f̃θ (xi ), ỹi ) = L( p̃i1, ỹi1)︸ ︷︷ ︸
ROI class

+

t+1∑
j=2

L( p̃i j , ỹi j )︸ ︷︷ ︸
background classes

(3)

B. False Positives on Background Class
To better understand the effect of the background class

on the model learning, we train multiple CNNs on seg-
mentation datasets which contain heterogeneous background.
We conduct experiments on challenging tasks including liver
tumor segmentation in computed tomography (CT) images [5],
kidney tumor segmentation in CT images [12], colon tumor
segmentation in CT images [34], vestibular schwannoma
(VS) segmentation in T2-weighted magnetic resonance (MR)
images [33], brain stroke lesion segmentation in T1-weighted
MR images [21] and pancreatic tumor segmentation in CT
images [34]. We adopt a well-configured 3D U-Net [13] as
the segmentation model for all the experiments, which has
been demonstrated to yield competitive results across different

medical image segmentation tasks. The detailed data and
network configurations are summarized in Section V.

Visualizations of the segmentation results are shown in
Fig. 2(a). When trained with binary segmentation tasks and
without context labels, the models are prone to over-segment
the ROIs with many FP. Specifically, the model trained on the
binary liver tumor task predicts other organs outside liver as
liver tumor; the model trained on the binary kidney tumor task
predicts parts of the healthy kidney regions as kidney tumor;
while the model trained on the binary brain tumor task predicts
the surrounding brain tissue as brain tumor; the model trained
on the binary brain lesion task predicts unrelated healthy brain
regions as brain lesion.

C. Underfitting of Background Samples
To study the model behavior when trained with heteroge-

neous background classes, we can monitor the logit distribu-
tion of samples from ROI and background classes for the test
data. Our observations for liver tumor, kidney tumor, and brain
tumor segmentation are summarized in Fig. 3(a, d, g).

We find that the CNN models map the ROI samples to a
compact cluster in the logit space while background samples
form a more dispersed distribution. This indicates that the
model cannot easily map all background samples to a sin-
gle cluster representing the background class. Although the
model seems to separate ROI from background samples in
the feature space, it builds complex background representa-
tions and unable to capture an accurate decision boundary
between ROI and immediate context. A possible reason is
that the CNN uses most of its capacity to extracted the
common features among background regions with different
characteristics. Unfortunately, these shared features are not
very discriminate. Specifically, we observe that the logit
distribution of background samples overlaps with the learned
decision boundary. This is the reason why the model predicts
many FP leading to over-segmentation of ROI structures when
the background class is heterogeneous. We hypothesise that
the width of the distribution serves as an indicator of the
heterogeneity of a specific class and is a sign of the difficulty
during learning. As a result of sample heterogeneity, a CNN
may struggle to reduce intra-class variation of the background
class and underfit the background samples, failing to recognize
the background samples that share similar characteristics with
ROI samples.

It should be noted that we do not observe significant
difference between the logit distribution of training back-
ground samples and test background samples, as also shown
in previous studies [18], [19], indicating that the logit shift of
background samples is indeed due to underfitting instead of
overfitting.

D. The Effect of Context Labels
The availability of context labels greatly helps with the

ROI segmentation, which provide additional signals to CNN
to fit the training data of heterogeneous background sam-
ples. We confirm this empirically by including human-defined
context labels in the model training. Specifically, we adopt
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Fig. 2. Visualization of different datasets and segmentation results on test data when training w/o and w/ different types of context labels.
(a) Models trained without any context labels are prone to over-segmentation of the ROI (red/red + orange) with different kinds of FP (marked
with red boxes). (b) Empirically, we observe that adding human-defined context labels such as anatomy masks for supervision helps reduce FP
and therefore obtains higher overall segmentation accuracy. (c) The proposed CoLab achieves a similar benefit without requiring additional human
annotation by producing context labels automatically.

liver masks (t = 2) for liver tumor segmentation, kidney
masks (t = 2) for kidney tumor segmentation, brain tissue
masks including ventricles, deep grey matter, cortical grey
matter, white matter and other tissues (t = 6) for brain
tumor segmentation. The kidney and liver masks are man-
ually annotated, while the brain tissue masks are generated
automatically using the paired T1-weighted MR images and
a multi-atlas label propagation with expectation–maximisation
based refinement (MALP-EM) [17]. In order to make a fair
comparison, we make sure that all the experiments share the
same training schedule except the label space. We sample the
training patches only considering ROIs. Specifically, we make
sure 50% training patches to contain ROIs and sample the
other half of the training patches uniformly.

The observations on test and training set are summarized
in Fig. 4. We find that the models yield overall better per-
formance when trained with anatomy masks, as indicated
by improved DSC (defined as DSC = 2 sensitivity·precision

sensitivity+precision ).
Furthermore, we observe that the model trained with context
labels yields higher precision while preserving similar sen-
sitivity. The observation is consistent with the visualization
results in Fig. 2(b), where we find the models trained with
human-defined context labels reduce FP.

Similarly, we visualize the corresponding network behaviour
in Fig. 3(b, e, h). As we only consider the segmentation
performance of the ROI (class 1), we visualize the logits in the
plane of (z1, max(z2, . . . , zt+1)). We observe that the model
trained with anatomy masks maps the background samples

to a narrower distribution and reduces the background logits
shift across the decision boundary. This indicates that the
models fit the training data better with the help of context
labels. Instead of building generic filters for all the background
samples, the CNNs can dedicate specific filters to model a
more homogeneous subparts of the background samples that
share common characteristics. The models are faced with a
simplified segmentation task with homogeneous background
subclasses yielding better overall performance with the same
model capacity.

Although anatomy masks are found to be effective context
labels, they are not always available in real-world applications.
Specifically acquiring manually annotated context labels is
time-consuming and would require significant efforts from
human experts to generate annotations at large scale. There-
fore, we propose CoLab which can automatically discover
specific soft context labels using a meta-learning strategy.
CoLab benefits the segmentation model training by making it
to fit the background samples better, achieving comparable or
even better performance when compared with models trained
on manually defined anatomy masks.

IV. COLAB

A. Overview

Now we consider CNNs for binary semantic segmentation.
Typically, we are given a baseline segmentation model fφ(·)

that maps the input image xi to the label space fφ(xi ) ∈ IR2.
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Fig. 3. The distribution of activations (logits) after the classification layer using ROI (blue) or background samples (orange) of test data as network
input. Here, z1 denotes logits for ROI classes, while zi (i > 1) denotes logits for background classes. We also report the number of pixel-level
predictions that are FP. Without context labels (a, d, g), CNNs fail to map the background samples to compact clusters. This is because CNNs
are forced to learn generic filters for the background samples, yielding similar activations regardless of different background structures with diverse
patterns/appearance. Consequently, the logit distribution of background samples would spread across the decision boundary, leading to increased
FP. Extending the label space with anatomy masks (b, e, h) or CoLab (c, f, i) can alleviate this issue.

In order to fit the label space with context labels, we first
extend the classification layer of fφ(·) with additional
t−1 output neurons and obtain f̃θ (·) which map xi to f̃θ (xi ) ∈

IRt+1. We employ another model gω(·) as the task generator
parameterized by ω to produce context labels, with the network
output oi = gω(xi ) ∈ IRt. We have no requirements for the
backbone of gω(·) and empirically keep it the same with that
of fφ(·).

We illustrate the training process of the proposed CoLab
in Fig. 5. At the beginning of each iteration, we obtain the
context labels termed as distance constrained label ˆ̃yi by taking
use of oi and the ground truth y. This process is marked
with 1⃝ and will be illustrated in Section IV-B and IV-C.
Then, we calculate a new θ∗ with one step of gradient descent
with 2⃝ to access the impact of ˆ̃yi on model training of ROI
segmentation. Next, we optimize ω based on the second-order
derivatives through a meta learning scheme with 3⃝, which
would be demonstrated in Section IV-D. Finally, we optimize
the segmentation model f̃θ (·) based on the updated context
labels with 4⃝.

B. Label Aggregation
We calculate the context probability (qi j )

t
j = 1 based on oi

via the softmax function as:

qi j =
eoi j∑t
j=1 eoi j

. (4)

The extended label ỹi ∈ IRt+1 is calculated by aggregating
the original label yi = (yi1, yi2) and the context probability qi
with:

ỹi j =


yi1 if j = 1,

qi j if j > 1 and yi1 = 0,

0 otherwise.
(5)

The label aggregation process is also illustrated in Fig. 6.
By doing so, we can decompose the background class yi2
into t subclasses while ensure that the ỹi contains suffi-
cient information about the ROI segmentation. For multi-class
segmentation with totally c classes, ỹi can be calculated
as:

ỹi j =


yi j if j < c,
qi j if j ≥ c and yi j = 0 ∀ j < c,
0 otherwise.

(6)

C. Context Constraints
Compared with background samples which are further away,

the ones closer to the ROIs share similar characteristics with
ROI samples and are more likely to be misclassified. In order
to make the segmentation model focus more on those hard
background samples that are close to ROIs, we make an
assumption that all samples which are distant from the ROI
need less attention and should be safely assigned the same
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Fig. 4. Performance on liver tumor, kidney tumor and brain tumor
segmentation on training data (lower part) and testing data (upper
part) when networks were trained w/o and w/ context labels. Extending
the label space with anatomy masks can help the model improve the
performance by increasing the precision, while the sensitivity is largely
retained.

background label. Specifically, we create a hard label bi ∈

IRt+1 to represent the the background samples that are far
from the ROI:

bi j =

{
1 if j = 2,

0 otherwise.
(7)

By utilizing the ROI label yi , we calculate the correspond-
ing distance map di which is the Euclidean distance of a pixel
to the closest boundary point of the ROI of any class. We set
di to be zero for pixels inside the ROI.

We then calculate a soft dilated mask Mi based on di :

Mi =

{
1 if di < m,

e
−di +m

τ otherwise,
(8)

where m is the margin controlling the model’s focus on the
pixels which are neighbouring to ROI and τ is the temperature
to control the probabilities of the dilated regions. Empirically,
m is set as 30 and τ is set as 20 for all our experiments. Mi
would be 1 for pixels around ROIs and decrease close to 0 for
pixels far from ROIs. We visualize an example of Mi with
liver tumor in Fig. 7. The distance constrained label then is
calculated as:

ˆ̃yi = Mi ỹi + (1 −Mi )bi . (9)

In this way, only the regions neighbouring to the tumor are
considered to be classified as the contextual background class.
Specifically, both f̃θ (·) and gω(·) would be trained to focus
on the regions which are close to ROIs.

D. Task Generator Optimization With Meta-Gradients
We formulate the optimization of CoLab as a bi-level

problem:

min
ω

1
N

N∑
i=1

LRO I ( f̃θ∗(xi ), yi ) (10)

s.t. θ∗
= argmin

θ

1
N

N∑
i=1

Lseg( f̃θ (xi ), ˆ̃yi )), (11)

where LRO I ( f̃θ (xi ), yi ) = Lc( p̃i1, yi1) is computed on the
ROI class. Different from L, we choose Lc to be a criteria
that can be calculated in the one-versus-all manner, such as
binary cross entropy (BCE) and soft DSC loss, to represent
the binary segmentation performance of the ROI class with
more than two output logits.

We train the model using a batch of training samples
with batch size n. For simplicity, we shorten 1

n
∑n

i=1
LRO I ( f̃θ∗(xi ), yi ) as LRO I (θ

∗) and 1
n

∑n
i=1 Lseg( f̃θ (xi ), ˆ̃yi )

as Lseg(θ, ω) in the following descriptions. The bi-level opti-
mization problem defined in Eq. 10 and 11 can be solved
with gradient descent [10], [30]. Specifically, the derivative of
LRO I (θ

∗) w.r.t. ω can be calculated by applying the chain
rule:

∇ωLRO I (θ
∗) = (

∂θ∗

∂ω
)⊺∇θLRO I (θ

∗), (12)

where ∇ω = ( ∂
∂ω

)⊺ and ∇θ = ( ∂
∂θ

)⊺. One can compute
∂θ∗

∂ω
based on implicit function theorem [4]. However, the

derived result would contain a Hessian which is computational
expensive and not always possible to access for deep neural
networks. Among the many heuristics for the gradient approxi-
mation [10], [22], [30], we follow the solution described in [9],
[22] to approximate θ∗ by a single optimization step. Specifi-
cally, we sample a batch of training data and approximate the
optimal inner variable θ∗ with a step of gradient decent:

θ∗
≈ θ − α∇θLseg(θ, ω), (13)

where α is step size, which is kept the same with the learning
rate of θ . We differentiate this equation w.r.t. ω from both
sides yielding:

∂θ∗

∂ω
= −α∇

2
θ,ωLseg(θ

∗, ω), (14)

where ∇
2
θ,ω =

∂∇θ

∂ω
. By substituting Eq. 14 into Eq. 12, we can

obtain the gradient on ω and update it with:

ωt+1
= ωt

− β∇ωtLRO I (θ
∗)

= ωt
+ αβ∇

2
ωt ,θLseg(θ

∗, ωt )∇θLRO I (θ
∗), (15)

where β is the learning rate to update ω. In this way, the task
generator gω is explicitly trained to produce effective con-
text labels with the second-order gradients. Although Eq. 15
contains an expensive vector-matrix product, it is feasible to
calculate with prevailing machine learning frameworks such
as PyTorch [29]. We find CoLab can be efficient as it costs
as little as 30% additional training time. We summarize the
implementation details in supplementary material. The full
algorithm is summarized in Algorithm 1.
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Fig. 5. Illustration of the training process of CoLab. gω( · ) is optimized to generate context labels such that it can help reduce the training loss of
the ROI in the most effective way, see Section IV-A for more details.

Algorithm 1 Context Label Learning (CoLab)
Require:
D = {(xi , yi )}

N
i=1: training data; t : the number of context

classes, fφ(·): the segmentation model which produces
fφ(xi ) ∈ IR2; gω(·): the task generator which produce
gω(xi ) ∈ IRt.
α, β: learning rates to update θ and ω.

1: Extend the classification layer of fφ(·) to get f̃θ (·) which
produce f̃θ (xi ) ∈ IRt+1.

2: for each iteration do
3: Sample a batch of data B = {(xi , yi )}

n
i=1 from D.

4: for a number of steps do ▷ Note: One step is sufficient
in our experiments.

5: Generate the context probability qi based on the
output of task generator gω(xi ) via Eq. 4.

6: Generate the extended label ỹi by aggregating the
context probability qi with yi via Eq. 5.

7: Calculate a loss mask Mi via Eq. 8 and generate the
distance constrained label ˆ̃yi via Eq. 9.

8: Calculate a new θ∗ with the gradient descent opti-
mization algorithm via Eq. 13.

9: Optimize ω based on meta-gradients via Eq. 15. ▷

Training the task generator.
10: end for
11: Update θ with gradient decent based on updated ω. ▷

Training the segmentation model.
12: end for

V. EXPERIMENTS

A. Experimental Setup

1) Network Configurations: We use a state-of-the-art 3D U-
Net [13] as the network backbone for both the segmentation
model fφ / f̃θ and the task generator gω. We normalize all
datasets with the built-in pipeline following [13]. Specifically,
we adopt case-wise Z-score normalization within brain masks

Fig. 6. Illustration of the label aggregation process. We generate the
extended label ỹi by aggregating the original label yi with the context
probability qi.

Fig. 7. The task generator focuses on the context which is near to the
ROI. To do so, we train the segmentation model to classify the pixels
which are outside the soft dilated ROI as the same class (pixels marked
without color in the right figure). (Left part) The value of a soft dilated
mask Mi with m = 30 and τ = 20. (Right part) The visualization of the
dilated mask Mi (blue) with a liver tumor (red) of a training case.

for MR images, while we employ dataset-wise Z-score nor-
malization based on ROI samples for CT images after clipping
the Hounsfield units (HU) from 0.5% to 99.5%. We utilize
the default data augmentation policies for all experiments.
We adopt a combination of CE and sample-wise soft DSC
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loss with equal weight for L while using BCE for Lc. We use
a batch size of 2 and patch size of 80 × 80 × 80. We train
the networks for 1000 epochs for brain tumor and lesion
segmentation and 2000 epochs for liver, kidney, colon and
pancreas tumor segmentation as we observed that the network
needed more iterations to converge latter tasks. We summarize
the hyper-parameters of all experiments in supplementary
material. All reported results are the average of two runs with
different random seeds.

2) Liver Tumor Segmentation: We evaluate CoLab for liver
tumor segmentation with the training dataset from the Liver
Tumor Segmentation Challenge (LiTS) which contains 131 CT
images. We exclude the samples which do not contain any
liver tumor leaving 118 cases. We resample all CT images to a
common voxel spacing of 1.9 ×1.9 × 2.5 mm following [13].
We train models with 83 cases and test on 35 cases.

3) Kidney Tumor Segmentation: We further conduct exper-
iments using the training dataset of the Kidney Tumor Seg-
mentation Challenge (KiTS) which contains 210 CT images.
We resample all CT images to a common voxel spacing of
1.6 × 1.6 × 3.2 mm following [13]. We tested on 70 cases
and used the other 140 cases as the training data.

4) Colon Tumor Segmentation: We evaluate CoLab for the
case of colon tumor segmentation from CT images. We collect
126 colon cancer CT images from the training dataset of the
Medical Segmentation Decathlon challenge [34]. We resample
all CT images to the voxel spacing of 1.6 × 1.6 × 3.1 mm
following [13]. We train models with 88 cases and test on the
other 38 cases.

5) Brain Tumor Segmentation: We also conduct experiments
for brain tumor segmentation using the VS dataset [33]
which contains 243 paired T1-weighted and T2-weighted MR
images. We only used T2-weighted MR images for evaluating
CoLab but used T1-weighted MR images to generate the brain
structure masks with MALP-EM. We did not use brain masks
for the histogram normalization of this task because VS can
appear at the brain boundary and may be excluded when using
common brain extraction algorithms. All MR images have the
same isotropic voxel spacing of 1.0 mm3. We train the models
with 176 cases and test on 46 cases following [33].

6) Brain Stroke Lesion Segmentation: Additionally, we eval-
uate CoLab with brain stroke lesion segmentation using
the Anatomical Tracings of Lesions After Stroke (ATLAS)
dataset [21] which contains 220 T1-weighted MR images.
The MR images all have the same voxel spacing of 1.0 mm3.
We randomly selected 145 cases as training data and left the
rest 75 cases for testing.

7) Pancreas and Pancreatic Tumor Mass Segmentation: We
further evaluate Colab in the setting of multi-class segmenta-
tion. Specifically, we train the segmentation model to segment
three classes including pancreas, pancreatic tumor mass and
background. We aim to find the context labels which can bene-
fit the segmentation of both foreground classes. We collect 281
CT images containing pancreas tumor from the training dataset
of the Medical Segmentation Decathlon challenge [2], [3], [8],
[34]. We resample all the CT images to the voxel spacing of
1.3 × 1.3 × 2.6 mm following [13]. We randomly split the
dataset into 197 cases for training and 84 cases for testing.

B. Compared Methods and Processing

1) Context Labels Based on k-Means: We compare CoLab
with alternative approaches for context label generation,
including a context label generation via clustering. Here,
we take pixels inside the body masks or brain masks as
samples and employ k-means [1] to construct t clusters.
We kept t the same with the class number of human-defined
anatomy masks. Specifically, we chose t = 2 for liver, kidney,
colon and pancreas tumor segmentation and t = 6 for brain
tumor and brain stroke lesion segmentation.

2) Context Labels Based on Dilated Masks: We also compare
with a baseline using dilated masks of the ROI as the context
labels. This idea is somewhat similar to label smoothing [14],
[26] where models are trained with blurred ROI labels. Specif-
ically, we take the soft dilated masks Mi defined in Eq. 8 and
set the context probability as pi = [1 −Mi ,Mi ]

⊺.
3) Context Labels Predicted With External Datasets: We

further evaluate and compare to an approach which leverages
prior knowledge from other datasets. Specifically, we trained
a segmentation model with 20 CT images using data from [16]
which contains labels of 14 abdominal organs including liver
and kidney. We resample the 20 CT images to the voxel spac-
ing of 1.6 × 1.6 × 3.2 mm. We reduce the dependency of the
model on longitudinal axis and trained the segmentation model
with a patch size of 128 × 128 × 32 as the slice numbers differ
across datasets. We then apply this segmentation model to the
resampled training split of LiTS as well as KiTS, and extract
the liver and kidney masks as the automatically generated
contextual anatomy masks.

4) Post-Processing: We also compare with a common strat-
egy to suppress FP in segmentation based on component-
based post-processing, which is widely adopted in many
segmentation pipelines [13]. Specifically, we assume there is
always one ROI and remove all but the largest region. For
the cases when ROIs contain multiple classes (pancreas and
pancreatic tumor segmentation), we take all the ROIs as a
whole and only keep the largest component.

C. Quantitative Results

We summarize the quantitative results of the models trained
with different types of context labels on five binary segmen-
tation datasets in Table I and one multi-class segmentation
dataset in Table II. We separate the results according to
whether expert knowledge and manual labeling efforts are
needed. Taking the manual segmentation results as the ground
truth, we calculate DSC, sensitivity (SEN), precision (PRC)
and HD. We show some segmentation results with CoLab in
Fig. 2(c) and also summarize all the corresponding context
labels in Fig. 8. We provide additional examples of context
labels in supplementary material.

As discussed in Section III, the baseline segmentation model
seems to underfit the heterogeneous background samples
resulting in many FP and decreased precision. We find most
evaluated context labels approaches can improve the mod-
els overall segmentation accuracy with increased precision.
We observe that adding contextual labels consistently benefits
model training and improves performance.
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TABLE I
EVALUATION OF DIFFERENT BINARY SEGMENTATION TASKS WITH DIFFERENT TYPES OF CONTEXT LABEL GENERATION APPROACHES.

WE DIVIDE THE RESULTS ACCORDING TO WHETHER EXPERT KNOWLEDGE AND LABELING EFFORTS ARE INCLUDED. THE

BEST AND SECOND BEST RESULTS WITHOUT HUMAN EFFORTS ARE IN BOLD WITH THE BEST ALSO UNDERLINED

TABLE II
EVALUATION OF PANCREAS AND PANCREATIC TUMOR MASS SEGMENTATION WITH DIFFERENT TYPES OF CONTEXT LABEL GENERATION

APPROACHES. THE BEST AND SECOND BEST RESULTS ARE IN BOLD WITH THE BEST ALSO UNDERLINED

1) Performance of Baseline Methods: K -means based con-
text labels divide the background samples into different classes
based on pixel intensity. Those context labels seem to help
the segmentation model separating the abdominal organs and
bones from background such as fat and air for the abdominal
CT images while in the case of brain MR, it may help
segmenting the images into different regions such as white
matter and ventricles. We find these k-means based context
labels are effective for liver and kidney tumor segmentation,
while being less effective for colon tumor, brain tumor, brain
lesion and pancreas tumor segmentation. This may be due
to the distinct intensities of large organs and background
in CT where the generated labels have meaningful semantic
information, benefiting the model training by enhancing the

context representations of kidney and liver tumor. Because the
appearance of colon tumor is heterogeneous, its segmentation
depends more on spatial information and cannot benefit from
purely intensity based context labels. As the pancreas label
already provides enriched context information for pancreatic
tumor segmentation, we find baseline context label techniques
such as k-means and dilated masks cannot provide additional
benefits. The structure of the brain anatomy in MR is more
complex and the classes generated by k-means would be noisy
and disconnected. Here, the k-means generated labels are less
beneficial for as they provide insufficient context for the ROI.

The context labels based on dilated masks make the segmen-
tation model aware of regions neighbouring the ROIs. We find
those context labels are effective for liver tumor, kidney tumor,
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Fig. 8. Examples of the results f̃θ(xi) of training data with different types of context labels. The binary ROI masks are shown in red, while multi-class
ROI masks are shown in red and orange. The context labels are visualized using other colors The context labels which benefit ROI segmentation
most and generated without human input are marked with red boxes. CoLab learns to generate specific structure masks for different tasks. This
helps the segmentation network to learn better feaure representations for the background class.

colon tumor, brain lesion and pancreas segmentation but yield
limited improvements for brain tumor segmentation. This may
be because liver tumors, kidney tumors, colon tumors and
brain lesions appear in varying parts of the primary organ.
If trained as binary tasks, the segmentation model predicts FP
outside the liver, kidney and colon regions or in anatomically
unrelated parts of the brain because these samples share similar
characteristics with the ROIs, as shown in Fig. 2(a). In this
case, the dilated masks could enhance the spatial relationship
between the ROI and the surrounding context. For example,
the dilated masks would connect the liver tumor segmentation
with liver context and avoid FP outside the liver regions.
However, the samples of VS dataset only contain one ROI
per case and VS always appear around the superior vestibular
area. Therefore, the segmentation model does not need more
spatial information to locate the ROIs and does not benefit
from the dilated masks.

As shown in the third column of Fig. 8, we obtain high-
quality automatic segmentations of liver and kidney regions as
the segmentation of large organs is relatively easy and robust in
CT images. The model-predicted masks show similar improve-
ments compared to using the manually labeled anatomy masks.
However, this approach is not applicable when we do not have
prior knowledge available about the ROIs or when we do not
have access to external, manually labelled datasets to train
supervised models for context label generation.

We summarize the results with component-based post-
processing in supplementary material. We find post-processing
always decreases the overall performance indicated by DSC

for liver tumor, colon tumor and brain lesion segmentation as
there always exist multiple separate ROIs in those tasks. For
kidney tumor, pancreas tumor and brain tumor segmentation,
we find that post-processing is effective in improving the
overall segmentation performance of most results while the
models trained with context labels are always better than the
ones trained with binary tasks. This indicates that the FP next
to ROIs cannot be eliminated with simple post-processing.

2) CoLab: As illustrated in Fig. 2(c), CoLab can effectively
reduce different types of false positive predictions and improve
precision while preserving sensitivity. CoLab can be applied
to different tasks with similar hyper-parameters and show con-
sistent improvements (+2.2 to +8.1 points of DSC). We find
CoLab yields better segmentation results than all the other
context label approaches that do not use expert knowledge.
Moreover, CoLab shows similar improvements compared to
using organ masks for liver and kidney tumor segmentation
and even better performance for brain tumor segmentation,
compared with using tissue masks. It is particularly interesting
to find that CoLab can improve the segmentation performance
of pancreatic tumor mass, on the top of its strong context
label of pancreas. It indicates that there is still room to
improve the context representation for segmentation tasks with
human defined context labels. CoLab is a flexible and generic
method and can be directly applied to boost performance for a
variety of segmentation tasks with heterogeneous background
classes. We further analyze the context labels generated by
CoLab based on intensity histograms and summarize the
results in supplementary material. We find the context labels
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generated by CoLab can highlight the regions which have
different intensity distributions from the background samples.
The intensity of one of the generated context labels is always
similar to that of ROIs. This might indicates that CoLab can
generate useful and semantic context labels which can help
the segmentation model better distinguish ROIs from similar
background samples.

We evaluate CoLab with different number context classes
t . We find that when the segmentation model tends to make
FP far from the ROI such as liver tumor, kidney tumor, colon
tumor, brain lesion and pancreas tumor, t = 2 is the most
effective. This may indicate that the segmentation would need
the context labels to provide mostly spatial information and
t = 2 makes CoLab focus on the location of the ROI as the
task generator only needs to separate one class of context from
the remaining background. This single class would enhance
the spatial relationship between the ROI and its surrounding
objects. This is consistent with the observations of the results
as shown in Fig. 8. Specifically, the context labels generated
with t = 2 highlight the region next to the liver, kidney
and colon regions and could implicitly help the segmentation
model focus on the vicinity of the ROI boundaries.

When the baseline segmentation model is making FP around
the ROIs such as in the case of VS segmentation, t = 4 and
t = 6 seem more effective. This is probably because the seg-
mentation requires more structured information of surrounding
objects and the complicated context of brain anatomy could
be better represented when divided into more than 2 classes.
As illustrated in Fig. 8, context labels generated with t = 4
highlight structure information around the ROIs. Specifically,
CoLab generates segmentations of the superior vestibular area
for VS segmentation where the baseline had predicted FP.
Similarly, with the task of brain lesion segmentation, the
context labels highlight the regions around ventricles to avoid
FP in this area. By doing so, the model learns spatial infor-
mation by building specific representations for the ventricle
regions.

We should note that CoLab may not be very effective with
large t , specifically we find CoLab with t = 6 would not bring
much improvements for kidney tumor, colon tumor and brain
lesion segmentation. As shown in Fig. 8, we observe that the
generated context labels would yield checkerboard patterns.
This might be because further decomposing the background
class cannot make the task easier to learn. In this case, we find
the task generator cannot generate coherent labels and produce
similar probabilities for the different classes in those regions,
making the context labels trivial and hard to learn.

In general, we find t = 2 is the most effective choice for
most cases in terms of DSC, especially for tumor segmen-
tation in abdominal CT images. This might indicate that the
background representation is not so complex and could be
improved by adding refined spatial information. When trained
with t larger than 2, the models could have better results in
terms of HD, compared with the models trained with t = 2.
In this case, the models learn the background class better,
as they make less FP away from the ROIs. However, choosing
t larger than 2 seems to make the models fail to learn the
foreground class well, resulting in worse DSC and sensitivity.

This may be because increasing t could make the prediction
of foreground class more difficult.

We suggest the use of t = 2 when the baseline model makes
FP distant from the ROIs, and t = 4 when over-segmentation
is observed closer to the ROIs. In addition, we look into the
intensity histograms of ROIs for different datasets and summa-
rize the results in supplementary material. We find the intensity
distributions of most ROIs are not distinct from that of the
background samples, apart from brain tumor. Perhaps for brain
tumor segmentation, the model can benefit from knowing the
regions which share the most similar intensity distributions
with the ROIs, thus requiring more classes of context labels.
This can be a potential factor due to which the optimal class
of context labels t for brain tumor is 4 instead of 2.

D. Effect on Logit Distributions
We also show the effect of CoLab (t = 2 for liver

and kidney tumor segmentation and t = 4 for brain tumor
segmentation) on the logit distributions in Fig. 3(c, f, i).
We find CoLab has a similar regularization effect than using
anatomy masks. By decomposing the background class, the
segmentation model can robustly map the background sam-
ples to different locations away from the decision boundary,
reducing the logit shifts, and thus yielding fewer FP.

VI. CONCLUSION

In this study, we find that segmentation models are prone to
over-segment the ROIs in the presence of heterogeneous back-
ground classes. With the observation of network behaviour
across multiple segmentation tasks, we conclude that this
is due to the model being unable to learn discriminative
representations from the background samples and the mod-
els can be significantly improved by incorporating context
labels during training. We present CoLab, a generic method
to automatically generate effective context labels through a
meta-learning scheme. We show CoLab improves overall seg-
mentation performance substantially for several challenging
segmentation tasks, without the need of expert knowledge and
laborious labeling efforts. In future work, we will evaluate
CoLab in settings such as domain shifts. It will also be
interesting to explore automatic context label generation in
multi-task settings where a shared backbone model is trained
to automatically identify interesting subclasses across tasks
and even datasets.
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