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Coefficient Prior for PET Image Reconstruction
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Abstract— Image reconstruction of low-count positron
emission tomography (PET) data is challenging. Kernel
methods address the challenge by incorporating image
prior information in the forward model of iterative PET image
reconstruction. The kernelized expectation-maximization
(KEM) algorithm has been developed and demonstrated to
be effective and easy to implement. A common approach for
a further improvement of the kernel method would be adding
an explicit regularization, which however leads to a complex
optimization problem. In this paper, we propose an implicit
regularization for the kernel method by using a deep coeffi-
cient prior, which represents the kernel coefficient image
in the PET forward model using a convolutional neural-
network. To solve the maximum-likelihood neural network-
based reconstruction problem, we apply the principle of
optimization transfer to derive a neural KEM algorithm. Each
iteration of the algorithm consists of two separate steps: a
KEM step for image update from the projection data and
a deep-learning step in the image domain for updating the
kernel coefficient image using the neural network. This opti-
mization algorithm is guaranteed to monotonically increase
the data likelihood. The results from computer simulations
and real patient data have demonstrated that the neural
KEM can outperform existing KEM and deep image prior
methods.

Index Terms— Dynamic PET, image reconstruction,
kernel methods, optimization transfer (OT), deep image prior
(DIP).

I. INTRODUCTION

TOMOGRAPHIC image reconstruction for positron emis-
sion tomography (PET) is challenging because of the
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ill-conditioned problem and low counting statistics [1]. The
kernel method addresses this challenge by integrating image
prior information into the forward model of PET image
reconstruction (e.g., [2], [3], [4], [5], [6], [7], [8], [9]). The
a priori information can come from composite time frames
in a dynamic PET scan [2], [3], or from the co-registered
anatomical images, e.g., magnetic resonance (MR) images [4],
[5]. The derived kernel expectation-maximization (KEM) algo-
rithm [2] has been demonstrated to be effective and is easy to
implement [2], [3], [4], [5], [10].

To further improve the kernel method such as for higher
temporal resolution dynamic PET imaging or for low-dose
PET imaging, a straightforward approach would be adding an
explicit regularization form on the kernel coefficient image
to stabilize the solution [2]. This can be achieved using
either conventional penalty functions (e.g., [12], [13], [14],
[15]) or convolutional neural network (CNN) based penalties
(e.g., [16], [17]). However, such regularization-based methods
generally require a complex optimization algorithm, involve
one or more hard-to-tune hyper-parameters, and need to run
for many iterations for a convergent solution.

In this paper, we propose an implicit regularization for
the kernel method by using CNN to represent the kernel
coefficient image in the kernelized model. The use of CNN
representation shares the same spirit of the work of Gong
et al. [18], [19], [20] and others [21], [22], [23] that employs
deep image prior (DIP) [24] for PET image reconstruction.
Differently the CNN representation in this work is applied in
the kernel coefficient space instead of the original PET activity
image space, resulting in a modified kernel method with deep
coefficient prior.

One challenge with solving the corresponding optimiza-
tion problem is that the neural network is involved in
the projection domain, resulting in a large-scale, nonlin-
ear reconstruction problem. The alternating direction method
of multipliers (ADMM) is a popular optimization approach
to solving this kind of problems, e.g., in [18] and [21].
However, the hyper parameters associated with an ADMM
algorithm are challenging to tune in practice. In this work,
we derive an easy-to-implement iterative algorithm by using
the principle of optimization transfer [26], [27], [28] for
the neural network-based reconstruction. We call the new
algorithm neural KEM to differentiate it from the original
KEM algorithm.
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There are also other ways to explore deep learning for
PET reconstruction [29], [30], [31], [32], [33], such as the
direct end-to-end mapping of PET image from projection [34]
and unrolled model-based deep-learning reconstruction [35],
[36]. All these approaches require pre-training using a large
population-based database, which is not always available. Sim-
ilar to the original kernel method [2] and the DIP method [18],
the proposed method does not require population-based pre-
training but is solely based on the data of single subjects.

The remaining of this paper is organized as follows.
Section II introduces the background materials of the ker-
nel method and DIP method for PET image reconstruction.
Section III describes the proposed neural KEM method that
combines the kernel method with deep coefficient prior.
We then present 2D and 3D computer simulation studies in
Sections IV and V and a real patient data study in Section VI
to demonstrate the improvement of the proposed method over
existing methods. Finally discussions and conclusions are
drawn in Sections VII and VIII.

II. BACKGROUND

A. PET Image Reconstruction

PET projection measurement y = {yi }N
i=1 can be well

modeled as independent Poisson random variables using the
log-likelihood function [1],

L(y|x) =
N∑

i=1

yi log yi − yi − log yi !, (1)

where the expectation of the projection data, y = {
yi

}N
i=1,

is related to the unknown activity image x = {
x j

}J
j=1 through

y = P x + r, (2)

where x j denotes the PET image intensity value in pixel j .
N is the total number of detector pairs and J is the number
of image pixels. P is the detection probability matrix and
includes normalization factors for scanner sensitivity, scan
duration, deadtime correction and attenuation correction. r is
the expectation of random and scattered events [1].

The maximum likelihood estimate of the activity image x
is found by maximizing the Poisson log-likelihood,

x̂ = arg max
x≥0

L(y|x). (3)

A common way of seeking the solution of (3) is the maximum
likelihood expectation maximization (ML-EM) algorithm [37].

B. Kernel EM for PET Reconstruction

The image estimate by standard ML-EM is commonly noisy
due to the limited counting statistics of PET emission data.
To suppress noise, the kernel method [2] incorporates an image
prior into the forward projection of PET reconstruction by
describing the image intensity x j using kernels,

x j =
∑

l∈N j

αlκ( f j , f l), (4)

where N j defines the neighborhood of pixel j , e.g., by the
k-nearest neighbors (kNN, [38]). κ(·, ·) is the kernel function
(e.g., radial Gaussian) and f denotes the low-dimensional fea-
ture vector that is extracted at each pixel from the image prior
z (e.g. the composite images in dynamic PET or anatomical
image in PET/MR or PET/CT). The equivalent matrix-vector
form of (4) is

x = Kα, (5)

where K is a sparse square kernel matrix with its ( j, l)th
element being κ( f j , f l). α denotes the corresponding kernel
coefficient image.

Substituting the kernelized image model (5) into the stan-
dard PET forward projection model in (2) gives the following
kernelized forward projection model for PET image recon-
struction,

y = P Kα + r. (6)

The maximium-likelihood estimate of α can be found by
the kernel EM algorithm [2],

αn+1 = αn

w
·
(

K T PT y
P Kαn + r

)
, (7)

where

w = K T PT 1N , (8)

and 1N is a vector with all elements being 1. n denotes
the iteration number and the superscript “T ” denotes matrix
transpose. The vector multiplication and division are element-
wise operations. Note that the KEM update becomes the
standard EM update if K is an identity matrix. Once α is
estimated, the final reconstructed PET image is given by

x̂ = K α̂. (9)

Note that the same update equation (7) is also used by the
sieves method [11]. The difference is that the sieves method
uses a stationary Gaussian kernel [11], while the kernel method
here uses data-driven spatially variant kernels that are derived
from the image prior z.

The estimated kernel coefficient image α by the standard
kernel method [2] may still suffer from noise, as demonstrated
later in this paper. One possible way for improvement is to add
an explicit penalty function to stabilize the estimation of α as
indicated in the original kernel method [2], which however
may result in a more challenging optimization problem and
involves at least one more regularization parameter to tune.

C. PET Reconstruction Using DIP

The DIP method for PET reconstruction is proposed in [18]
based on the representation ability of CNNs. Instead of using
the linear kernel representation in (6), the PET image x can
be also described by a nonlinear representation using neural
networks and the image prior data z,

x = β(θ |z), (10)
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Fig. 1. Graphical illustration of the kernel representation with deep
coefficient prior.

where β is a neural netwok model with z the input images and
θ the network weights. After substituting the DIP model (10)
into (2), the PET forward projection model becomes

y = Pβ(θ |z) + r. (11)

The maximum-likelihood estimate of the unknown θ is
obtained by

θ̂ = arg max
θ

L
(

y|β(θ |z)
)
. (12)

Once θ is estimated, the PET activity image is calculated as

x̂ = β(θ̂ |z). (13)

To solve the resulting nonlinear optimization problem, Gong
et al. [18] use the ADMM algorithm,

xn+1 = arg max
x

L(y|x) − ρ

2
||x − β(θn |z) + μ||2, (14)

θn+1 = arg min
θ

||β(θ |z) − (xn+1 + μn)||2, (15)

μn+1 = μn + xn+1 − β(θn+1|z), (16)

where the subproblem (14) is a penalized-likelihood image
reconstruction problem and the subproblem (15) is an
image-domain DIP learning using a mean-square error (MSE)
loss function. ρ is a hyper-parameter. One well-known weak-
ness of the ADMM algorithm is that ρ is usually difficult to
tune.

III. PROPOSED NEURAL KEM

A. Kernel Method With Deep Coefficient Prior

In this work, we propose to describe the kernel coefficient
image α in the kernel method as a function of neural networks,

α = β(θ |z), (17)

where z and θ are again the input (e.g., the composite image
prior in dynamic PET [2]) and weights of the neural network
β, sharing the same spirit of the DIP model [18]. This provides
a kernel representation with deep coefficient prior for PET
image,

x = Kβ(θ |z). (18)

Fig. 1 shows a graphical illustration of the proposed model
using neural network layers, of which the last layer is linear
and has fixed network weights as determined by the kernel
matrix K .

Fig. 2. Illustration of optimization transfer used in this work. The
surrogate function Q(θ |θn) minorizes the original likelihood function
L(θ ). Q(θ |θn) is designed to be easier to optimize. The solution θn+1

guarantees a monotonic increase in L.

The proposed model (18) becomes the DIP model in [18]
if the kernel matrix K is an identity matrix; the model is
also equivalent to the standard kernel model [2] if the neural
network β is an identity mapping. When a more complex
neural network model (e.g., U-net) is used, the deep coefficient
prior then introduces an implicit regularization to stabilize the
estimation of the kernel coefficient image α.

By substituting the proposed image model in (18) into the
standard PET forward projection model in (2), we obtain the
following forward model for PET image reconstruction,

y = P Kβ(θ |z) + r. (19)

The unknown θ of the neural network is estimated from the
projection data by maximizing the Poisson log-likelihood,

θ̂ = arg max
θ

L
(

y|Kβ(θ |z)
)
. (20)

Once θ̂ is estimated, the PET image is obtained by

x̂ = Kβ(θ̂ |z). (21)

B. Tomographic Reconstruction of Neural Networks
Using Optimization Transfer

The optimization problem in (20) is challenging to solve
because the unknown θ is non-linearly involved in the projec-
tion domain. One possible solution is the ADMM algorithm as
used in [18] but tuning the hyperparameter ρ is nontrivial in
practice. Here we develop an easy-to-implement optimization
transfer algorithm using a similar concept as used for nonlinear
parametric PET image reconstruction of tracer kinetics [25],
[26] and for joint image registration and reconstruction [27].

The basic idea of optimization transfer [28] is to construct
a surrogate function Q(θ |θn) at iteration n, which minorizes
the original objective function L(θ), as illustrated in Fig. 2.
Following the concave property of the log function [28] (also
see Eq. 9 in [26]) and treating P K as a single matrix A with
its (i, j )th element being ai j , we have the following inequality,

log yi = log
( J∑

j=1

ai j β j (θ |z) + ri

)

≥
J∑

j=1

ai j β j (θ
n |z)

yn
i

log β j (θ |z) + cn
i , (22)
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where yn
i = [Aβ(θn|z)+r]i . The iteration-dependent constant,

cn
i =

( J∑
j=1

ai j β j (θ
n|z)

yn
i

log
yn

i

β j (θ
n|z)

)
+ ri

yn
i

log yn
i , (23)

is independent of the unknown parameter θ and is thus omitted
hereafter.

Based on (22), an EM-type surrogate function Q(θ |θn) can
be built for the original likelihood function L in a similar way
as used in [26],

Q(θ |θn) =
J∑

j=1

w j

(
α̂n+1

j log β j (θ |z) − β j (θ |z)
)
, (24)

where w j corresponds to the j th pixel of w defined in (8).
α̂

n+1 is an intermediate kernel coefficient image updated with

α̂
n+1 = αn

w
·
(

K T PT y
yn

)
, (25)

which is one iteration of KEM defined by (7) with αn �
β(θn|z).

The surrogate Q(θ |θn) resembles an image-domain Pois-
son log-likelihood function (with a pixel-wise weight w).
Using (22), it is straightforward to prove that the surro-
gate satisfies the following two conditions for optimization
transfer [28],

Q(θ |θn) − Q(θ n|θn) ≤ L
(

y|Kβ(θ |z)) − L
(

y|Kβ(θn |z)),
(26)

∇Q(θn|θn) = ∇L
(

y|Kβ(θn |z)), (27)

where ∇ denotes the gradient with respect to θ .
The original optimization problem in (20) is now equiv-

alently transferred into the maximization of the surrogate
function (24) at each iteration n,

θn+1 = arg max
θ

Q(θ |θn), (28)

which performs an image-domain neural-network learning for
seeking a β approximation to the intermediate kernel coeffi-
cient image α̂

n+1. The learning can be implemented using any
existing optimization algorithm (e.g., the Adams optimizer)
that is available in a deep-learning software library such as
PyTorch or TensorFlow. Because of Q(θn+1|θn) ≥ Q(θ n|θn)
and (26), the surrogate optimization guarantees convergence
to a local optimum and a monotonic increase in the original
likelihood L,

L
(

y|Kβ(θn+1|z)
)

≥ L
(

y|Kβ(θn |z)
)
. (29)

C. Summary of the Algorithm and Implementations

A pseudo-code of the proposed algorithm is provided in
Algorithm 1. Each iteration of the algorithm consists of two
separate steps:

1) Image reconstruction: Obtain an intermediate kernel
coefficient image update α̂

n+1 from the projection data
y using KEM in (25);

Fig. 3. Illustration of the modified residual U-net β(θ |z) used in this work.

2) Neural-network learning: Find a CNN approximation of
the intermediate image α̂

n+1 using the image-domain
maximum-likelihood optimization in (28).

We call this algorithm Neural KEM to reflect the fact that
neural-network learning is used following the KEM update.
Compared to ADMM, the Neural KEM algorithm does not
need to tune a hyperparameter and is easier to use.

The proposed algorithm is applicable to different neural net-
work architectures that are suitable for image representation.
In our work, a popular residual U-net (e.g., used in [18]) is
used for neural network learning and is illustrated in Fig. 3.
The network is available in both 2D and 3D versions for
learning 2D and 3D images, respectively. It consists of the
following operations: 1) 3 × 3 (×3) 2D (3D) convolutional
layer, 2) 2D (3D) batch normalization (BN) layer, 3) leaky
rectified linear unit (LReLU) layer, 4) 3×3 (×3) convolutional
layer with stride 2 × 2 (×2) for down-sampling, 5) 2 × 2
(×2) bilinear (trilinear) interpolation layer for up-sampling, 6)
identity mapping layer that adds feature maps from left-side
encoder path to the right-side decoder path. In addition,
a ReLU layer is used before the output in order to satisfy the
non-negative constraint on the kernel coefficient image. The
total number of model parameters in the 3D U-net is about
1.3 million.

Algorithm 1 Neural KEM for PET Reconstruction
1: Input parameters: Maximum iteration number MaxIt,
initial θ1.
2: for n = 1 to MaxIt do
3: Obtain an intermediate coefficient image update:

α̂
n+1 = αn

w
·
(

K T PT y
P Kαn+r

)
,

with αn = β(θn |z)
4: Perform a neural network learning by maximizing:

Q(θ |θn) �
∑

j w j

(
α̂n+1

j log β j (θ |z) − β j (θ |z)
)

5: end for
6: return x̂ = Kβ(θ̂ |z)

IV. VALIDATION USING 2D COMPUTER SIMULATION

A. Simulation Setup

We conducted a two-dimensional (2D) computer simulation
study to validate the proposed method in dynamic PET image
reconstruction. Dynamic scans were simulated for a GE DST
whole-body PET scanner using a Zubal head phantom shown
in Fig. 4a. The phantom is composed of gray matter, white
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Fig. 4. Digital phantom and time activity curves used in the simulation
studies. (a) Zubal brain phantom; ‘B’ represents the blood ROI and ‘T’ is
the tumor ROI. (b) Regional time activity curves.

matter, blood pools (18mm in long axis) and a tumor (15 mm
in diameter). The detector system consists of 280 detector
blocks, arranged as four rings of 70 blocks each. The width
of the block is 38.35mm. The scanner consists of 10,080
BGO crystals. A one-hour dynamic scan was divided into
24 time frames: 4 × 20s, 4 × 40s, 4 × 60s, 4 × 180s, and
8 × 300s. The pixel size is 3 × 3 mm2 and the image size is
111×111. The time activity curve of 18F-FDG in each region is
shown in Fig. 4b. Dynamic activity images were first forward
projected to generate noise-free sinograms. Poisson noise was
then introduced. Scatters were simulated using the SimSET
package [39] using the cylindrical scanner model with no
block and gap effects included. We also included 20% uniform
random events. Attenuation map, mean scatters and randoms
were used in all reconstruction methods to obtain quantitative
images. The expected total number of events over 60 min was
8 million. Ten noisy realizations were simulated and each was
reconstructed independently for comparison.

B. Reconstruction Methods

We compared the proposed neural KEM with four different
reconstruction methods: (1) standard ML-EM, (2) KEM [2],
(3) DIP reconstruction by ADMM [18], and (4) DIP recon-
struction by the optimization transfer (OT) algorithm, which
is equivalent to the neural KEM with K = I .

In the kernel-based methods (regular KEM and neural
KEM), three 20-minute composite frames were used to gener-
ate the image prior data z as used in [2]. The radial Gaussian
kernel function κ( f j , f l) = exp(−|| f j − f l ||2/2σ 2) was
used. Pixel intensity values extracted from the composite
images were used to form the feature vector f for generating
the kernel matrix K using σ = 1 and kNN with k=48 which
were the same as used in [2].

For the DIP reconstruction by ADMM [18], within each
outer iteration, 4 iterations were used for solving (14) and
50 iterations were used for solving (15). These settings were
empirically optimized for obtaining stable results according to
image mean squared error (MSE; defined in next subsection)
in our experiments. The effect of the ADMM hyper-parameter
ρ was also investigated and reported. ρ = 0.05 was chosen
for nearly optimal image MSE.

The input of CNN in both the DIP methods and neural KEM
was set to the composite image prior z. A ML-EM image was
also tested but resulted in worse results. For implementation,

the tomographic reconstruction step was implemented in
MATLAB and the neural-network learning step was imple-
mented in PyTorch, both on a PC with an Intel i9-9920X
CPU with 64GB RAM and a NVIDIA GeForce RTX 2080Ti
GPU. The Adam algorithm was used with a learning rate 10−3

for neural network learning. All reconstructions were run for
60 iterations with a uniform initial image. The subiteration
number for the neural network learning step was empirically
optimized to be 150 in both the DIP by OT and neural KEM
method for image MSE. The effect of this subiteration number
was also investigated.

C. Evaluation Metrics

Different methods were first compared using image MSE
defined by

MSE(x̂m) = 10 log10
(||x̂m − xtrue

m ||2/||xtrue
m ||2)(dB), (30)

where x̂m is an image estimate of frame m obtained with one
of the reconstruction methods and xtrue

m denotes the ground
truth image. The ensemble bias and standard deviation (SD)
of the mean intensity in regions of interest (ROIs) were also
calculated to evaluate ROI quantification,

Bias = 1

ctrue

∣∣c − ctrue
∣∣, SD = 1

ctrue

√√√√ 1

Nr − 1

Nr∑
i=1

|ci − c|,

(31)

where ctrue is the noise-free intensity and c = 1
Nr

∑Nr
i=1 ci

denotes the mean of Nr realizations. ci is the mean ROI uptake
in the i th realization and Nr = 10 in this study.

D. Comparison for Reconstructed Image Quality

Fig. 5 shows the true activity images and reconstructed
images at iteration 60 by five different reconstruction methods
for frame 2 (early 20-s frame, low count level), frame 12
(middle 1-min frame, moderate count level) and frame 24 (late
3-min frame, relatively high count level), respectively. The
results of MSE in dB are included. As expected, kernel-based
methods (regular KEM and neural KEM) achieved a better
image quality with lower MSE as compared to the methods
without kernel ((b), (d) and (e)). The DIP by ADMM [18]
and DIP by OT both suppressed noise well but also led to
over-smoothness. The proposed neural KEM was less noisy
than the regular KEM due to the added level of regularization
from the deep coefficient prior on α and demonstrated better
detail preservation than the DIP methods due to the additional
structural information embedded in the kernel matrix K .

Fig. 6(a) and Fig. 6(b) further show image MSE as a
function of iteration number for the two different frames
(frame 2 and frame 12). For the DIP reconstruction, the
ADMM algorithm demonstrated a relatively faster conver-
gence rate in early iterations than the KEM and DIP by
OT. This is mainly because four sub-iterations were used for
the tomographic reconstruction step in the ADMM algorithm
while one sub-iteration was used for other algorithms. The
DIP by OT was either comparable to (Fig. 6(b)) or better
than (Fig. 6(a)) the DIP by ADMM. Note that here the DIP
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Fig. 5. True activity images and reconstructed images by different reconstruction methods for frame 2 (top row), frame 12 (middle row) and frame
24 (bottom row). (a) True images, (b) ML-EM, (c) KEM [2], (d) DIP by ADMM [18], (e) DIP by OT, (f) Proposed neural KEM.

Fig. 6. Plots of image MSE for different reconstruction methods. (a-b) image MSE as a function of iteration number for frame 2 (a) and frame
12 (b); (c) image MSE of all time frames. The error bars in (c) were obtained from 10 realizations.

by ADMM and DIP by OT were not always close to each
other. This can be explained by that the neural network model
is nonlinear and different algorithms are not guaranteed to
provide the same solution.

Fig. 6(c) shows the plots of image MSE for all time frames
reconstructed by different methods with 60 iterations. Error
bars were calculated over 10 noisy realizations. The DIP by
ADMM showed a slightly unstable behavior across different
frames. This is likely because a single value of the hyper-
parameter ρ has varying efficacy for different time frames. The
regular KEM was either equivalent to or slightly better than
the DIP by OT. The proposed neural KEM further improved
all the frames as compared to the regular KEM.

E. Comparison for ROI Quantification

Fig. 7 shows the trade-off between the bias and SD of
different methods for ROI quantification in the blood and
tumor regions. The two ROIs are the same as the anatomical
regions marked in Fig. 4a. The curves were obtained by

varying the iteration number from 10 to 60 iterations with an
interval of 10 iterations. As expected, the bias decreases as the
iteration number increases in all the methods. For the blood
ROI quantification, the DIP by OT was better than the DIP by
ADMM because of the improved convergence and stability by
OT in these three cases. For the tumor ROI quantification, the
DIP by OT was either better than the DIP by ADMM in the
low and medium cases (frame 2 and frame 12) or comparable
in the high-count case (frame 24).

The proposed neural KEM achieved the lowest SD and
bias simultaneously for frame 2 and frame 12 after 20 itera-
tions, demonstrating its advantage for low- and medium-count
frames. In the high-count case (frame 24), the traditional
ML-EM achieved the lowest bias for small targets (i.e.,
the tumor and blood ROIs) due to a good recovery of the
contrast at a high iteration number. The neural KEM was
with a higher bias due to oversmoothness in this high-count
case but it was still better than the regular KEM and
DIP methods.
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Fig. 7. Plots of bias-SD trade-off for ROI quantification in frame 2, 12 and 24 by varying the iteration number from 10 to 60 (i.e., from rightmost to
leftmost on each curve). (a) Blood ROI quantification, (b) tumor ROI quantification. A zoom-in is included for frame 2 in (a).

F. Effect of Method Parameters

To demonstrate the challenge for choosing a proper ADMM
parameter ρ in the DIP method, Fig. 8(a) shows the
iteration-based MSE result for a range of ρ values for frame
12. An inappropriate ρ resulted in instability and oscillations
across iterations. ρ = 0.05 was a good choice for this frame
but resulted in poor MSE for some of other frames, as shown
in Fig. 6(c). The OT algorithm avoids this difficult-to-tune
parameter.

Similar to other methods that use neural network-based
deep prior, the proposed neural KEM involves a sub-iteration
number that needs to be determined for the neural-network
learning step. Fig. 8(b) shows the effect of this sub-iteration
number on the final image MSE for frame 2 (low-count),
frame 12 (medium-count) and frame 24 (high-count). The
result suggests a reasonable choice is 150 iterations, which
also worked well for other frames. We also found that the
CNN training is stable when the learning rate in the Adam
optimizer ranges from 10−4 to 10−2.

V. VALIDATION USING 3D COMPUTER SIMULATION

A. Simulation Setup

We also performed a fully-3D computer simulation study
using an XCAT heart phantom for a GE Discovery 690 PET
scanner. This scanner has 13,824 LYSO crystals, arranged in
24 ring detectors. The detection unit is composed of blocks
consisting of 9×6 crystals, each containing a total of 64 blocks
per ring. The sinogram size is 381 ×553 ×288 and the image
size is 137×137×47. The voxel size was 4.0×4.0×3.3 mm3.

Fig. 8. Effect of (a) ADMM hyper-parameter ρ of the DIP method and
(b) CNN learning subiterations of the neural KEM on the image MSE.

A one-hour dynamic 18F-FDG scan was simulated using
49 time frames: 30 × 10s, 10 × 60s, and 9 × 300s. Here the
framing scheme is adapted to capture the fast kinetics in the
heart. The TACs of different regions were extracted from a
real patient FDG PET scan to generate noise-free dynamic
activity images. The images were then forward projected to
generate noise-free sinograms. No time-of-flight information
was simulated. To reduce time, SimSET-based simulation was
not used for scatter simulation here. Instead, scattered and
random events were simulated using a 40% uniform sinogram.
Poisson noise was then generated with 1.25 billion expected
events over 1 hour. Ten noisy realizations were simulated.

B. Reconstruction Methods

For the kernel methods, the kernel matrix K was built using
four composite frames (one 5-min frame, one 15-min frame
and two 20-min frames). Here compared to the 3 composite
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Fig. 9. True activity images and reconstructed images by different methods in a 3D computer simulation study. A low-count case (frame 6, top row)
and a high-count case (frame 49, bottom row) are shown. Each image is shown in transverse and coronal views.

Fig. 10. Quantitative results from the 3D simulation study. (a) Plots of image MSE across all frames; (b-c) Plots of bias-SD trade-off for ROI
quantification by varying the iteration number from 10 to 60 (i.e., from rightmost to leftmost on each curve). (b) Aorta ROI in a low-count case (frame
6), (c) myocardium ROI in a high-count case (frame 49).

frames used for the 2D simulation study, the first 20-min was
divided into two shorter composite frames to better capture
the early dynamic information for reconstructing the data of
higher temporal resolution. The kNN search was performed in
a 9×9×9 local region with k = 50 nearest neighbors to reduce
the computation time. The 3D version of U-net was used in the
neural network-based methods with the 4 composite images
as the network input. Similar to the 2D simulation study,
150 iterations were used for the neural-network learning step
within each outer iteration. The proposed neural KEM was
compared with ML-EM, regular KEM and DIP by OT using
the image MSE and ROI bias-SD metrics. All the methods
were run for 60 iterations starting from a uniform initial image.

C. Evaluation Results

Fig. 9 shows the true 3D activity images and reconstructed
images at iteration 60 by different reconstruction methods for

frame 6 (early 10-s frame, low-count level) and frame 49 (late
5-min frame, high-count level). The proposed neural KEM
achieved the lowest image MSE for both frames.

Fig. 10(a) shows the plots of image MSE for all frames
reconstructed by different methods with 60 iterations. The
two kernel-based methods (regular KEM and neural KEM)
demonstrated a substantial improvement as compared to the
ML-EM and DIP methods. The neural KEM was further better
than the regular KEM particularly for those low-count frames.

Fig. 10(b) and fig. 10(c) show the trade-off between the bias
and SD of different methods for ROI quantification in an aorta
ROI of 3077 voxels and a myocardium ROI of 3744 voxels,
respectively. The result of this 3D simulation study here is
consistent with that of the 2D simulation study. The DIP
method demonstrated a poor ROI bias-SD performance for
the myocardial ROI quantification even though the associated
image MSE was better than the ML-EM. In comparison, the
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Fig. 11. 3D image reconstructions of (a) a late frame at t = 3300 − 3600s and two early HTR frames at (b) t = 18 − 20s and (c) t = 36 − 38s by
different methods. Here different frames are displayed for visualizing different targets of interest, i.e. tumor in (a), aorta in (b), and kidney in (c). Each
reconstruction is shown in the transverse and coronal views.

proposed neural KEM achieved the best trade-off among the
different reconstruction methods.

VI. APPLICATION TO REAL PATIENT DATA

A. Patient Data Acquisition

We have further applied the neural KEM to dynamic PET
imaging for a real patient dataset. A cancer patient scan was
performed on the GE Discovery 690 PET/CT scanner at the
UC Davis Medical Center. The PET scan started right at the
injection of 10 mCi 18F-FDG and lasted 60 minutes. As our
simulation studies have indicated that the neural KEM mainly
benefits low-count frames, here we focus on high-temporal
resolution dynamic imaging. The one-hour data are divided
into 97 time frames following the schedule 60 × 2s, 18 × 10s,
10×60s, and 9×300s. A CT scan was acquired for attenuation
correction. The projection data size was 381 × 553 × 288 and
the image size was 192 × 192 × 47. All data corrections,

including normalization, attenuation correction, scatter correc-
tion and random correction, were extracted using the vendor
software and included in the reconstruction process. Similar
to the 3D simulation study, four composite frames (one 5-min
frame, one 15-min frame and two 20-min frames)) were used
to build the kernel matrix for this high-temporal resolution
reconstruction. Other algorithm settings were also the same as
used for the 3D simulation study described in Section V.B.

For ROI analyses, three ROIs were manually drawn on the
corresponding CT images in the descending aorta, the tumor,
and the kidney cortex regions. The volume of the blood ROI,
tumor ROI and kidney ROI is 9 cm3, 12 cm3, and 15 cm3,
respectively.

B. Results of Reconstructed PET Images

Fig. 11 shows the comparison of different reconstructions
for a late 5-minute frame (t = 3300 − 3600s) and two early
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Fig. 12. Plots of ROI mean of (a) the blood region, (b) tumor, and (c) kidney cortex versus liver background noise by varying iteration number
from 10 to 60.

2-s frames (t = 18 − 20s, t = 36 − 38s). Each reconstruction
is shown in the transverse and coronal views.

For the 5-minute frame which has a relatively high count
level, the ML-EM reconstruction had good contrast in the
tumor region though still contained high noise in the normal
liver parenchyma. The DIP by OT caused over-smoothness
and demonstrated a distortion in the tumor as pointed by the
arrow in Fig. 11(a). With a preserved tumor shape similar to
that of the ML-EM, both the regular KEM and neural KEM
suppressed noise well and provided similar results in this high-
count reconstruction, though the latter may have a slightly
higher risk of oversmoothing small targets or sharp edges for
higher count data due to the additional regularization from the
use of deep coefficient prior.

For the 2-s frames, the ML-EM reconstructions were
extremely noisy. The DIP by OT significantly reduced noise
but tended to over-smooth the images. In Fig. 11(b), KEM
resulted in a discontinuous aorta while the proposed neural
KEM showed a more natural shape. In Fig. 11(c), the neural
KEM also showed a more continuous renal cortex, which
may benefit parametric imaging as will be presented in the
next subsection. To sum up, the proposed neural KEM not
only suppressed the noise in the background regions but also
preserved structural contrast and details, though it cannot
exclude a potential risk of over-regularization similar to any
other methods that includes a regularization. Here the neural
KEM and DIP by OT showed different anatomical structures
in these two low-count frames. While there is no ground truth
and the ML-EM was too noisy to provide a reference, the
result from the high-count frame shown in Fig. 11(a) may
imply the result by the neural KEM is more likely to be close
to the truth of the low-count frames.

Fig. 12 further shows a quantitative comparison of different
methods for ROI quantification in the blood ROI in frame 15
(where the uptake in the blood reaches its maximum), and in
the tumor ROI and kidney ROI in the last frame (55-60 min).
Here the ROI mean is plotted versus normalized background
noise SD by varying the iteration number from 10 to 60. The
proposed neural KEM achieved the best trade-off among all
the other methods.

C. Demonstration for Parametric Imaging

Parametric imaging was also performed for the dynamic
images of the same subject. Because different reconstruction

methods mainly make a difference for early-time frames which
have a low count level (Fig. 11), here we focused on paramet-
ric imaging of early-dynamic data. A two-tissue compartment
model with voxel-wise time delay estimation [41] was used
to generate parametric images from the early-dynamic data.
For each reconstruction method, the blood input function was
derived from the descending aorta ROI.

Fig. 13 shows the parametric images of fractional blood
volume vb and FDG delivery rate K1 generated from the
early 120s data. The CT images are also shown for reference
of anatomy. The ML-EM result suffered from heavy noise.
The KEM result demonstrated a significant improvement
but still suffered from noise-induced artifacts. The proposed
neural KEM showed more complete and regular kidney cortex
structures that seem consistent with the kidney anatomy and
function [42]. The K1 by DIP was much lower in the kidney
cortex region, which can be explained by the underestimation
of the renal uptake in the DIP-reconstructed activity image as
shown in Fig. 11(c) and Fig. 12(c).

VII. DISCUSSION

This work proposed an implicit regularization for improving
the kernel method using deep coefficient prior and developed a
neural KEM algorithm for neural-network based tomographic
reconstruction. Because the loss function (24) used for the
CNN learning is derived from the optimization transfer theory,
the proposed neural KEM is thus guaranteed to monotonically
increase the data likelihood. Compared to the ADMM used in
most DIP reconstructions [18], [19], [21], [23], the optimiza-
tion transfer algorithm does not introduce an additional hyper-
parameter. The results shown in Fig. 6 and Fig. 7 indicate a
more stable performance of the optimization transfer algorithm
than the ADMM.

Our studies showed mixed results for comparing DIP with
the standard KEM, while DIP was reported superior over
KEM in [18] for MRI-guided PET image reconstruction. This
is likely due to the use of different sources of image prior
(MRI vs composite images of dynamic PET) and the fact that
dynamic PET consists of frames of a range of count levels. The
KEM or DIP alone demonstrated an instability (too noisy or
too smooth) for dynamic PET image reconstruction. By com-
bining them together, the proposed neural KEM achieved a
much better performance than each individual method.
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Fig. 13. Parametric images of (a) vb and (b) K1 generated from the early-dynamic images reconstructed using ML-EM, KEM, DIP and the proposed
neural KEM. Each image is shown in transverse and coronal views.

The neural KEM in this work focused on frame-by-frame
image reconstruction in the spatial domain but can be poten-
tially extended to more general cases. For example, a spa-
tiotemporal kernel method [3] allows both spatial and temporal
correlations to be encoded in the kernel matrix. The proposed
neural KEM algorithm may be combined with the spatiotem-
poral kernel method to further improve the dynamic image
reconstruction of high-temporal resolution data. In addition,
the construction of a spatial kernel itself can also be modified
by using a different kernel function, e.g., using a pre-defined
wavelet representation [40] or a neural-network representa-
tion [43]. The kernel construction can be further trained using
deep learning as demonstrated in our recent work [44]. It is
worth noting that all these methods are aimed at improving
K and are therefore complementary to the proposed neural
KEM which improves α in (5). Our preliminary results from
computer simulation (not shown) have suggested that the
observed benefit of using the deep coefficient prior on α in
this paper can be also transferred into those methods that use
a modified or trained kernel. A detailed study will be reported
in our future work.

Compared to the standard KEM, the neural KEM introduces
a nonlinear step (i.e., the neural network learning step), which
brings the image quality improvement but adds extra compu-
tational cost. For example, the standard KEM took 30 minutes
while the neural KEM took 70 minutes for reconstructing
one frame in the real data study. A potential way to reduce
the computational burden is to accelerate the speed of the

neural network learning step either by improving the learning
algorithm or by using pretraining for a better initial.

In this study, we demonstrated the performance of the
proposed algorithm on conventional PET scanners. The recent
advent of total-body PET scanners (e.g., [45], [46], [47],
[48], [49]) has made it even more feasible to pursue low-
dose dynamic imaging and high-temporal resolution dynamic
imaging, especially for the entire body simultaneously. Our
future work will also implement and evaluate the proposed
neural KEM on total-body PET for parametric imaging.

VIII. CONCLUSION

In this paper, we have developed a neural KEM algorithm
that combines the kernel method with deep coefficient prior.
The algorithm is enabled by optimization transfer, leading
to an easy-to-implement modularized implementation. Com-
puter simulations and real patient data have demonstrated the
improvement of the neural KEM over conventional KEM and
DIP methods for dynamic PET imaging.
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