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Abstract— Registration of dynamic CT image sequences
is a crucial preprocessing step for clinical evaluation of
multiple physiological determinants in the heart such as
global and regional myocardial perfusion. In this work,
we present a deformable deep learning-based image reg-
istration method for quantitative myocardial perfusion CT
examinations, which in contrast to previous approaches,
takes into account some unique challenges such as low
image quality with less accurate anatomical landmarks,
dynamic changes of contrast agent concentration in the
heart chambers and tissue, and misalignment caused by
cardiac stress, respiration, and patient motion. The intro-
duced method uses a recursive cascade network with a ven-
tricle segmentation module, and a novel loss function that
accounts for local contrast changes over time. It was trained
and validated on a dataset of n = 118 patients with known
or suspected coronary artery disease and/or aortic valve
insufficiency. Our results demonstrate that the proposed
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method is capable of registering dynamic cardiac perfusion
sequences by reducing local tissue displacements of the
left ventricle (LV), whereas contrast changes do not affect
the registration and image quality, in particular the absolute
CT (HU) values of the entire CT sequence. In addition, the
deep learning-based approach presented reveals a short
processing time of a few seconds compared to conventional
image registration methods, demonstrating its application
potential for quantitative CT myocardial perfusion measure-
ments in daily clinical routine.

Index Terms— Registration, deep learning, dynamic car-
diac imaging, computed tomography, myocardial perfusion.

|. INTRODUCTION

EFORMABLE image registration (DIR) is a preprocess-

ing technique that finds non-linear spatial transforma-
tions for the alignment of an image pair. In medical image
analysis, this is essential for many clinical applications where
spatial alignment of anatomical structures is required. These
modalities include image-guided procedures for diagnostics
and patient management where images are acquired at different
points in time or using different modalities [1], [2]. Especially
in cardiac image analysis, DIR is used in image-guided
interventions that require myocardial motion tracking or in
myocardial perfusion studies [3], [4], [S].

Heart perfusion studies are performed to quantitatively
estimate myocardial perfusion and assess different degrees of
myocardial ischemia in patients with known or suspected coro-
nary artery disease. Contrast enhanced myocardial perfusion
studies allow the evaluation of contrast agent distribution in
the heart chambers and tissue using dynamic CT or MRI
sequences. During a CT examination, a contrast agent is
administered and an image sequence is obtained using an
ECG-gated protocol that normally acquires image data at
the end-systolic phase. The image sequence is qualitatively
assessed and quantitatively evaluated through time attenuation
curves that are used to identify and detect ischemic areas in
the myocardium characterized by hypo attenuation (reduced
CT values) [6], [7], [8]. However, registration of the image
sequence is required for accurate generation of such curves,
as spatial misalignment may occur due to cardiac stressing,
patient and respiratory movement. This task includes some
unique challenges besides the motion of the thorax such as the
non-rigid dynamic nature of the heart, less accurate anatomical
landmarks, and the contrast agent distribution that changes
over time in the heart, adding an additional level of complexity
to the registration problem.

Manual medical image registration is a difficult, time-
consuming and clinician-dependent task. Several methods have
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been proposed to automate this process in response to these
issues. Traditional methods such as ANTs [9], demons [10],
and ELASTIX [11] use iterative methods to find the opti-
mal transformation. Approaches of this kind have achieved
state-of-the-art performance, but they are time-intensive and
therefore not sufficiently applicable in the clinical routine,
especially when a large number of images needs to be
registered.

Motivated by the demand of faster algorithms and the
state-of-the-art performance achieved in other medical image
analysis applications [5], [12], deep learning-based methods,
which represent an emerging area of research, have recently
been proposed for image registration [1], [2]. Supervised
and unsupervised approaches were introduced for mono- and
multi- modal registration, intra- and inter-patient registration,
and motion tracking [1], [2], [5]. Supervised methods use
ground-truth labels to estimate the deformation field used to
register the pair of images. Several supervised approaches have
outperformed traditional DIR methods [13], [14], however,
they are difficult to implement due to ground-truth deforma-
tions. By contrast, unsupervised methods do not require such
ground-truth transformations and perform image registration
using a deformation field that is estimated by measuring the
similarity between pairs of images (fixed and warped moving
images). The transformation is applied to the image within
the network, for example with a Dense Displacement Vector
Field (DVF) and a Spatial Transformer Network (STN) [15].
The latter is a differentiable module that performs the warping
of the image and can be introduced into any Convolutional
Neural Network (CNN) architecture.

As mentioned above, deep learning-based methods for med-
ical DIR have been proposed recently. Most of these focus
on regions of interest (ROIs) in more ‘“static” organs such
as the brain, prostate or liver [1]. In the case of the cardiac
DIR, however, only a few methods have been suggested. For
example, De Vos et al. [16] introduced DIRNet, an unsu-
pervised approach that estimates the parameters for local
deformations using a CNN and outputs a grid of 2D control
points, which in turn are the input into the STN module to
generate a DVF using cubic B-spline. The latter is used by
a resampler to warp the moving image. In a follow-up work,
the authors presented an extension of [16] and introduced a
Deep Learning Image Registration (DLIR) framework [17]
that performs unsupervised affine and deformable 3D image
registration. Both methods were trained and tested on cardiac
cine MRI scans. Sheikhjafari et al. [18] proposed a fully
connected neural network (FCN) for unsupervised DIR of 2D
cine MRI scans. This method uses a latent vector as input,
which is fed into an FCN to generate the two-dimensional
DVFE. The registration is based on the generated DVF and
Bilinear Interpolation. Fechter and Baltas [19] introduced a
one-shot learning DIR method for periodic motion tracking
in 3D and 4D data. This approach employs a U-Net and
a differential spatial transformer module for estimation of
the displacement fields; for 3D data, it also generates the
inverse DVF. Otherwise, Mahapatra et al. [20] presented a new
approach using Generative Adversarial Networks (GANs) for
cardiac cine MRI scans (2D data). This model is trained to

learn the density function describing all plausible deforma-
tion fields to generate realistic registered images. The results
obtained with this approach outperformed other methods such
as ELASTIX and DIRNet. However, the application of the
previous methods is limited to cardiac sequences without
changes in the concentration of contrast agent over time.
When registering myocardial perfusion sequences, however,
local contrast changes over time must be taken into account,
which makes registration in perfusion imaging a challenging
research area in DIR.

In cardiac MRI perfusion imaging non-deep-learning based
methods have been proposed for sequence registration.
Milles et al. [21] for example introduced an approach based
on independent component analysis (ICA) for translational
motion correction. The method consists of an ICA analysis
and a two-pass registration framework. ICA is applied to
extract relevant perfusion information for computing a time-
varying reference image that is used subsequently by the
two-pass registration to align the sequence frames. Moreover,
Wollny et al. [22] proposed a three stages registration method
that exploits the quasi-periodicity of respiratory motion. In the
first phase, a global reference and a subset of images corre-
sponding to the same respiratory phase are selected. A semi
local B-spline transformation is then applied to register the
obtained subset to the global reference. Finally, the remaining
images are aligned to synthetic references generated by a
weighted linear combination of the frames of the registered
subset. Similarly, Scannell et al. [23] introduced a two-stage
procedure using robust principal component analysis (RPCA)
and synthetic image series. In the first stage, bulk motion is
corrected by applying a rigid registration to a low-rank image
sequence obtained by RPCA. The images are then registered
to a synthetic image series obtained using principal component
analysis (PCA) in a refinement phase. Here, the registration is
performed using free-form deformations.

Traditional methods have also been introduced for registra-
tion in cardiac CT perfusion imaging. Isola et al. [24] intro-
duced a non-rigid registration method using cubic B-splines.
In this approach a spatiotemporal diffusion filter is first applied
to the sequence for reducing noise and artifacts. Registration
is then performed using a multi-resolution approach to cre-
ate downsampled versions of the original moving and fixed
images, and deformation fields are computed using cubic
B-splines. The fixed image here is the image frame with the
largest contrast agent quantity and the zero mean normal-
ized cross-correlation (ZNCC) is used as a similarity metric.
Similarly, Tang et al. [25] proposed a registration method
based on the estimation of time-dependent motion vector fields
(MVF) using cubic B-splines. The method uses a motion
compensation image reconstruction to align 4D image data.
This reconstruction is based on a motion-tracking algorithm
that is guided by the generated MVFs. Moreover, Liu et al.
[26] presented a motion compensation algorithm for low dose
dynamic CT. Here, RPCA is applied for image decomposition
to obtain the low rank components of the sequence. Then,
an optical flow-based method is used to estimate the deforma-
tions fields and register the low rank frames. In addition, a low
rank regularized image reconstruction is performed using the
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obtained MVFs to improve the sequence registration. Finally,
Janssens et al. [27] introduced a diffeomorphic registration
method for dynamic contrast-enhanced images. The method
uses morphons to register the images based on the local inten-
sity phase. This follows a multiscale nonparametric approach
that computes the diffeomorphic displacements fields applied
from a coarse to a fine scale.

In this paper, we introduce for the first time a DIR deep
learning-based method for quantitative myocardial perfusion
CT studies, which unlike other previous approaches, addresses
the following challenges: 1) the algorithm needs to deal with
lower image quality, in terms of contrast resolution with less
accurate anatomical landmarks and less signal-to-noise ratio
in cardiac CT compared to MRI. 2) the dynamic information
from the contrast agent must remain unaffected, so deforma-
tions should not have an impact on the absolute CT (HU)
values in the image, particularly in the LV myocardium and
cavity as regions of interests (ROIs). 3) registration must be
performed on the entire image sequence, taking into account
and correcting for misalignment caused by cardiac stressing,
respiration and patient motion, 4) the method must have a
significantly improved processing time compared with conven-
tional methods, so that this approach can be used in the clinical
routine for quantitative myocardial perfusion measurements.

The presented deep learning-based method has a recursive
cascade architecture with a pre-trained segmentation module,
and introduces a novel loss function based on contrast and
image similarity losses, and auxiliary segmentation data to
guide the registration. The method is trained and evaluated on
a representative dataset of patients with known or suspected
coronary artery disease and/or aortic valve insufficiency to
demonstrate its power for spatiotemporal DIR, accounting for
local contrast changes over time, while preserving the image
quality of the warped images.

Il. MATERIAL AND METHODS
A. Dataset

Image sequences were obtained from n = 118 patients
with known or suspected coronary artery disease and/or aor-
tic valve insufficiency undergoing dynamic CT myocardial
perfusion examinations with a weight-based adjustment of
exposure settings. All patients gave informed consent (clinical
trial NCT02361996, “Quantitative measurement of myocardial
perfusion by cardiac CT in patients (CCT/MPERF)”).

Tube voltages of 80/100/120kV were selected depending
on patient weight. Scanning parameters were set to axial
acquisition mode, 5 mm slice thickness, gantry/detector tilt
0°, and 180 ms exposure time. Image acquisition protocol was
prospectively ECG-triggered at 40 % of the R-R interval every
heartbeat. A contrast agent with a concentration of 210 mg
Todine/ml (Visipaque R 300 mg) was injected intravenously
with a constant flow of 4 ml/s (CT- injector “ohio tandem”,
ulrich medical®). All examinations were performed using
a dose modulation technique with a 256-slice multidetec-
tor CT scanner (Brilliance i256; Philips Healthcare). Func-
tional parameters such as heart rate, systolic/diastolic blood
pressure, stroke volume (SV), and potential risk factors for

decreased perfusion (calcium score, stenotic lesions, high body
mass index (BMI)) were recorded for clinical characterization
purposes.

In total, image sequences from 13 to 14 slices volume
stacks per patient were acquired over 30-40 heartbeats. From
the latter, only the 2D sequences that cover the ROI, i.e.
LV myocardium, were selected, resulting in 944 2D sequences
(image size 512 x 512 pixels) composed of an average
of 35 frames. Image contrast was set to the default CT
window W:750 L:90. Masks of the regions with high contrast
agent concentration were obtained using a CT window of
W:450 L:130.

Finally, the available dataset was split on subject-level, n =
95 (80 %) and n = 23 (20 %) for cross-validation and testing,
respectively. Moreover, to further evaluate the performance of
the registration, segmentations of LV cavity (including papil-
lary muscles and trabeculae) and LV myocardium from the test
dataset (n = 23) were performed manually by a radiologist.
Because of the time required for this task, we selected 4 frames
per patient for the segmentation (i.e. 92 frames in total). These
frames included the fixed image and three moving images
at different time points of the contrast agent distribution in
the LV.

B. Registration Network

Let § = {Im,.}lN: o denote a cardiac CT perfusion sequence
of images, where [,,, € Q C R?. Let denote Iy, and Iy
as moving image and fixed image, respectively. We want to
generate a flow prediction function, F, that takes I,, and Iy
to predict a flow field ¢ : Q — Q that aligns the sequence S.
Based on the work of Zhao et al. [28] and our previous
work [29], we extended the basic recursive cascade network
architecture for 2D sequences by (i) including a ventricle
segmentation module and (ii) introducing a novel loss function
for optimizing dynamic cardiac image registration.

The method follows an n-cascade architecture which decom-
poses the registration into progressively small deformations
that are recursively applied to the warped image. The final
architecture is presented in Fig. 1.

Each cascade represents a base network such as DLIR
[17], VIN [30] or Voxelmorph [31], and operates as a flow
prediction function f that takes a pair of images (Im, 1 f) and
predicts a flow field ¢ by aligning the moving image I, to the
fixed image Iy. For the k-th cascade the predicted flow field
@k can be obtained as shown in (1).

o = il 1p) (1)

where fi is the flow prediction function of each k-th cascade.

The warped image is the composition of the flow field ¢ and
o (k—1) .

the moving image I, as shown in (2).

I® = gy o 18D )

Following the recursive model, the final flow prediction
function F is a composition of all generated flow fields as
denoted in (3).

F(In, If) =pnogu-10...00] 3)
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Fig. 1. Recursive cascade network architecture with ventricle segmentation module for dynamic cardiac image registration.

Therefore, the final warped image I,, is obtained by suc-
cessively warping the moving image along all cascades as
presented in (4).

“)

1) Ventricle Module: To improve the alignment of the LV,
we added a module used to segment the ventricles from the
warped image I, and the fixed image I . The objective of this
module is to provide auxiliary information that can support the
registration of the anatomical structures. It was implemented
using the original U-Net architecture presented in [32], and
it was trained and validated using masks of the RV and LV
chambers. These segmentations were performed manually by
a radiologist and a non-clinical expert who was trained by the
medical expert on how to recognize and outline cardiac struc-
tures using Medviso Segment CT, a commercial software for
quantitative cardiac CT analysis (http://segment.heiberg.se).
All segmentations were obtained from a randomly selected
subset of n = 50 patients from the training dataset and were
visually assessed by the expert to identify and remove poor
quality segmentations. Finally, a total of 1562 masks of the
RV and LV were used to train and validate the model (90 %
and 10 %, respectively).

Iy, = (ppopp_10...001)0 Iy

C. Loss Functions

We introduced a novel loss function L., as to train
our model for the registration of dynamic cardiac perfusion
sequences in an unsupervised manner, as presented in (5).
Analogously to previous unsupervised approaches [30], [31]
the loss function is generally based on a similarity loss and a
regularization term as described in (6).

LCl) (If',\ Im’ (03 MC3 MRV; MLV)
= a1Lsim (If; §0Im) + a2 Lo (Ifa @ oI, Mc)

+azLpens (Mry, Mpy) + Lyeg (») (5
Lpc (If, In, 90)
= Lsim (If, (7] Im) + Lyeg () (6)

where L., and L,. denote loss functions with and without
contrast information, respectively. In both losses, Ly, is a
similarity loss used to penalize the difference in appearance
between the fixed and warped image, and L, is the regular-
ization term employed to smooth the flow field and prevent

unrealistic displacements. In contrast to L, the loss function
L., includes the contrast concentration loss L.,,; that uses
masks of the regions with high contrast agent concentration,
M, to account for changes of the contrast agent over time and
penalize alterations in the contrast regions, and the ventricle
loss Lyen: that enforces the alignment of the ventricles using
the masks generated by the ventricle module i.e. My and
Mgy . The terms aj0, and a3 are the weighting factors of the
losses.

The motivation for adding new terms to the original loss
function, L, is to perform the registration without affecting
the relevant areas needed for the study. We therefore intro-
duced the functions Ly, (9) and Lyeny (11). As demonstrated
in this study, L, negatively affects the regions of high contrast
concentration (right/left atrium or ventricles). This applies in
particular to cases where the contrast regions of the fixed
image differ from those of the moving image. In these cases,
the final warped image results with contrast regions that differ
from the original moving image.

1) Similarity Loss: We used the Pearson correlation coef-
ficient PCC to measure the degree of linear correlation in
a pixel manner between the images Iy and [,. The PCC
returns a value between the range [—1, 1] that indicates the
degree of correlation between the two images. A PCC value
of 1 corresponds to a perfect correlation and a PCC value
of 0 indicates two linearly uncorrelated images. Therefore,
to penalize the dissimilarity between the pair Iy and Iy,
we defined L;;, as denoted in (7).

Lgim (I, @ oly) =1—PCC(y, 9 o Iy) @)

2) Regularization Loss: We implemented the Total Variation
Loss to encourage the continuity of the flow field, as presented
in [30]. For a 2D flow field, the loss function is defined as
follows:

1

Lreg () = m

2
DD pate)—p@)  ©®
x i=l1

where e > form the natural basis of RZ.

3) Contrast Concentration Loss: If M. contains the masks
of high contrast concentration areas of every image in the
sequence S and C; C I, denotes the contrast regions in the
i-th moving image, we want to preserve as much information
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about C; in the warped image I,,,. as possible. We thus need
the flow field ¢ to minimally affect the regions C; while
correcting for misalignment. We introduce L,,;, for this task
denoted by (9), as a term that uses the regions C; to reduce
the changes of contrast in such areas. As shown in (10), C;
is generated using the Hadamard product between the image
and the mask containing the previously delineated areas of
high-contrast concentration.

Lcont (If» @ o lp, Mc)
= Lyim (In © Me,,, (9 o L) © M¢,,)
+ Lsim (In © Mc;, (9 0 1) © Mc;) ©)
Ci = In; OM,, (10)

Leon: is defined by two terms that are used to guide the
deformation of the warped image. The first term penalizes the
alteration of contrast from the moving image in the warped
image by estimating the similarity between the original con-
trast regions and the new contrast regions after deformation.
The second term penalizes the introduction of contrast into
the warped image. This step is necessary because the fixed
image may contain contrast regions that are not present in the
moving image. Our aim is thus to preserve the contrast of such
regions as in the original moving image. We again estimate the
similarity in penalizing the differences in the contrast in such
areas. The previous is measured using Lyin, and, M.,, and M,
are the masks of the moving and fixed image, respectively.

4) Ventricle Loss: For this particular task, the registration
of the ventricle is very important to accurately estimate
myocardial perfusion. For this reason, we included the term
Lyens that emphasizes the registration of such areas in addition
to the overall registration estimated by Lg;,. Mgy, and Mpy,
denote the masks predicted by the ventricle module of the
right and left ventricle of the i-th moving image, respectively.
Lyens 1s estimated as shown in (11) to measure the alignment
of the right and left ventricle between the fixed and the warped
image, respectively.

Lyent (Mpy, MLy)
1

=5 (Lseg (MRv ;s MRy,) + Lseg (MLy ;. MLy,)) (11)

where L. for each of the ventricle masks is defined as (12).

Lseg (My,, My,) =1 — Dice(My,, My,) (12)

D. Implementation

Our proposed configuration was implemented in PyTorch
using a modified 2D version of the original implementation
(for 3D volumes) as published in [28]. We chose the VTN [30]
for the base subnetwork based on our previous work [29]. The
models were trained and validated using 5-fold cross validation
on 2 TITAN RTX 25GB. We used the Adam optimizer [33]
with two beta values of 0.9 and 0.999 and an initial learning
rate of 0.0001. The batch size is 32 pairs per batch and a
total of 8*10* iterations were performed for each kth-fold.
We used different values of a; to train the model to find the
best weighting factors experimentally, and multiple models
were thus trained. For training the ventricle module, we used
a batch size of 10 and learning rate of 0.001.

E. Evaluation Metrics

The performance of the method was evaluated based on the
accuracy of the spatial alignment and the image quality after
deformation. The spatial alignment was quantified using the
Dice Score (DSC) [34] which measures the overlap between
two regions. It ranges between 0 and 1, with 1 indicating
perfect alignment. In this application, the DCS of segmen-
tations of the whole heart was measured, and additionally
the Hausdorff Distance (HD) was used as another measure
of registration performance. For this evaluation, the distance
of the contours of the heart (original versus registered) was
determined.

The quality of the warped image with respect to the moving
image was evaluated to measure possible alterations during the
registration process, i.e. changes of the original CT values (in
HU). For this task, the mutual information (MI) [35] and the
structural similarity index (SSIM) were determined. The MI
measures the statistical dependence between two images which
is used to estimate the amount of information that the warped
image contains about the moving image. SSIM measures the
similarity between two images and it is used to assess image
quality degradation. It ranges from O to 1, with 1 indicating
the highest quality.

F. Experiments

First, the proposed improved model (LCV) was cross-
validated, including the ventricle module and using the new
loss function L, (5) that processes the contrast concentration
loss. The model was 5 fold cross-validated on the training
dataset of n = 95 patients with 3, 5, 7, 8, 9 and 10 cascades
with the objective to determine empirically the best cascade
configuration for this application.

Next, to investigate the strength of the proposed loss func-
tion and extension of the network architecture by the ventricle
module, two variants of the LCV model were evaluated using
the best cascade configuration determined from the previous
experiment. The first model variant (LC) was trained and
validated without the ventricle module, but with a loss function
processing the contrast concentration loss (for details see
loss function L. in [29]). The second model variant (LNC)
was trained based on the architecture originally presented by
Zhao et al. [28] without segmentation module and using the
loss function L, (6), not processing the contrast concentration
loss.

Finally, to demonstrate the effectiveness of the LCV
method, we benchmarked the performance of LCV with its two
variants, i.e. LC and LNC, and two well established iterative
methods presented by Wollny et al. [22], a nonrigid registration
method for myocardial perfusion imaging and Janssens et
al. [27], a diffeomorphic registration method for dynamic
contrast-enhanced images. All five models were tested on
245 2D sequences of the test data set (n = 23 patients) with
a total of 5638 image pairs.

I1l. RESULTS

The proposed method was evaluated quantitatively using the
evaluation metrics described above and qualitatively by visual
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Fig.2. RV and LV segmentations. Green and blue contours show manual
annotations of the LV and RV, respectively. Purple and red contours
denote predicted segmentations of the LV and RV by the ventricle
module. (a)—(c) Image data from three selected patients.

TABLE |
VENTRICLE MODULE RESULTS

ROI DSC HD
LV 0.953 (0.02) 4.888 (0.51)
RV 0.857 (0.04) 5.886 (1.10)

*The standard deviations are in parentheses.

inspection of registered 2D cardiac sequences. Videos of the
unregistered and registered image sequences from 4 selected
patients, comparing the registration performance of the five
models, i.e. LCV, LC, LNC [28], Wollny et al. [22] and
Janssens et al. [27] can be found in the Supplemental Material.

A. Ventricle Module

To evaluate the performance of the ventricle module, the
generated masks of the RV and LV were assessed qualitatively
and quantitatively. Examples of the qualitative analysis are
shown in Fig 2. For the quantitative evaluation, we calculated
the DSC and HD using the ground truth masks generated by
the radiologist. Table I summarizes the results.

The results shown in Fig. 2 demonstrate that the ventricle
module is capable of predicting masks of the RV and LV.
The best results are obtained when the chambers have differ-
ent contrast, as shown in Fig 2a. However, in cases where
the contrast of the interventricular septum and the RV are
similar (Fig 2b-c), the module performs better for the LV
than for the RV segmentation (Table I). As mentioned earlier,
the goal of this module is to provide auxiliary information
that can assist in the alignment of the cardiac structures,
particularly the alignment of the LV, as this is the ROI
for myocardial perfusion studies. The impact of this module
is further evaluated using the ablation studies presented in
Section IIIC.

B. Weighting Factors and Number of Cascades

To determine the best weighting factors and number of cas-
cades, our LCV model was 5-fold cross-validated using image
sequences of the training patient cohort (n = 95). We evaluated
the performance by estimating the average of the evaluation
metrics obtained at the validation of each kth-fold. The spatial
alignment metrics DSC and HD were computed between the
fixed image and the warped images of a sequence and image
quality metrics were estimated from the original moving image
and the warped images. Based on the results we established
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TABLE Il
EVALUATION METRICS FOR N-CASCADES CONFIGURATIONS
Cascades 3 5 7 8 9 10
DSC 0.9801 0.9901 0.9958 0.9958 0.9960 0.9962
HD 5.681 5.072 4.527 4.521 4.515 4.497
MI 1.671 1.605 1.563 1.549 1.532 1.528
SSIM 0.938 0.905 0.900 0.897 0.890 0.887
TABLE IlI

COMPARISON OF IMAGE REGISTRATION USING DIFFERENT
MODEL CONFIGURATIONS

Models DSC HD MI SSIM
LCV 0.9958 4.527 1.563 0.900
LC 0.9957 4.532 1.495 0.877
LNC 0.9956 4.516 0.877 0.784

experimentally that weighting factors of a; = {0.6, 0.25,0.15}
gave the best results. Table II summarizes the results obtained
with «; and different cascade configurations. From Table II,
10 cascades yielded the best results for the spatial alignment
metrics DSC and HD, indicating that increasing the number of
cascades improves the registration performance, as suggested
in [28]. When comparing the image quality metrics MI and
SSIM, we observed a decrease in the values, suggesting that
the increase in the number of cascades has a negative impact
on the quality of the registered images. To evaluate this
observation, we performed a qualitative analysis to assess the
registered sequences obtained with each cascade configuration.
After visual inspection and the analysis of the quantitative
results from Table II, we found that a configuration with 7 cas-
cades provides the best trade-off between spatial alignment and
image quality.

C. Ablation Studies

Based on these results, the model variants LC and LNC
[28] were implemented in a 7-cascade configuration. To com-
pare the performance with LCV, all models were cross-
validated and evaluated as in the previous experiment. Table III
summarizes the results obtained for the different model
configurations.

Table III shows that all three models based on the DSC
and HD measures achieved similar registration performance.
However, the results obtained in MI and SSIM indicate that
the addition of the contrast concentration loss term L.,,: (9),
as in LCV and the variant LC, helps to minimize the effects
of the deformation on the image quality, demonstrating that
the segmentation module further improves the registration of
the dynamic sequences, especially with respect to the image
quality measures MI and SSIM. The original deep learning
method LNC of Zhao et al. [28] however showed the worst
results.

Based on these findings, all three models were retrained
with the complete training dataset of n = 95 subjects (with-
out cross-validation). These models were then used for the
performance evaluation of the next section.
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Fig. 3. Comparison of image registration performance of three selected patients using the methods LCV, LC, LNC, Wollny et al., and Jassens et al.
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Fig. 4. Generated flow fields of the examples in Fig. 3. Color scale codes the norm of the vectors in the flow field. Color red and blue represent
large and small displacements, respectively. (a)—(c) Same patient image data as in Fig. 3.

D. Comparison of Registration Performance With
Other Methods

We tested the performance of the three deep learning-
based models LCV, LC and LNC on the image dataset
of the test patient cohort (n 23) and compared the
results with two established iterative, non-deep learning-based
methods of Wollny et al. [22] and Janssens et al. [27].
For these methods, we used the implementation of [22]
for motion compensation for myocardial perfusion imaging
from [36], and for [27] a MATLAB implementation of the
Morphons algorithm from [37]. Fig. 3 shows examples of
image sequence registration performed with each method in
three selected patients at different time points of contrast agent
distribution.

In detail, the first two columns show the fixed and a selected
image of the image sequence to be registered (moving image),
followed by the registered (warped) images obtained by the
five compared methods LCV, LC, LNC [28], Wollny et al.

[22] and Janssens et al. [27]. Fig. 3a shows an example in
which the areas of high contrast differ significantly in both
the fixed (almost no contrast agent in the right chambers) and
the selected image of the sequence (almost no contrast agent
in the chambers of the left heart), Fig. 3b is similar to Fig. 3a,
but already shows contrast agent in the left chambers of the
moving image, and Fig. 3c demonstrates only contrast agent
in the left atrium and ventricle of the fixed image, but no
contrast agent in the moving image at all. Fig. 4 illustrates
the generated deformation flow fields by the five methods
presented in Fig. 3. Visual inspection shows that LNC and
Wollny et al. [22] produce artifacts in the warped image
(patients a and c). Both, LNC and [22] are not able to correctly
register the high contrast areas in the right chambers (a), and
LNC also introduces artificial gray areas (a, ¢). In contrast, the
models LCV and LC, and the iterative method of Janssens et
al. [27] demonstrate good performance, registering the images
without introducing artifacts. It should be noted that in [22]
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TABLE IV
COMPARISON OF THE DIFFERENT REGISTRATION METHODS

Run Time (s)

Methods DSC HD MI SSIM CPU GPU
Unregistered 0.973 (0.010) 7.863 (1.37) 2.087 (0.130) 1.000 (0.000) - -
LCV 0.998 (0.002) 3.370 (1.63) 1.523 (0.139) 0.881 (0.056) 10.79 (2.05) 0.92 (0.18)
LC 0.997 (0.002) 3.617 (1.60) 1.460 (0.138) 0.857 (0.055) 10.78 (2.11) 0.91 (0.18)
LNC [28] 0.997 (0.003) 3.632 (1.61) 1.165 (0.177) 0.745 (0.095) 10.77 (2.09) 0.92 (0.17)
Wollny et al. [22] 0.993 (0.009) 4.071 (1.71) 1.227 (0.167) 0.736 (0.096) 543 (5.89) -
Janssens et al. [27] 0.995 (0.007) 6.486 (2.71) 1.016 (0.194) 0.673 (0.071) 13800 (1405.0) -

The standard deviations are in parentheses. Run time is measured and averaged over 245 2D cardiac sequences.

not all the cases were correctly registered, as shown in the
Supplemental Material (Example 4), these cases were thus not
considered for the following evaluations.

Quantitative evaluation of the methods was performed using
the test dataset (n=23 patients). A total of 245 2D sequences
were registered and each of them was evaluated based on the
spatial alignment (DSC, HD) and image quality measures (MI,
SSIM). In addition, the run time for sequence registration for
each method was measured. The results are summarized in
Table IV. In addition, Fig. 5 visualizes the results (box plots)
of each registration method. According to the spatial alignment
metrics DSC and HD (Fig 5a-b), all methods showed similar
performance in spatial alignment, but the best results for the
LCV model (DSCrcv = 0.9980 vs. DSCunregistered = 0.9734,
HDycy = 3.370 vs. HDunregistered = 7.863).

To quantitatively evaluate the effect of the deformation on
the quality of the warped image, the MI and SSIM between
the moving and the warped image were estimated for each

of the sequences. Here, the LCV and LC models outperform
the comparison methods LNC [22], [28], and [27] (Fig 5c-d).
In terms of computational effort, LCV, LC and LNC perform
registration with an average runtime of 10.78 seconds for a
complete 2D image sequence on the CPU, while the iterative
methods [22] and [27] have significantly longer average run-
times of 543 seconds (50 times longer) and 13800 seconds
(1280 times longer), respectively.

Finally, to analyze to what extent the absolute CT (HU)
values in the image are affected by the registration operations,
we determined the histograms of the moving and warped
image to identify possible changes in the absolute CT values.
We then quantified the similarity between the histograms
obtained using measures such as cross-correlation (CCF),
Hellinger distance (HeD) and Chi-squared distance (ChiS).
Fig 6 shows the results of the histogram analysis performed
on the registered images of Fig 3. It can be seen that the
absolute CT values registered by LNC [28], Wollny et al. [22],
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Fig. 6. CT (HU) values analysis in the images. Histogram of CT values of moving and warped image for the examples presented in Fig 3. (CCF)
Cross correlation coefficient, (HeD) Hellinger distance and (ChiS) Chi-squared distance between histograms of the moving and warped image.

TABLE V
CT VALUES ANALYSIS

Methods CCF HeD ChiS

LCV 0.992 0.058 6983

LC 0.991 0.060 7734
LNC 0.986 0.101 150476
Wollny et al. [22] 0.987 0.079 12768
Janssens et al. [27] 0.955 0.432 119259

Similarity metrics were obtained from the CT histograms and averaged over 5638
images of the 245 2D cardiac sequences.

and Janssens et al. [27] change, in particular compared to
the original images. This is also reflected in the similarity
measures CCF, HeD and ChiS. The summary of the results
obtained for all the sequences of the test dataset is presented
in Table V. Note that the mean CCF was estimated using
the Fisher’s z-transform. From Table V, we can see that
images registered with LCV and LC have the least alter-
ations in the CT values and thus remain almost unchanged,
which is essential for quantitative myocardial perfusion
measurements.

E. Evaluation of the Alignment of the LV Cavity
and Myocardium

Further evaluation of the methods was performed using
the manual segmentations of the LV cavity and myocardium
carried out by a radiologist with the objective of providing
additional information on the accuracy of the alignment of
the LV cavity and myocardium. For this purpose, a total of
92 frames from the 23 patients test dataset were used to
determine the flow fields between the fixed and the selected
warped frames. We then applied the deformations to the masks

TABLE VI
LV REGISTRATION RESULTS
DSC HD DSC HD

Methods Myocardium _ Myocardium Cavity Cavity
Unregistered 0.85 (0.05) 5.62 (0.13) 0.82 (0.09) 5.00 (0.12)
LCv 0.90 (0.01) 5.17 (0.04) 0.87 (0.02) 4.46 (0.28)
LC 0.89 (0.01) 5.30 (0.05) 0.83(0.02)  4.99 (0.30)
LNC [28] 0.89 (0.04) 5.41(0.18) 0.84(0.02)  5.09 (0.51)
Wollny et 0.87 (0.04) 5.47 (0.17) 0.84 (0.04) 4.83 (0.47)
al. [22]
Janssens et 0.89 (0.06) 5.19 (0.23) 0.84 (0.03) 4.31 (0.61)
al. [27]

Spatial alignment metrics (DSC, HD) averaged over 95 frames from n = 23 subjects. The
standard deviations are in parentheses.

of the LV cavity and myocardium. Finally, we calculated
the DSC and HD between the warped masks and ground
truth segmentations of the fixed frame. The results are shown
in Table VI.

It can be seen that in addition to the best image quality (see
MI, SSMI in Table IV and CCE, HeD and ChiS in Table V), the
LCV model also has the best spatial alignment accuracy for the
relevant ROIs of the LV compared to the benchmark methods.
These results suggest that the incorporation of auxiliary infor-
mation of the LV and RV can further promote the alignment of
the cardiac structures such as the LV myocardium. Note that all
methods achieved similar performance as they obtained better
results for LV myocardium than for LV cavity registration.
For the LCV and LC models, these results can be caused due
to the penalization of changes in high contrast regions, i.e.,
the LV cavity, and therefore only minimal deformations are
expected. However, they still perform well despite the minimal

warping.
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F. Clinical Example of Myocardial
Perfusion Measurement

To demonstrate the potential clinical applicability of the
LCV model, a clinical example of myocardial perfusion mea-
surement is presented in detail. Using a patient of our study
cohort with known aortic valve insufficiency, quantitative LV
myocardial perfusion was calculated based on the contrast
enhancement time curves obtained from a ROI placed in the
LV cavity (input function u(¢)) and the segmented myocardial
region (output function y(#)) using the well-established Fermi
deconvolution method [38]. The acquired CT values-time
curves were filtered using a low-pass filter with a filter-length
of 2 for the input function and 6 for the output function (dotted
values in Fig. 7a and 7c). The data points were fit by standard
model functions described by the blue curves in Fig. 7a for the
LV cavity and Fig. 7c for the LV myocardial wall, respectively.
The confidence interval for the curve-fit is plotted in grey.
Fig. 7b shows the obtained Fermi function R(¢). The result of
the deconvolution process is depicted in Fig. 7c, yellow dashed
line, showing the output of the model. In this example, global
myocardial blood flow was computed to be 66 ml/100g/min
(for the entire myocardium, i.e. septum, apical region and
lateral wall). Fig. 7d shows the maximal difference in HU
values over the original time series (max-min) for each voxel
in the images. The bright band surrounding the lateral wall
(marked by an arrow) is caused by misalignments of the
unregistered myocardium over different points in time. It can

be seen in Fig. 7¢ that these misalignments of the LV are
removed in the registered image sequence. In order to assess
regional differences in myocardial perfusion, the segmented
myocardium was split into the septum, an apical region and
the lateral wall following the suggestions of the AHA [39].
We can observe small differences with a slightly decreased
value of 61 ml/100g/min in the apical region and a slightly
higher value in the lateral wall area of 72 ml/100g/min. These
values and small deviations correspond well to standard mean
blood flow (MBF) in the literature [40].

IV. DISCUSSION

In this work, we present a deformable deep learning-
based method for the registration of dynamic myocardial
perfusion sequences. The method uses a pre-trained ventricle
segmentation module and tailored image similarity loss to
guide the registration instead of ground-truth fields used in
supervised approaches. The main reason for this approach
is that there are no ground-truth deformation fields that can
be easily generated manually or synthetically. In the case of
manual labeling, a tremendous amount of effort is required
to determine such dense flow fields. Synthetic data, on the
other hand, is more easily generated by simulations, but must
be carefully designed to meet the realistic requirement of the
data. In our particular case, such simulations have to consider
displacements caused by cardiac stressing, respiration, and
patient motion, in addition to the changing contrast agent
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which also varies by patient. Due to the complexity of the
latter, we have proposed a method using a loss function based
on an image similarity loss and auxiliary segmentation data
from a pre-trained module.

The proposed method introduces a novel loss function
(LCV) that accounts for the changing contrast agent concen-
tration in the image sequence and emphasizes the alignment of
the RV and LV. The proposed network has a recursive cascade
architecture with a segmentation module, and was trained
with a 5-fold cross-validation to evaluate its performance and
robustness in highly varying cardiac sequences. The optimal
number of cascades was determined experimentally and shows
that a configuration with 7 cascades gives the best trade-off
between spatial alignment and image quality.

The performance of our extended models LCV and LC
was evaluated and compared with the original deep learn-
ing method LNC [28] and two established iterative, non-
deep learning-based methods by Wollny et al. [22] and
Janssens et al. [27]. The experimental results shown in Fig. 3
and Fig. 4 emphasize the influence and necessity of a contrast
concentration term in the loss function for the deep learning
methods. It is obvious that not considering the contrast term
as in LNC leads to a degradation in the quality of the warped
image. Fig. 3a shows an example where the contrast regions
between the fixed and the moving image differ significantly.
Here, the results of LNC, [22] and [27] show changes in the
contrast of the right chambers. The latter can also be seen in
Fig. 4a where the norm of the flow field vectors is higher in the
regions with enhanced contrast concentration. As a result, the
DVF applies deformations that lead to artifacts in such regions.
Similar results can be seen in Fig. 3b and Fig. 4b, where
most of the displacements are in the high contrast regions.
Interestingly, the DVF applied by [27] leads to an enhancement
of the contrast concentration after the registration. In contrast
to the comparison methods, LCV and LC revealed equivalent
results with the contrast agent regions not being affected. From
the previous examples, LCV applies deformations in the outer
contours of the LV and RV as well as within the cavities,
whereas LC applies the displacements mainly in the outer
contours. The latter is due to the fact that the warping of the
contrast regions is penalized inside the heart, which limits the
plausible deformations of the contours. The results presented
in Fig. 3¢ show that LCV, LC, and the iterative methods have
similar performance without the presence of contrast regions
in the moving image, registering the images without artifacts.
The latter is also demonstrated in Fig. 4c where most of the
displacements are present in the outer contours.

Our quantitative results show that the proposed LCV method
achieves excellent accuracy in registering image sequences
with spatio-temporal variations (Fig. 5, Table V). Moreover,
it also proves consistent image quality after warping (Fig. 6,
Table 1V). Similar results are achieved by LC, showing that
adding the contrast term L.,,; helps to preserve the image
quality after deformation. It should be noted that some image
degradation is expected due to the deformations.

The results of the analysis of absolute CT values demon-
strate the effects of the methods on the HU values after
registration of the cardiac sequences. The histograms in Fig. 6

show the difference between the CT values of the original
and the warped images, and this dissimilarity is quantified
by the measures CCF, HeD and ChiS. The histograms of the
warped images from LNC, [22] and [27] show deviations
in the range of upper HU values representing the high-
contrast regions of the images. This result is undesirable as
it indicates that information relevant for perfusion studies is
altered. As outlined in this work, myocardial perfusion studies
require good spatial alignment of dynamic cardiac sequences
while retaining the original CT values in the registered images
required for quantitative estimation of myocardial perfusion
(see example patient in Fig. 7). In particular, as shown in Fig. 6
and Table V, the LCV model performs best in registration
in terms of spatial alignment and image quality without
significantly affecting the absolute CT values.

Further evaluation of the alignment of the LV myocardium
and LV cavity after registration reveals that deformations made
by LCV are not only applied to the contours of the heart
but also on the relevant ROIs of the LV. Table VI shows
that LCV achieves the best results compared to the other
methods, especially in the registration of the LV myocardium,
which is due to the auxiliary information from the ventricle
module that enhances the alignment of the outer contour.
However, comparing the DSC scores with Table IV, we see
that the deformation caused by the methods is lower in these
ROIs. We found that in cases where the contrast agent is not
present (see Fig. 3c and Fig 4c), most of the displacements
are applied only on the outer contours of the heart. In such
cases, both the LV myocardium and cavity have similar HU
values and lack distinguishable landmarks, making it difficult
to establish correspondence of these specific areas and thus to
determine the required displacements, which may explain the
decrease in the DSC scores. LC also shows good performance
despite the lack of the ventricle module, suggesting that LC is
also a suitable registration method sharing the advantages of
LCV, specifically high processing speed, however with slightly
reduced image quality and local alignment accuracy.

Finally, the clinical example presented in Section IIIF
demonstrated that our proposed LCV method can be used
as an effective image preprocessing step in cardiac perfusion
studies. The results show that LCV performs registration
without affecting relevant information in the image sequence,
i.e. HU values, so that consistent time-attenuation curves
in CT can be generated for regional myocardial perfusion
calculation.

V. CONCLUSION

We present for the first time here, a deformable deep
learning-based image registration method for cardiac CT per-
fusion imaging that has several advantages and strengths. The
architecture of the LCV model is based on a configuration with
recursive cascades. This structure was extended and optimized
by the introduction of novel loss functions that are especially
well-suited to take dynamic changes in the contrast agent
concentration into account and a ventricular segmentation
module that further reduces local tissue displacement.

The LCV model shows best registration accuracy for the
relevant ROIs, compared to the original cascade architecture
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and two state-of-the-art iterative, non-deep leaning methods.
It processes poor image quality in terms of low signal-to-noise
ratio and less accurate anatomical landmarks, and overcomes
the problem of dynamic changes of contrast agent concen-
tration over time without affecting the HU values throughout
the registered image sequence. This is essential for quanti-
tative global and regional myocardial perfusion estimation,
as demonstrated by the clinical example. Due to its high
processing speed of a few seconds for the registration of an
entire CT perfusion sequence compared to minutes and hours
of non-deep learning-based methods, this new method shows
high potential to be used in clinical routine, in particular due
to its rapidity.

In summary, our experimental results confirm the high
accuracy and robustness of this method on a representa-
tive dataset of patients with coronary artery disease and/or
aortic valve insufficiency. From this we can expect that
our approach can easily be extended and applied to other
dynamic sequence registration problems in medical imaging,
while keeping dynamic contrast changes unaffected across
a registered image sequence. In our future work, we will
extend our method to other dynamic imaging modalities and
further investigate the effects of different image similarity loss
functions.
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