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X-Ray Dark-Field and Phase Retrieval Without
Optics, via the Fokker—Planck Equation

Thomas A. Leatham™, David M. Paganin

Abstract— Emerging methods of x-ray imaging that cap-
ture phase and dark-field effects are equipping medicine
with complementary sensitivity to conventional radiogra-
phy. These methods are being applied over a wide range
of scales, from virtual histology to clinical chest imaging,
and typically require the introduction of optics such as
gratings. Here, we consider extracting x-ray phase and
dark-field signals from bright-field images collected using
nothing more than a coherent x-ray source and a detector.
Our approach is based on the Fokker-Planck equation for
paraxial imaging, which is the diffusive generalization of
the transport-of-intensity equation. Specifically, we utilize
the Fokker—Planck equation in the context of propagation-
based phase-contrast imaging, where we show that two
intensity images are sufficient for successful retrieval of
both the projected thickness and the dark-field signal asso-
ciated with the sample. We show the results of our algorithm
using both a simulated dataset and an experimental dataset.
These demonstrate that the x-ray dark-field signal can be
extracted from propagation-based images, and that sample
thickness can be retrieved with better spatial resolution
when dark-field effects are taken into account. We anticipate
the proposed algorithm will be of benefit in biomedical
imaging, industrial settings, and other non-invasiveimaging
applications.

Index Terms— X-ray imaging, phase retrieval, dark-field
retrieval, propagation-based imaging, homogeneous sam-
ples, Fokker—Planck equation.

I. INTRODUCTION

-RAY imaging has been widely adopted in a range of
fields, including medicine, security, and manufacturing
industries, providing a way to probe the internal structure
of a sample in a non-invasive manner. The traditional x-ray
contrast mechanism is attenuation, where high-density objects
reduce the intensity of the incident x-ray wavefield upon
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passing through the sample. In recent decades, phase-contrast
imaging has been developed, where even low density/weakly-
attenuating sample features are made visible, based on their
alteration of the phase of an incident wavefield as it passes
through the sample [1], [2]. Even more recently, sub-pixel
features in samples have been rendered detectable by mea-
suring an x-ray dark-field signal that results from the diffuse
scattering of the incident wavefield from these sub-pixel fea-
tures [3]. The ability to detect small features with much-larger
pixels means dark-field imaging has a significant dose-saving
advantage, and it is already finding clinical application [4].
Such a dark-field signal has been primarily captured using
analyzer-based imaging [5], [6], [7] and grating interferometry
[8]. In this paper we exclusively focus on an x-ray method
that has not been widely used for dark-field imaging, namely
propagation-based imaging (PBI) [9], [10], [11], and propose
a new phase and dark-field retrieval method.

Conventionally in PBI, dark-field effects have not been
considered or have been assumed to be negligible. In this
context, the transport-of-intensity equation (TIE) [12] can be
used to model the formation of x-ray intensity images at a
detector located downstream of a sample, at a distance z = A
along the optical axis. This free-space propagation results in
bright/dark intensity fringes in the images [10], [13], which
highlight changes in sample thickness or material, and which
can be used in phase-retrieval algorithms to quantitatively
recover sample information [14]. The TIE describes coherent
energy transport, i.e. local conservation of the coherent optical
energy flow of the transmitted x-ray beam as it propagates
downstream of the sample. Recent work has shown that
by accounting for the presence of unresolved microstructure
(sub-pixel features) in the sample, PBI can incorporate a
dark-field signal due to local sample-induced diffuse scatter
[15], [16], [17], [18]. In doing so, the TIE is generalized by the
x-ray Fokker—Planck equation, which for rotationally-invariant
position-dependent small-angle x-ray scattering (SAXS) cones
has the finite-difference form [15], [16]:

I(x,y,z=A)~ I(x,y,z=0)

A
- ;VJ_ : [I()C, y7 Z)VJ_¢(X7 y7 Z)]ZZO
+AVAD@, ) (x, . Dm0, (1)

where the paraxial approximation has been assumed. Here,
I(x,y,z=A) is the intensity of the x-ray wavefield recorded
at a detector located at a propagation distance z = A
downstream of the sample, /(x,y,z = 0) is the intensity of
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the wavefield at the exit-surface (z = 0) of the sample, & is the
wavenumber of the wavefield corresponding to a wavelength A
defined by k = 27 /4, ¢ (x, y, z) is the phase of the wavefield,
D(x, y) is the dimensionless diffusion coefficient describing
local sample-induced SAXS and V| = (6/0x,08/0y) is the
gradient operator with respect to transverse coordinates (x, y).
In the limit of zero diffusion, one recovers the TIE from the
x-ray Fokker-Planck equation above.

The first two terms on the right-hand side of (1) comprise
the finite-difference TIE part of the Fokker—Planck equation,
and describe (i) the local attenuation of the incident wavefield
by the sample being imaged [19] (the I(x, y,z = 0) term),
(ii) the transverse shifting of the wavefield intensity due to
the refractive effects induced by the sample [20], and (iii) the
concentration/rarefaction of the intensity of the wavefield due
to local focusing/defocusing effects [20]. The final term on the
right-hand side of (1) comprises the diffusive part of the x-ray
Fokker—Planck equation, and describes the position-dependent
local blurring of the wavefield intensity due to the presence of
unresolved microstructure within the volume of the sample.
This local blurring of the wavefield intensity may be seen
as a reduction in the visibility of a measured x-ray intensity
distribution when captured at a detector located downstream
of the sample, relative to the intensity that would be seen
in the absence of unresolved microstructure. Accordingly,
we associate the Fokker—Planck diffusion coefficient D(x, y)
with the dark-field signal due to unresolved sample microstruc-
ture. Here, visibility (V) is defined using Michelson’s
definition [21]:

V= Imax — Imin i )

Imax + Imin

where Imax and Iyin are the maximum and minimum intensity
values of the fringes in a given region of the recorded intensity
pattern. Note that by keeping the D(x,y) term inside the
transverse Laplacian in (1), we are not assuming the diffusion
coefficient to be spatially slowly-varying, as was assumed in
[16]. The characterization given for the diffusion coefficient D
here differs to that given in [16], Dpaganin, and in [15], Dmorgan,
through the relation AD(x,y) = Dwmorgan(x,y,2 = A) =
F Dpaganin(x, ¥,z = A), where F is the fraction of the incident
radiation converted to SAXS [16]. Due to the definition of
the diffusion coefficient given in equation (40) of [16], the
least possible scattering due to SAXS is naturally restricted
to zero, and hence the diffusion coefficient, as specified in
this manuscript, must be manifestly non-negative, in order to
describe a blurring effect rather than a focussing effect.

Consider the experimental setup shown in Fig. 1, where
a sample containing unresolved microstructure is illumi-
nated with an x-ray source (not shown), allowing for
propagation-based intensity images to be captured at a detector
located at a variable propagation distance z = A downstream
of the sample. In the ray-optics description of this setup,
as seen in Fig. 1(a), incident x-rays can pass outside the
sample, or can interact with a region of the sample which may
or may not contain unresolved microstructure. Rays which do
not interact with the sample, such as the ray passing through
the point (xg, yo) at the exit-surface plane, do not experience
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Fig. 1. Experimental setup to capture both phase and dark-field signals
using propagation-based phase-contrast x-ray imaging. (a) In the ray pic-
ture incident x-rays are attenuated or transversely shifted by the sample.
Additionally, unresolved microstructure present in the sample causes the
emergent x-rays to be diffusely scattered, resulting in a SAXS cone. (b) In
the wave picture, the incident x-ray wavefield is attenuated and acquires
phase shifts as it passes through the sample. The phase of the exiting
wavefield may be split into (i) a slowly-varying component associated with
spatially resolved sample structure, giving rise to the propagation-based
phase-contrast signal, and (ii) a rapidly-varying component associated
with unresolved microstructure, giving rise to the dark-field signal.

any change in intensity or phase. Hence, the intensity of
these rays measured at the detector plane is the same as
that which would have been measured in the absence of the
sample. Rays which interact with a region of the sample that
does not contain unresolved microstructure, such as the ray
passing through the point (x3, y2), will experience attenuation
and phase effects imparted by the sample, as described by
the TIE part of the x-ray Fokker—Planck equation, i.e. these
rays have reduced intensity and are refracted by the sample.
Rays which interact with a region of the sample that does
contain unresolved microstructure, such as the ray passing
through the point (x, y;), will also experience both attenu-
ation and refraction effects, but in addition, the regions of the
images where such rays land will undergo a visibility reduc-
tion (dark-field effect) due to the unresolved microstructure
contained in the sample. Upon passing through the sample,
a fraction of these rays will be diffusely scattered by the
unresolved microstructure, resulting in a spray of emergent
x-rays through an opening angle @, taking the shape of a
cone, landing at the detector plane with width proportional
to the propagation distance A. It is this spray of emergent
x-rays that gives rise to the local visibility reduction seen in
the intensity pattern recorded at the detector, a characteristic
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hallmark of the dark-field signal. We can also explain these
effects with reference to a wave-optics description, as seen in
Fig. 1(b). Upon interacting with the sample and subsequently
exiting the sample, the incident x-ray wavefield acquires a
change in phase. The presence of unresolved microstructure
in the sample causes the phase of the incident wavefield
to split into two components: a slowly-varying component,
corresponding to smooth (resolvable) sample features, and a
rapidly-varying component, corresponding to fine (unresolved)
sample features [22]. The slowly-varying phase component
(unbolded sections of emergent wavefield — the lower red
inset shows these slow phase variations) is what we retrieve
as the phase signal. The rapidly-varying phase component,
along with the self-interference of the emergent wavefield,
causes the diffusion of the intensity variations of the emer-
gent wavefield as it propagates to the detector plane (bolded
sections of emergent wavefield — the upper red inset shows
these rapid phase variations), resulting in regions of reduced
visibility in the recorded intensity pattern. This blurring effect,
described in Nesterets et al. [22], is also apparent in biological
samples, for example in images of mice lungs taken with
a large sample-to-detector propagation distance [23]. Hence,
it is this rapidly-varying phase component that gives rise to
the dark-field signal in the wave-optics description. Key to
the retrieval method presented in this paper is the fact that the
PBI phase fringes evolve differently with propagation than the
dark-field diffusive effects, as described by the Fokker—Planck
equation (1), and hence the two can be separated.

The Fokker—Planck equation describes the transverse redis-
tribution of optical energy carried by the incident wavefield,
as it propagates downstream of the sample. On account of
the conservation of energy, if a fraction of the wavefield is
diffusely scattered by the sample, the remaining fraction of
the wavefield must be coherently transported. Hence, there
is a bifurcation of the optical flow of the incident wave-
field into the coherent and diffusive energy channels. The
Fokker—Planck equation may thus be viewed as the natural dif-
fusive generalization of the TIE, which simultaneously models
attenuation, phase and dark-field effects in PBI settings. The
Fokker—Planck equation has been applied to grid/grating-
based imaging in the context of the forward problem as
seen in Morgan & Paganin [15], and has also been used
to retrieve phase and dark-field signals in the context of
the inverse problem applied to x-ray speckle-tracking [24],
[25]. Both of these dark-field imaging techniques, as well
as analyzer-based dark-field imaging, have the disadvantage
of requiring extra hardware in the form of optical elements
to extract phase and dark-field contrast. Through the PBI
model provided by the Fokker—Planck equation, we derive an
algorithm to perform simultaneous x-ray phase and dark-field
retrieval without optics. Our method uses virtual-optics soft-
ware [26] rather than optical hardware, to extract a dark-field
signal from bright-field data. This software encodes our
closed-form analytical solution to the Fokker—Planck formula-
tion of propagation-based image formation in the presence of
unresolved sample microstructure. It is the goal of this paper
to outline how this retrieval is possible with homogeneous
samples and to demonstrate the results of our algorithm with

both simulated and experimental datasets. One should keep in
mind that when the phrase ‘no optics’ is referred to within this
manuscript, what is really meant is that no optical elements are
used in the experimental setup apart from the source, sample
and detector.

The structure of this paper is as follows. Section II derives
our PBI phase and dark-field retrieval algorithm and provides
a corresponding physical interpretation. Section III demon-
strates the use of our algorithm with a simulated dataset,
and section IV shows the results of applying our algorithm
to an experimental dataset. Section V discusses the broader
implications of this work and section VI outlines possible
directions for future research and also provides some conclud-
ing remarks.

Il. DERIVATION OF THE PBI PHASE AND DARK-FIELD
RETRIEVAL METHOD

Assume that a thin, static, non-crystalline, and non-magnetic
sample is illuminated by quasi-monochromatic z-directed
x-ray plane waves of incident intensity Ip. Further assume
that all polarization-sensitive effects can be ignored. Provided
the Fresnel number [27] is much larger than unity, our starting
point is the x-ray Fokker—Planck equation (1). We specialize to
the scenario of a single-material sample located immediately
upstream of the plane z = 0, with a projected thickness
T(x, y) along the z direction, as follows. It should be noted
that we are considering the heterogeneity of the sample to
not be a part of the material. That is, we are allowing the
dimensionless diffusion coefficient to vary independently of
the sample thickness. Invoking the projection approximation
[28], the phase of the wavefield at the exit-surface of the
sample and the exit-surface intensity of the wavefield are
given by:

¢()C,y,Z:0):—k5T(X,y) (3)
and
I(x,y,z=0) = lpexp[—uT(x, y)] 4)

respectively. Here ¢ is the real decrement of the complex
refractive index of the sample

n(x,y,z)=1-0x,y,2)+ifx,y,2) (5)
and the linear attenuation coefficient x is related to f via
= 2kp. (©6)
Inserting (3) and (4) into (1) yields
I(x,y,z=A)
= lpexp[—uT(x, y)]
209 lexplon T (e, WIVLAST (e, )

+ A% I VI[D(x, y) expl—uT (x, y)1l. (7)
We now employ the identity [14]
Vi - lexpl—uT (x, y)IVL(=kdT (x, y))]
= %Vi exp[—uT (x, )] (8)
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and make use of the fact that the single-material assumption
implies the ratio d(x, y, z)/f(x,y,z) to be the same at all
locations within the sample. Hence, (7) becomes:

I(x,y,z=A)
= Ipexp[—uT (x, y)]
Alyo
- TOVi expl—uT (x, y)]
+ A2IgV2[D(x, y) expl—uT (x, ). ©9)

We note that (9) contains two unknown quantities to solve
for, namely D(x, y) and T (x, y). Two equations or measure-
ments are hence required to find these two quantities. The
simplest variable to change is the propagation distance A,
although it would also be possible to write (9) for two
different energies, since 0 and u depend on the energy of
the x-ray beam. Note that we are assuming the plane wave
approximation so that what is classified as either resolved or
unresolved does not change with propagation distance. Here
we take the approach of changing the propagation distance,
and so to proceed we write the z = Aq and z = A, cases
of (9), eliminating the D(x, y) term:

0 Ai1A,
(1 - ;mvi) exp[—uT(x, y)]

Ay, 2= A1) = ATl (x, y, 2= D))
Io(A3 — AY) '

(10)

This has the same form as seen in the derivation of a routinely
used homogeneous-object TIE phase-retrieval algorithm [14],
and can hence be solved using the same Fourier-transform
method. This gives (cf. equation (62) in [16]):

—1
T(x,y)=—
u

—1 f[A%I(X,y,Z:A|)7A%1(X,y,Z=A2)]
Xln{]: |:10(A§—A%+%AIAZ(AQ—AI)(k3+k§)) - adn

Above, F denotes Fourier transformation with respect to x and
v, the corresponding Fourier-space coordinates are denoted
by (ky, ky), F ~1 denotes inverse Fourier transformation with
respect to ky and k,, and we use the Fourier transform
convention found in [14] and [28].

With T (x, y) given by (11), the z = A version of (9) can
be rearranged into the form:

V3 [D(x, y)expl—uT (x, )]

I(X,y,ZZAI) 1 o 2
= - | —=-—V —uT(x,y)].
ToA2 ( Vi exp[—uT (x, y)]

(12)

Solving this Poisson equation for the dark-field signal,
we obtain

D(x,y) =expluT (x,y)]
2|l y,z=4) (1 0 o _
xVy [ IoA? (A% IUAIVL)GXP[ ﬂT(x,y)]},
(13)

where the inverse Laplacian is defined as a pseudo-differential
operator by [29]

1
viZi=—F"! F. 14
+ k2 +k2 (9

We note that the previous expression for the inverse Laplacian
is singular when (k,, ky) = (0, 0), so to avoid this singularity
in computations we make the replacement

1 1
—
kP4k3 kI 4ks+e

15)

where ¢ > 0 is small compared to k)% + k§ (except for the
vicinity of the origin of Fourier space). The replacement (15)
regularizes the inverse transfer function H (ky, ky) =1/ (kf +
k%) by replacing the blow-up at the origin of Fourier space
with a finite non-zero DC term 1/¢, for fixed ¢.

To apply the retrieval method derived in this section,
we need to first capture two intensity images at two different
propagation distances, and insert these intensity images and the
relevant parameters into (11) to retrieve the thickness of the
sample. We then need to use the retrieved thickness image and
one of the intensity images to reconstruct the dark-field signal
according to (13), where the inverse Laplacian is computed
according to (14) and (15). It is also worth noting that we
can reconstruct the dark-field signal using a third intensity
image taken at a propagation distance that is different from
the two distances used to reconstruct the projected thickness
of the sample, provided that this reconstruction of the projected
thickness is relatively stable with respect to the propagation
distances used to perform the reconstruction. In fact, so long
as we obey the simple rule of thumb that longer propagation
distances are beneficial to render dark-field effects visible and
shorter propagation distances are beneficial to achieve high-
spatial-resolution phase effects and hence thickness retrieval,
the reconstruction process for both the projected thickness
and dark-field signals will work well. An example showing
the visible increase in dark-field effects with distance can be
found in the movie in the Supplementary Materials II, where a
sequence of propagation-based images is captured at distances
ranging from 0.5m to 7m of a small plastic tube filled with
agarose powder, attached to the center of a green seed pod
from a Liquidambar styraciflua tree using Kapton tape (see
Appendix D). The dark-field-associated-blurring in the center
of the images, due to the powder, becomes first most visible at
a distance of 3 m, indicating that distances around this value
are beneficial for both phase and dark-field retrieval for this
sample. This rule of thumb indicates that there is an inherent
trade-off between visualizing phase and dark-field effects
in the Fokker—Planck description; the propagation distances
chosen should be large enough to clearly render dark-field
effects, but should not be so large that phase effects are hard
to visualize and detail is lost. The method is designed for the
case that all propagation distances are chosen such that the
near-field condition is satisfied, i.e. the Fresnel number [27]
should be much greater than unity for the spatially-resolved
projected sample structure. More specifically, this condition
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Fig. 2. Attenuation and PBI phase-contrast profiles of a sample for the
projected thickness of the sample and each term in the bottom line of (12),
where profiles in black correspond to zero dark-field and profiles in red
correspond to a non-zero dark-field. When the profiles for each term on
the bottom line of (12) are added together, we obtain the contributions
sourced from local blurring of attenuation and phase contrast to the
Vi[D(x,y)exp[f;LT(x,y)]] term. Note that the orange ‘-’ and ‘=’ signs
give column-wise relationships while the blue ‘+’ and ‘=" signs give row-
wise relationships.

can be formulated as

Nem L5

F = A > 1,

where Ngr denotes the Fresnel number, a is the smallest

spatially-resolved feature size present, 4 is the x-ray wave-

length and A is the propagation distance. One should note

that the value of a cannot be smaller than twice the detector

pixel size [30]. Hence, a lower bound for the Fresnel number
for a given x-ray energy and given propagation distance is

(16)

44>
AN’
where d is the detector pixel size.
In closing this section, we provide an interpretation of (12)
in terms of attenuation and PBI phase contrast intensity
profiles for both the absence and presence of a dark-field
signal, as shown in Fig. 2. In terms within the Fokker-Planck
solution (13), the retrieved thickness is effectively used to
predict both attenuation and phase effects in the absence
of any dark-field signal. This prediction is then compared
to the observed intensity image, where any differences are
interpreted as resulting from dark-field effects. To illustrate
this, we consider the case of imaging a cylinder as shown
in Fig. 2, taking a thickness profile across the cylinder, such
as the blue line, resulting in trace ‘A’. The profiles for the
exponential term in the final line of (12) take a similar
shape, describing attenuation expected by the sample, and the
Laplacian term predicts phase effects for a sample of this given
thickness. The profile for the scaled intensity image in the
bottom line of (12) can have different shapes corresponding
to the cases of zero dark-field (black profiles) and a non-
zero dark-field signal (red profiles). When the dark-field signal

NF,min = ( 17)

is exactly zero (i.e. no unresolved microstructure or edge-
scattering effects), we would expect to see a profile such as
trace ‘D’ for the scaled intensity image, which can be broken
into the attenuation profile trace ‘B’ and phase-contrast profile
trace ‘C’. In this case of zero dark-field, the attenuation profile
(trace ‘B’) is identical to that of the exponential term (trace
‘H’), and the phase-contrast profile (trace ‘C’) is identical
to that of the Laplacian term (trace ‘I’). We emphasize that
we must be in the near-field regime to match the Laplacian
and phase-contrast edge effects, and the propagation distance
should be chosen to satisfy this condition, as per (16) and (17).
For a non-zero dark-field signal, we would expect to see
a profile such as trace ‘G’ for the scaled intensity image.
Trace ‘G’ can be broken into the attenuation (trace ‘E’)
and phase contrast profiles (trace ‘F’), which are locally
blurred or diffused versions of traces ‘B’ and ‘C’, respectively.
The subtraction of the profiles for the three terms in the
final line of (12), which will be equal to the first line,
Vi[D(x, y)exp[—uT (x, y)]], is shown as traces ‘J” and ‘K’
for the case of zero dark-field, and traces ‘M’ and ‘N’ for the
case of non-zero dark-field. For zero dark-field, the attenuation
and phase contrast contributions to this term sum together
with the observed image to give zeros everywhere (trace ‘L),
resulting in a recovered dark-field signal that is identically
zero everywhere. In the case of a non-zero dark-field signal,
traces ‘M’ and ‘N’ sum together to give trace ‘O’, which is
not flat. Hence, when the inverse Laplacian is applied and
the exp[—uT (x, y)] term is divided out, the dark-field signal
recovered will not be zero. This observation indicates that the
dark-field signal will be seen from a blurring of local intensity
oscillations at the detector, whether those intensity oscillations
are created by sample attenuation or sample-induced phase
shifts, described by each of the terms in the final line of (12).
We may also think of the dark-field signal as an obstruction
which measures the extent to which the intensity measured at
a detector fails to be described by the transport-of-intensity
equation [17].

Il1. SIMULATED PBI DATA

We now test the retrieval method using a simulated sample
of three overlapping ‘squircles’, each of dimensions 400 pix-
els x 400 pixels (4.6mm x 4.6 mm), embedded in an array
of size 700 pixels x 700 pixels (8.05mm x 8.05mm)
with a sandpaper thickness image (retrieved by TIE from
experimental data) providing more natural thickness variations
across the entire array than seen with the perfectly-smooth
squircles alone (see Fig. 3(a) for the resulting thickness map).
We set the squircles to be made from PMMA and the energy
of the x-ray beam to be 25keV. The delta and beta values
for PMMA at this energy are 6 = 4.27 x 1077 and f =
7.00 x 10~ [31], and we set the pixel size to be 11.5 pum.
A completely independent dark-field signal was simulated
using a combination of larger spheres of radius 100 pixels
and smaller spheres of radius 50 pixels, with the dark-field
signal strength specified in terms of a blurring width, with
this blur width proportional to the thickness of the dark-field
spheres. The thickness distribution of these dark-field spheres
was also smoothed using a two-dimensional Gaussian function
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Fig. 3. All images here are shown with a linear grayscale, where
a is the minimum value and b is the maximum value: (a) Simulated
sample thickness image T(x, y) of PMMA squircles with a piece of
sandpaper providing background thickness variations (a = 8 x 1075 m,
b=120 x 1072 m). (b) Simulated dark-field image D(x, y) of heavily
smoothed PMMA spheres (a = 0, b = 3 x 10~1). (c) Scaled intensity
image corresponding to the I(x, y, z= A4)/lg A% term of (12) at a prop-
agation distance of 65 cm (a = 2.31m™2, b = 2.38m—2). (d) Retrieved
sample thickness using the TIE-based method of [14] with the 30 cm
intensity image (@ = 8 x 107°m, b = 120 x 10~°m). (e) Retrieved
sample thickness using (11) in_this paper with the 30 cm and 50 cm
intensity images (a = 8 x 10~°m, b = 120 x 10~ m). (f) Difference
between panels (d) and (e) (a = —159 x 10~’m, b = 128 x 10~ "m).
(g) Difference between the exponential and Laplacian terms given in
the latter half of the second line of (12) during dark-field retrieval (a =
2.31m~2, b = 2.38m~2). (h) Difference of (c) and (g), corresponding to
Vi[D(X, y) exp [—nT (X, y)1] in the dark-field retrieval via equation (12)
(a= —688 x 107°m™2, b = 477 x 10~°m~2). (i) Retrieved dark-field
signal using (13) with the 65 cm intensity image (a =0, b = 13 x 10~ 10).

of 20 pixels in standard deviation, to soften the edges of the
spheres, thereby simulating a more realistic dark-field signal
which would be seen in experiment (see Fig. 3(b) for the
resulting dark-field map). No attenuation or phase effects are
associated with these spheres, to be confident the recovered
dark-field signal is sourced from dark-field effects alone.

To perform our simulation we first calculated the wavefield
at the exit-surface of the sample using the projection approx-
imation and Beer’s law to calculate the phase and intensity,
respectively. We then propagated over the simulated sample-
to-detector distances of 30cm, 50cm and 65cm, using the
two-Fourier-transform representation of the Fresnel propagator
[28], to provide three simulated propagation-based intensity
images. We then used the simulated dark-field signal to
determine how much to locally blur these intensity images,
by locally spreading the intensity at each detector pixel to the
surrounding pixels, with a Gaussian full-width half-maximum
(FWHM) of position-dependent width proportional to the
strength of the simulated dark-field signal at that transverse
(x, ) location within the sample. A two-dimensional Gaussian

function of position-independent standard deviation equal to
2 pixels in both the x and y directions was then used to
further blur the intensity images, simulating blurring by a
point-spread function (PSF) associated with a typical detector.
A mathematical description of our simulation model can be
found in Appendix A. These images were then taken as
inputs to our retrieval method, and the projected thickness and
dark-field signal were recovered according to (11) and (13).
One should be aware that the method described in this
paragraph is not the only method available for incorporating
the effect of local scattering. For example, one could use a
scalar wave equation [32] or complex transmission function
formalism [17] to incorporate such scattering.

The sample projected thickness, recovered using (11) and
given in Fig. 3(e), and the dark-field signal, recovered
using (13) and shown in Fig. 3(i), are consistent with the
simulated sample. While the projected thicknesses recovered
using the single-image method of Paganin et al. (Fig. 3(d))
and the dual-image Fokker—Planck method (Fig. 3(e)) appear
identical, there is in fact a qualitative and quantitative dif-
ference between these images. This difference is due to
the fact that the Fokker—Planck method explicitly takes into
account the dark-field signal present in the simulated intensity
image shown in Fig. 3(c). This difference is highlighted in
Fig. 3(f), which shows the result of subtracting Fig. 3(d)
from Fig. 3(e). As can be seen from Fig. 3(f), the difference
between the projected thicknesses using the two different
methods is related to the strength of the dark-field signal
present in the reconstruction process. In regions where this
dark-field signal is zero, i.e. outside the dark-field-generating
spheres, the difference between the projected thicknesses is
smallest, while this difference is strongest in regions where
the dark-field signal is strongest or where the dark-field signal
changes quickly (see Fig. 4 of Morgan et al. [15]), besides
the effects seen at the borders of the image. See Appendix B
for quantitative measures of the accuracy of the thickness
reconstructions provided by both the TIE method of [14] and
our Fokker-Planck method for the various possible propagation
distances listed in this section.

The other key result of this section is the ability of our
method to reconstruct the dark-field signal present in the
simulated data, as can be seen by comparing Fig. 3(i) to
Fig. 3(b). Our reconstruction method detects both those objects
that generate a strong dark-field (the three larger overlapping
spheres), and those that generate a weak dark-field (the smaller
isolated spheres). Due to the detector point-spread function
blurring, the simulated and retrieved dark-field signals have
slightly different numerical values. Quantitative measures of
the various reconstructed dark-field signals at the different
propagation distances used in our simulations can be found
in Appendix B. Additionally, the effect of noise in our sim-
ulations in terms of the qualitative and quantitative nature of
the reconstruction process is discussed in Appendix C.

IV. EXPERIMENTAL PBI DATA

Encouraged by the results of our simulation, we turn to
demonstrating how this approach can be applied to experimen-
tal data. To do this, we collected propagation-based intensity
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Fig. 4.

(a) Propagation-based intensity image of the polystyrene microspheres contained in the PMMA sample tube captured at a propagation

distance of 1 m (a = 0.36, b = 0.96). (b) Scaled propagation-based intensity image (first term in the last line of (12)) of the polystyrene microspheres
taken at a propagation distance of 2 m (a = 0.08m™2, b = 0.25m—2). (c) Retrieved thickness using TIE method with intensity image taken at 1 m
propagation (a = 40 x 10~%m, b = 258 x 10_4m). (d) Retrieved thickness using our Fokker—Planck method with intensity images taken at 1 m and
2 m propagation (a = 40 x 10~*m, b = 258 x 10~%m). (e) Difference between (c) and (d) (a= —5 x 10~*m, b =5 x 10~*m). (f) Dark-field-free
intensity estimation at 2 m according to the second term in the bottom line of (12) (a = 0.08m2, b = 0.25m*2). (g) The Laplacian of the product
of the dark-field signal and the exp[—u T (x, y)] term, corresponding to (12) (a = —0.06m~2, b = 0.04m™2). (h) Dark-field signal found using (13)
(@a=0,b=11x 10*10). (i) Profiles taken along blue and red dashed lines in (b) and (f), showing differences in visibility between the two terms on

the last line of (12).

images at the Australian Synchrotron on the Imaging and
Medical Beamline (IMBL) in Hutch 3B. The sample consisted
of polystyrene microspheres, 1 pm in diameter, contained in
a sample tube made from PMMA. The sample was placed
on a dedicated table located approximately 130m from the
source, where x-ray photons of energy 30keV were produced
by synchrotron radiation from a 2T dipole bending magnet.
At this energy, PMMA has § = 2.96x 1077 and u =
36.1m™!, and we used these values to represent the complex
refractive index of the sample. Using the PMMA values to
represent the whole sample here is a good approximation since
there is a relatively small difference between the J and u
values for PMMA and polystyrene at an energy of 30keV
(approximately 11.9% for the J values and approximately
25.3% for the u values [31]). The detector used to image the
sample had an effective pixel size of 18 um, and by placing
the detector at distances of 1 m, 2m, and 3 m downstream of
the sample, we captured propagation-based intensity images
exhibiting both phase and dark-field effects at each of these
propagation distances. The exposure time for each image

was 1s. Thirty exposures were captured at each propagation
distance, and averaged before flat-field and dark-field cor-
rection. The flat-field and dark-field corrected images were
then resized to account for slight magnification differences
using the source-to-sample distance and finally translated and
registered to each other to sub-pixel accuracy in order to
mitigate alignment artifacts. All image processing and data
analysis was done using Python3 code on a desktop machine.
In particular, the translation and registration of the images
was achieved using the ‘phase_cross_correlation’ function
from the registration module of the freely accessible scikit-
image library [33], with an upsampling factor of 1000 as the
input to this function. Furthermore, any apparent truncation
of the sample was handled by mirroring the relevant images
whenever using Fourier transforms in order to enforce the
necessary periodicity conditions and hence avoid cross-talk
between opposite borders of the images.

See the movie in Supplementary Materials I for the full
sequence of the propagation-based images collected, noting
a reduction in local contrast with increasing propagation
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distance in the center of the image, where the greatest number
of polystyrene microspheres are seen in projection. Fig. 4
shows the results of using the 1m and 2m (Fig. 4(a))
propagation-based intensity images to recover the projected
thickness and dark-field images of the sample. These prop-
agation distances were used as they provided a balanced
trade-off between visualizing phase and dark-field effects,
i.e. the projected thickness and dark-field signal can be
recovered accurately using this pair of propagation distances.
As with our simulations in section III, we see subtle dif-
ferences between the sample thickness retrieved using our
Fokker-Planck approach (Fig. 4(d)), and the TIE approach of
[14] (Fig. 4(c)), reflected in the difference image, Fig. 4(e).
In particular, the Laplacian-type character of this difference
map is a signature of the higher-resolution projected thick-
ness reconstruction associated with the Fokker—Planck analy-
sis [34]. This difference originates from the fact that the
reconstruction using our new Fokker-Planck method properly
separates phase from dark-field effects, while the TIE-based
method interprets decreased-visibility phase contrast fringes
as more-slowly-changing sample thickness. This higher spa-
tial resolution associated with the Fokker-Planck analysis is
more clearly seen with the seed pod sample presented in
Appendix D.

With the thickness reconstruction using our method in hand,
we calculate the last two terms in the dark-field retrieval,
representing the estimated intensity image in the absence of
dark-field, shown in Fig. 4(f). The visibility reduction effects
described in Fig. 2 can be seen in the experimental data in
Fig. 4(i). This shows the profiles taken across the observed
image (blue, Fig. 4(b), first term on the second line of (12)) and
the image that would be expected in the absence of dark-field
(red, Fig. 4(f), second term on the second line of (12)), with a
difference in visibility in the profiles in regions where there is a
strong dark-field signal, but a closer match between the profiles
in regions where there is a weaker dark-field signal. By taking
the difference between Fig. 4(b) and (f), according to the
bottom line of (12), we obtain panel (g), which highlights
these differences in visibility between the blue and red profiles.
Taking the inverse Laplacian, we obtain panel (h) which shows
the recovered dark-field signal as described by (13). It is
evident from panel (h) that there is virtually no scattering from
the region outside the polystyrene microspheres, as expected.
Of particular interest are the regions where the liquid which the
microspheres came in had not fully evaporated and as a result,
the microspheres are clumped together in a wet mass and
hence there are fewer air/plastic interfaces than the surround-
ing regions, and hence weaker dark-field. These regions within
the sample are seen as regions of increased thickness in the
retrieved thickness image (panel (d)) and regions of reduced
scattering in the recovered dark-field signal (panel (h)). These
observations help to demonstrate the complementary nature
of the sample thickness/phase and dark-field in terms of the
sample information these signals provide.

V. DISCUSSION

This paper presents a novel algorithm for thickness and
dark-field retrieval from multiple-distance propagation-based

x-ray imaging, via the Fokker—Planck equation. The simu-
lation results show that this algorithm can extract dark-field
effects that are independent of the sample phase and attenu-
ation effects. The successful application of our approach to
experimental data was also shown. To our knowledge, the
use of propagation-based phase-contrast imaging to extract
dark-field signals has only been demonstrated in one other
paper, by Gureyev et al. [17], where an alternative approach
was taken, based on linearizing the Fresnel integral in the near-
field regime. The method presented there has the advantage
of only needing one intensity image to reconstruct both the
projected thickness and dark-field signal of a homogeneous
sample. As such, there is no potential complication due to
misalignment between images taken at different propagation
distances. However, we speculate that this use of a solitary
intensity image may come at some cost, for example limit-
ing how quantitative the reconstruction can be. Additionally,
a two-image approach such as our method may help with sep-
arating phase and dark-field effects with high signal-to-noise
ratio (SNR) and high spatial resolution — at small propagation
distances, a single-image approach may be less sensitive to
dark-field, while at high propagation distances, dark-field blur-
ring may reduce the spatial resolution of the resulting images
retrieved with a single-image approach, as phase effects will
be blurred out and it will not be clear whether the sample
is slowly-varying or is producing a strong dark-field signal.
A two-image approach avoids both issues. Our method extracts
the dark-field signal as defined by the x-ray Fokker—Planck
equation, so our method is sensitive to any local blurring,
whether that be bulk scattering from unresolved microstructure
or edge scattering.

Upon taking the D(x,y) — O limit of the dark-field
retrieval equation, (13), we recover the homogeneous phase
retrieval method of Paganin et al. [14], which is based on the
TIE. This result is not unexpected, since the Fokker—Planck
equation, upon which our method is based, is the natural
diffusive generalization of the TIE and hence, in the limit
of a vanishing dark-field signal, the Fokker—Planck equation
reduces to the TIE (as can be seen from (1)). While the TIE
phase retrieval method of [14] requires only one image, the
method presented here uses this second measurement to extract
the dark-field signal, which contains complementary informa-
tion about the sample relative to its projected thickness. This
separation of the projected thickness and dark-field signals
serves the additional purpose of ensuring that the presence
of dark-field effects does not result in inaccuracies in the
projected thickness reconstruction. The difference between our
method and the TIE-based method of Paganin et al. may be
summarized as follows. In the latter method, the projected
thickness is retrieved from contrast generated by attenuation,
phase, and dark-field effects, while in our method the projected
thickness is ideally only sourced from attenuation and phase
effects, since the dark-field effects have been disentangled,
with the added advantage of obtaining a complementary dark-
field signal. This recovered dark-field signal can be useful
for qualitative inspection and visualizing/discerning various
features. The recovered dark-field signal may also be converted
into other useful quantities, such as the divergence angle of
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the SAXS cone, the blur width associated with the SAXS
cone and the characteristic transverse length scale of the
rapid spatial wave-front fluctuations induced by the unresolved
microstructure present in the sample (see Fig. 3 in [16]
for details). Note that wavefield discontinuities introduced
by sharp edges present in the sample may also contribute
to the recovered dark-field signal, since an edge can cre-
ate a boundary wave that reduces local contrast (e.g. see
Fig. 2(b) in Groenendijk et al. [35]) and can also create a
propagation-based fringe that increases local contrast [15].

In using the method presented here, it is advisable to include
a small propagation distance that satisfies the near-field condi-
tion when performing the phase retrieval, so that high-spatial-
frequency sample features can be resolved, since these features
can be blurred out by dark-field effects at larger propagation
distances (see the video included as Supplementary Materi-
als II). It is then advisable to include a longer propagation
distance, where dark-field effects are visually apparent, for
the dark-field retrieval, noting these should still satisfy the
near-field condition (16). The optimal propagation distances
for our method are highly sample-dependent, so optimization
may be best achieved by looking for some visible blurring
in the captured experimental propagation-based images, then
choosing distances approaching this. It is also beneficial for
there to be contrast across the whole field of view in the
experimental images captured for analysis with our retrieval
method, since an area of no local contrast would not be able
to reveal any local blurring effects due to dark-field. As shown
in Fig. 2, this can be either attenuation or phase contrast.
In terms of spatial coherence, our algorithm requires that
the characteristic length scale of source-size blurring, wsource,
be less than the characteristic length scale of diffusive contrast
due to SAXS, wsaxs, so that the SAXS-associated blurring by
the sample can be detected. That is, wsource < Wsaxs, Which
can be written as s < R, where s is the source size, R is the
source-to-sample distance, and 6 is the opening angle of the
SAXS cone.

Compared to existing methods for extracting x-ray
dark-field signals, such as analyzer-based imaging or grating
interferometry, the method presented here does not require the
careful alignment and stability that comes with using spe-
cialized optics. Additionally, since propagation-based phase-
contrast imaging has been shown to be robust with respect
to the use of polychromatic radiation [11] and can account
for finite source sizes [36], we expect that our method will
also be robust to the use of polychromatic radiation and
transferable to lower coherence sources, such as medical or
laboratory settings, pending future investigation. Note that
the effects of polychromatic radiation could potentially be
incorporated by multiplying (1) with a wavelength-dependent
weighting factor that describes the polychromatic x-ray spec-
trum and then integrating over the wavelength. However, since
dark-field effects must be visualized directly, smaller pixels
will likely be required in order to use our retrieval method
with samples which scatter weakly. As a consequence, this
may affect the size of samples that can be imaged on a
given detector. Interestingly, when comparing the dark-field
signal obtained in section IV using our Fokker-Planck retrieval
method (Fig. 4(h)), to the dark-field signal/scattering angle

of a very similar sample obtained using single-grid imaging,
as shown in Fig. 4 of [37], it appears that our method
provides a dark-field reconstruction with less high frequency
noise. In addition, our method is computationally fast and
deterministic compared to the cross-correlation method used
in [37]. However, only a single sample exposure is required
in the single-grid imaging technique, meaning the sample
receives a lower radiation dose if a single exposure is used,
compared to our Fokker-Planck method, which requires two
sample exposures to extract the sample thickness and dark-
field signal. Additionally, due to the division-by-zero error at
the origin of Fourier space in (14) and the subsequent use
of (15), our method may potentially give rise to more low
frequency artifacts.

In addition to the advantages stated above, some limitations
of our method which we can foresee include the following.
Firstly, the use of two intensity images taken at different prop-
agation distances comes with the potential for misalignment
artifacts. Such artifacts, however, can be mitigated with the use
of translation and registration software prior to the application
of our method (as mentioned in section IV). Secondly, our
method requires a slightly increased radiation dose to be
delivered to the sample relative to conventional PBI phase
retrieval [14] or single-exposure PBI dark-field [17] as a result
of using two intensity images compared to one. This increased
radiation dose is balanced by the benefit of quantitatively
extracting the sample thickness free from dark-field effects,
as well as the dark-field signal, providing increased sample
structure information. Note also that grating and crystal-based
methods require sufficient exposures (e.g. seven) to sample a
stepping or rocking curve in order to extract a dark-field image.
Lastly, our method also requires there to be contrast across the
whole field of view, as areas of no local contrast in a captured
intensity image are unable to reveal any local blurring effects
due to sample dark-field effects. Note that if the sample alone
is so smooth as to not produce much local contrast, contrast
could be introduced via means of a reference pattern without
the need for alignment, for example with a patterned sample
holder or with a textured garment for a patient to wear.

This introduction of contrast leads to a point of compar-
ison between (i) the method developed in the present paper
and (ii) imaging approaches that employ an optical element
to extract x-ray dark-field signals. Consider, for example, the
methods of x-ray speckle tracking [38], [39], [40] or single-
grid x-ray imaging [41], [42]. In these methods, a spatially-
random speckle membrane (e.g. a piece of sandpaper) or
a phase-shifting or attenuating grid is introduced to create
a spatially rapidly-varying intensity reference pattern. Infor-
mation regarding the absorption, phase shift, and dark-field
signal associated with a sample can be inferred by looking
at sample-induced changes in the local intensity, the trans-
verse position of the reference features, and the visibility of
those features, respectively, in these contexts. In the method
developed in our paper, the object is self-referencing. The
sample itself is considered to create the reference pattern that
is subsequently diffused upon free-space propagation, thereby
enabling the dark-field signal to be quantitatively extracted
from bright-field data. Stated differently, the sample plays two
roles in our method, namely the obvious role as an unknown
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object whose structure is to be retrieved, and additionally,
the role of a highly-structured mask employed to elucidate
certain properties regarding the sample. The sample contains
its own mask—creating its own reference speckle pattern,
so to speak—since the resolved Fourier components of the
sample microstructure constitute an ‘internal speckle grating’
whose post-sample diffusion allows information regarding the
spatially-unresolved microstructure to be extracted. In our
method, no separate ‘reference’ grid-only or speckle-only
image is required, since the sample is the reference.

VI. AVENUES FOR FUTURE RESEARCH

We provide three possible directions for future research,
which build directly off the work presented in this paper, and
will be the subject of future papers. The first of these directions
is a generalization of our retrieval method to multi-material
samples, where there are three key quantities to be recon-
structed separately; the attenuation, the phase shift induced by
the sample, and the dark-field signal. A reconstruction of these
quantities could be achieved in a manner similar to that shown
in this paper, but using three different propagation distances,
where the exit-surface intensity and exit-surface phase of the
x-ray wavefield do not need to be coupled, as compared to the
case of a homogeneous sample [13]. The use of three distinct
propagation distances would allow one to decouple the phase
and diffusion terms in (1), and hence solve for the phase,
attenuation, and dark-field signal.

The second possible direction for future research is an
extension of our retrieval method presented in this paper
to computed tomography (CT), thereby providing a method
to perform dark-field CT using a propagation-based imaging
setup. This could be achieved simply by acquiring a set of
experimental projections, taken at different angles around the
sample, at a minimum of two different propagation distances,
so that our method described in this paper can be used to
reconstruct the sample thickness and dark-field signal for each
projection. These retrieved thickness and dark-field projections
could then be combined into a 3D mapping of both sample
density and the dark-field signal by utilizing standard CT
reconstruction methods, such as filtered-back projection.

In addition to the two directions outlined above, our algo-
rithm could also be extended to the case of ‘directional dark-
field’, where the transverse cross-section of the local SAXS
cone is considered to be elliptical rather than rotationally
symmetric. In such scenarios, the single diffusion coefficient
D(x, y) may be replaced by a symmetric rank-two diffusion
tensor [16]:

Dyx(x,y) %ny(x’y):|. (18)

%ny(x» y) Dyy(X, y)

With this modification, (1) becomes:
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In closing, this manuscript describes a retrieval method
which can quantitatively recover x-ray phase and dark-field
signals without using optics. The method provided gener-
alizes the TIE single-material phase retrieval algorithm of
Paganin et al. [14], which has been widely adopted throughout
the x-ray imaging community. Hence, we hope that our method
may also be of use in a range of imaging problems. Our
algorithm could also be retrospectively applied to existing
multiple-distance data. Potential applications of our dark-field
method include quantitative measurements of the air-sacs in
the lungs [4], [43] or capturing industrial processes involving
microstructure [44].

APPENDIX A - COMPUTATIONAL RECIPE FOR
THE SIMULATED DATASET

Here we provide a computational recipe to simulate
propagation-based images that include dark-field effects, taken
within the manuscript as inputs to our phase and dark-field
retrieval algorithm in Section III. Given the complex refractive
index of a homogeneous sample, where J and f are taken to
be constant, and given the simulated thickness of the sample
Tsim(x, y), we create the exit-surface wavefield

l//(-x9 y,Z :0) = exp[_k(ﬂ+l5)T51m(x; y)] (20)
We then calculate the propagated wavefield by using the
Fresnel propagator, D(AF) [28]:

w(x,y,z=A) =D y(x, 5,2 =0). 1)
The intensity of the propagated wavefield, Ip(x, y,z = A), is

Ip(x,y,2=A) = y(x,y,2=A) I%, (22)
resulting in propagation-based images that would be seen if
dark-field effects were not present. In order to incorporate
dark-field effects, the simulated blur width at a given distance
(mentioned in Section III) is used to blur these propagation-
based images through a position-dependent blurring kernel.
We take this kernel to be a two-dimensional Gaussian function
with standard deviation o (x, y) = w(x, y)AAw, where A, is
some reference propagation distance at which the standard
deviation of the blur kernel is of width w. The resulting
image is therefore:

o0 o
IB(x,y,z=A) = / / h(x',y',z= A7)
—00 —00

_ G242
e 202(x',y)
N

2ma(x',y')
This produces propagation-based images that are locally
blurred by the presence of dark-field effects. These are
then further blurred by a two-dimensional Gaussian PSF
of a =2 pixel standard deviation to describe detector and
source-size blurring:
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(24)
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The intensity images calculated at various propagation
distances according to (24) were taken as inputs to the

simultaneous phase and dark-field retrieval algorithm
presented in the manuscript, as shown in Fig. 3(c).
Additionally, the simulated dark-field signal shown in

Fig. 3(b) is obtained from the standard deviation of the
Gaussian used in (23) as follows (cf. Fig 3(d) in [16]):
2 2
o (x,y) _ wix,y)
Dsim(X, Y) = Az = sz . (25)

Note that although the model given here is tailored to
the context of a homogeneous sample and a rotationally
invariant SAXS cone, this model may be readily adapted to
simulate a multi-material sample and/or a directional SAXS
cone.

APPENDIX B - QUANTITATIVE ACCURACY WITH
PROPAGATION DISTANCE

Here we provide a metric for our simulated dataset, shown
in Section III, which quantifies the accuracy of the TIE
method [14] and our Fokker-Planck method, across multiple
propagation distances. This metric, along with the recon-
structed images, demonstrates the consistency and robustness
of our retrieval method when using different propagation
distances to reconstruct the sample thickness and dark-field

signal.

Define the following root-mean-square error (RMSE)
metric to quantify the accuracy of the thickness
reconstructions:

TRMSE = \/ff|7}etr1eved — Tsimulated|? dXdy’ (26)
f f | Tsimulated| *dxdy

where the integrals are taken over the entire area of the images.
Here, Tietrievea 1S the retrieved sample thickness using either
the method of [14] or our Fokker-Planck method, and Tgimulated
is the simulated thickness shown in Fig. 3(a). From Fig. 5
below, it is evident that regardless of which pair of propagation
distances we use (from those listed in section III) to reconstruct
the sample thickness according to (11), we obtain an accurate
reconstruction of the simulated thickness. Furthermore, based
on the values given by (26) (listed in the caption of Fig. 5), the
thickness reconstructions obtained using our Fokker-Planck
method are consistently better than or at least as good as
the corresponding TIE thickness reconstruction. Analogous
to (26), we can define a metric which quantifies the accuracy
of the dark-field reconstructions using our method compared
to the simulated dark-field signal shown in Fig. 3(b), which
we call D FRMSE:

DFRMSE — \/ff |Dretrieved - DSimlllated|2dxdy
[ | Dsimulatea|*dxdy

Here, Dretrieved 1S the reconstructed dark-field signal according
to (13), Dsimulated 1S the simulated dark-field signal, and the
integrals are taken over the whole area of the images, as above.
We have scaled the simulated dark-field signal (see Fig. 3(b))
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Fig. 5. Top row: Fokker-Planck thickness reconstructions using propa-
gation distances of (a) 30 cm and 50 cm (Trpmse = 0.016), (b) 50 cm
and 65 cm (Truyse = 0.017), and (c) 30 cm and 65 cm (TRvsSE =
0.015). Bottom row: TIE thickness reconstructions [14] using propagation
distances of (d) 30 cm (Truse = 0.016), (e) 50 cm (Trpmse = 0.019),
and (f) 65 cm (TrRumse = 0.023), corresponding to the bolded distances.
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Fig. 6. Various dark-field reconstructions at the different propagation

distances of 30 cm, 50 cm and 65 cm, along with the corresponding
Fokker-Planck thickness reconstructions depicted in the top row of Fig. 5.
(a) DFRMSE = 0.147, (b) DFRMSE = 0.147, (C) DFRMSE = 0.148,
(d) DFRmse = 0.150, (e) DFRmse = 0.153, (f) DFRmse = 0.153,
(9) DFRmse = 0.149, (h) DFgmse = 0.149, (i) DFrmse = 0.149.

to match the range of values present in the retrieved dark-
field signal, i.e. to span the grayscale bar shown in Fig. 6.
As can be seen from Fig. 6, there is no discernible difference
between the reconstructed dark-field signals using different
propagation distances, and each reconstruction provides an
accurate representation of the simulated dark-field signal.
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Image SNR=1000 SNR=316 SNR=223 SNR=100 SNR=70
Intensity at 65cm X ) 1.01
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TIE thickness 120
reconstructed using
30cm propagation
distance intensity
data
8
x1075 m
Fokker-Planck 120
thickness
reconstructed using
30cm and 50cm
propagation
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data 3
x10~5m
Recovered dark-field MAX
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propagation
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Fig. 7. Reconstructed sample thickness and dark-field signal using our method outlined in section Il in simulation as a function of signal-to-noise
ratio (SNR), with the SNR decreasing from left to right. Top row: Simulated intensity data at 65 cm, Second row: Reconstructed sample thickness
using the TIE based method of [14], Third row: Reconstructed sample thickness according to (11) using our Fokker-Planck method, Bottom row:
Recovered dark-field signal according to (13). From left to right, MAX = 8.9 x 10710,9.2 x 10710,9.4 x 10~10, 9.8 x 10710 6.8 x 1010,

APPENDIX C - THE EFFECTS OF
NOISE ON RETRIEVAL

To perform a preliminary investigation into the effects
of noise on the retrieval process described in this paper,
we incorporate noise into our simulations from section III,
as shown in Fig. 7 above. Here, noise has been incorporated
in the form of Poisson noise with a signal-to-noise ratio (SNR)
given by +/N, where N is the average number of x-ray photons
arriving at the detector per pixel. The simulated intensity data
at a propagation distance of 65cm, along with the retrieved
sample thickness using both the TIE [14] and our Fokker-
Planck method, as well as the recovered dark-field signal are
shown in Fig. 7 as a function of SNR ranging from a value of
1000 down to a value of 70, with a higher SNR indicating a
lower relative noise level and hence a less noisy reconstruction
of the sample thickness and dark-field signal. It is worth noting
here that the sensitivity of the retrieval and robustness to
noise will likely depend upon the visibility of the intensity
oscillations in the collected images and the strength of the
dark-field signal. For example, an SNR value of 70 will not
necessarily mean a retrieved sample thickness and dark-field
signal as seen in the last column of Fig. 7 above. Hence,
the SNR values quoted above should not be taken as defining
values.

Two main observations can be drawn from Fig. 7. The
first of these is that the reconstruction process is successful,

at least qualitatively in the case of the dark-field signal, for
SNR values of 1000, 316 and 223. The second observation
to be made is that the sample thickness retrieved using
our Fokker-Planck method is not as robust to the presence
of noise as the TIE method of Paganin et al. [14], noting
that this method is well-known for strong noise-suppressing
properties [45]. This is due to the use of two intensity
images as compared to one in TIE phase retrieval, meaning
there are two terms affected by the presence of noise in
our new retrieval method. In particular, at SNR values of
100 and 70, the breakdown of the retrieved sample thickness
using our Fokker-Planck method is evident compared to the
corresponding TIE thickness reconstructions. This breakdown
in the Fokker-Planck retrieved sample thickness is correlated
with a significant degradation in the quality of the recovered
dark-field signal, as can be seen from the bottom row of Fig. 7.
Hence, while the relative lack of robustness to noise in the
thickness portion of our retrieval method as compared to TIE
phase retrieval is a limitation of our method, one needs to keep
in mind that the main benefit of our method is the ability to
obtain a map of both the sample thickness and dark-field signal
corresponding to SAXS. At low SNR values, the recovered
dark-field signal is poor and so the use of our method is of little
to no value at such SNR levels. Conversely, at moderate and
high SNR levels, the reconstruction of the sample thickness
and dark-field signal provided by our method is accurate (and
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Fig. 8. (a) Scaled propagation-based intensity image (first term in the last line of (12)) of a Liquidambar styraciflua seed pod with a plastic tube
of agarose powder attached, taken with 3 m propagation from sample to detector (a = 0.02m™2, p = 0.15m*2). (b) Retrieved thickness using TIE
method with image taken at 2 m propagation (a = Om, b = 0.015m). (c) Retrieved thickness using our Fokker—Planck method with images taken at
2 m and 3 m propagation (a = 0m, b = 0.015m). (d) Color-coded magnified regions of the thickness maps in (b) and (c) respectively. (e) Difference
between (b) and (c) (a = —3 x 10~*m, b = 5.4 x 10~*m). () Dark-field-free intensity estimation at 3 m using Fresnel propagation — a more accurate
model of the second term in the bottom line of (12) (a = 0.02m~2, b = 0.15m~2). (g) The Laplacian of the product of the dark-field signal and the
exp[—uT(x, y)] term, corresponding to (12), showing only those values where the dark-field coefficient is non-negative (i.e. visibility of panel (f) is
greater than or equal to that of panel (a)) (a = —0.05m~2, b = 0.03m~2). (h) Dark-field signal found using (13) (a =0, b = 1.4 x 10~9). The yellow
arrow indicates the level to which the powder reaches within the tube. (i) Profiles taken along blue and red dashed lines in (a) and (f), showing

differences in visibility between the two terms on the last line of (12).

improves with higher SNR), and so at these types of SNR
levels, our method has substantial benefit over TIE phase
retrieval, as described at length in this paper. In practice,
the amount of noise present in the retrieval process can be
reduced by increasing the exposure time, by capturing multiple
exposures at each propagation distance and then averaging the
captured exposures or by pre-filtering of the images to remove
high-frequency noise.

APPENDIX D - RETRIEVAL FROM MORE
COMPLICATED SAMPLES

Here we test the limits of our retrieval method by consid-
ering a sample for which the J/u ratio is not well known and
which violates the assumption of azimuthally isotropic scatter-
ing. The purpose of doing this is to demonstrate that our new
retrieval method can still be applied to samples that seemingly
exceed the original domain of validity of our method, much
in the same way the TIE retrieval method of [14] has been

extended past its original domain of validity. To this end,
we captured propagation-based intensity images of a small
plastic tube filled with agarose powder, attached to a green
seed pod from a Liquidambar styraciflua tree using Kapton
tape, on IMBL at the Australian Synchrotron using 25keV
x-rays. By approximating the sample to have the refractive
properties of PMMA, we estimated § = 4.27 x 10~". Further,
by measuring the attenuation relative to the sample thickness,
we estimated the linear attenuation coefficient of the sample
to be x4 = 107m~!. The detector pixel size was 10 um and the
images were captured at propagation distances of 0.5m, 1 m,
2m, 3m, 4m, Sm, 6m and 7m. The retrieval results using
the images taken at 2m and 3m are shown in Fig. 8 below.
The full sequence of collected images can be found in Sup-
plementary Material II, where the reduction in local contrast
across the tube of agarose powder, with increasing propagation
distance, should be noted. Prior to applying our retrieval
algorithm, all images were aligned and demagnified as outlined
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in section IV. As can be seen from the retrieved thickness
maps shown in Fig. 8(b) and (c), using the TIE approach and
our new Fokker-Planck method respectively, there is a clearly
discernible higher spatial resolution associated with the pro-
jected thickness reconstruction using a Fokker-Planck analysis,
with this higher spatial resolution being particularly evident in
the zoomed-in regions shown in Fig. 8(d). This observation is
further reinforced by the Laplacian-type character seen in the
difference between the TIE and Fokker-Planck reconstructions
shown in Fig. 8(e), as the observed Laplacian-type character
of the difference map is a signature of the higher spatial
resolution associated to the Fokker-Planck analysis [34]. This
difference can be attributed to the fact that the Fokker-Planck
analysis properly separates phase from dark-field effects,
and that the TIE method interprets decreased-visibility
phase contrast fringes as more slowly-changing sample
thickness.

Using the reconstructed Fokker-Planck thickness, the last
two terms in the dark-field retrieval step can be calculated,
representing the estimated intensity image in the absence of
any dark-field effects, shown in Fig. 8(f). For this dataset,
instead of calculating the latter two terms in (12), we opted
to use the Fresnel propagator to propagate the exit-surface
wavefield, calculated from the retrieved Fokker-Planck thick-
ness, to a distance of 3 m, to more accurately describe the PBI
fringes from a range of sample feature sizes and hence a range
of Fresnel numbers. This replacement is valid since the Fresnel
propagator reduces to the latter two terms of (12) (up to scaling
factors of the propagation distance) in the TIE regime limit
(see pp. 324-326 of [28] for details). Taking the profiles along
the blue and red dashed lines in Fig. 8(a) and (f) respectively,
we obtain Fig. 8(i), from which it can be seen that there is a
difference in visibility in the profiles in regions in which there
is a strong dark-field signal, while there is a closer match
between the profiles in regions where there is a weaker dark-
field signal. The next step in the dark-field retrieval process
would be to take the difference between Fig. 8(a) and (f).
Based on the profiles in Fig. 8(i), if we were to do this for this
sample, where the dark-field is relatively weak, then we would
see both regions where the experimental image has reduced
local visibility, and occasionally regions where the experimen-
tal image has increased local visibility (e.g. see the strong
PBI fringes around 170 pixels into the profile). By simply
taking the difference between panel (a) and (f), we would lose
information about where the experimental image has higher or
lower visibility than we would expect for the given sample
thickness in the absence of dark-field. However, since the
dark-field signal is naturally restricted to be non-negative (see
section I), any increase in local visibility of the experimental
image is nonphysical (as this leads to a negative diffusion
coefficient), with any such apparent increases in visibility
being due to the presence of noise or slight mismatches in
visibility from numerical modeling, and so we seek to isolate
the non-negative dark-field signal here. To evaluate which
profile has higher visibility, we measured the average curvature
of the intensity oscillations in each direction by means of the
absolute value of the second derivative of the intensity, which

should oscillate between the value of the maximum curvature
(e.g. peak/trough) and zero. To measure this average curvature
in the presence of noise, we first utilized a two-dimensional
Savitzky-Golay filter [46] to compute the Laplacian of the
relevant images (Fig. 8(a) and (f)), a method that avoids noise
amplification. We then took the absolute value of each of these
Laplacian images and smoothed with a 2D Gaussian kernel
of five pixel standard deviation in each direction to remove
zeros. In image regions where there was an apparent increase
in visibility (i.e. the blue profile had higher visibility than the
red), Fig. 8(g) was set to zero. Finally, the dark-field signal
was retrieved using (13) and is shown in Fig. 8(h). One can see
that the agarose powder in the tube is more visible in Fig. 8(h),
compared to the thickness reconstructions in (b) and (c), for
instance by looking at the tip of the tube and the level to which
the microstructures fill up the tube, indicated by the yellow
arrow in panel (h). The internal wood-like structure of the
seed pod also generates a strong dark-field signal, which is not
seen in the thickness reconstructions. Note also that although
the dark-field signal generated here by the seed pod is likely
to be directional, the described dark-field retrieval algorithm
is still able to reconstruct the dark-field image. In this case,
we could expect the strength of the retrieved dark-field signal
to correspond to the root mean square of the major and minor
axis of directional dark-field.

As a final point, we discuss the reason for using the
additional filtering steps outlined in the previous paragraph
when retrieving the dark-field signal from this sample as
compared to the sample presented in section IV. As can be seen
from Fig. 4(i), there are very few locations in which the blue
profile, corresponding to the scaled intensity image, is more
visible than the red profile, which corresponds to the dark-field
free intensity estimation. More importantly, the difference
between the profiles in regions where this occurs (e.g. near
the label ‘weak dark-field’) is much smaller in magnitude
than the difference in regions where the red profile has a
higher visibility than the blue (‘strong dark-field’ regions).
By contrast, it can be observed from Fig. 8(i) that there
are significantly more regions in which the blue profile has
higher visibility than the red profile, and in these regions, the
difference between the blue and red profiles is comparable to
the difference seen between the profiles in regions where the
red profile has a higher visibility than the blue profile. It is
precisely when these differences in magnitude become com-
parable where we would lose information about which profile
has higher visibility by simply taking the difference between
the profiles, and hence the additional steps in the dark-field
retrieval process, described in the previous paragraph, become
important.
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