
664 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 16, NO. 4, AUGUST 2022

Non-Contact Supervision of COVID-19 Breathing
Behaviour With FMCW Radar and Stacked Ensemble

Learning Model in Real-Time
Ariana Tulus Purnomo , Kokoy Siti Komariah , Graduate Student Member, IEEE,

Ding-Bing Lin , Senior Member, IEEE, Willy Fitra Hendria , Bong-Kee Sin , Member, IEEE,
and Nur Ahmadi , Member, IEEE

Abstract—A respiratory disorder that attacks COVID-19 pa-
tients requires intensive supervision of medical practitioners dur-
ing the isolation period. A non-contact monitoring device will be a
suitable solution for reducing the spread risk of the virus while
monitoring the COVID-19 patient. This study uses Frequency-
Modulated Continuous Wave (FMCW) radar and Machine Learn-
ing (ML) to obtain respiratory information and analyze respiratory
signals, respectively. Multiple subjects in a room can be detected
simultaneously by calculating the Angle of Arrival (AoA) of the
received signal and utilizing the Multiple Input Multiple Output
(MIMO) of FMCW radar. Fast Fourier Transform (FFT) and some
signal processing are implemented to obtain a breathing waveform.
ML helps the system to analyze the respiratory signals automati-
cally. This paper also compares the performance of several ML al-
gorithms such as Multinomial Logistic Regression (MLR), Decision
Tree (DT), Random Forest (RF), Support Vector Machine (SVM),
eXtreme Gradient Boosting (XGB), Light Gradient Boosting Ma-
chine (LGBM), CatBoosting (CB) Classifier, Multilayer Percep-
tron (MLP), and three proposed stacked ensemble models, namely
Stacked Ensemble Classifier (SEC), Boosting Tree-based Stacked
Classifier (BTSC), and Neural Stacked Ensemble Model (NSEM)
to obtain the best ML model. The results show that the NSEM
algorithm achieves the best performance with 97.1% accuracy.
In the real-time implementation, the system could simultaneously
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detect several objects with different breathing characteristics and
classify the respiratory signals into five different classes.

Index Terms—COVID-19, ensemble model, FMCW, machine
learning, stacking, vital signs.

I. INTRODUCTION

COVID-19 causes most sufferers to experience respiratory
problems. Usually, COVID-19 patients will suffer from

coughing and shortness of breath in an unknown period of
time [1], [2]. In the worst case, the patient might be unable to
breathe and subsequently lose their life. Therefore, supervision
of COVID-19 patients is very crucial to reduce the death rate [3],
[4].

Direct contact with COVID-19 patients is very dangerous
since the virus can spread quickly through the air [5], [6].
Therefore, a non-contact technology that can be controlled from
a central room is a helpful solution to reduce the direct contact
between COVID-19 patients and medical practitioners.

Previous studies have been conducted to detect respiratory
signals. They used ECG sensors in [7], and gyroscope and
accelerometer sensors in [8] to classify some respiratory signals.
Unfortunately, these wearable sensors were less comfortable
since they required physical contact with the device. However,
it is better to observe COVID-19 patients without any physical
contact to reduce the spread of the virus. Therefore, non-contact
medical devices become a research concern.

Non-contact technology such as described in [9] used camera
technology to observe chest displacement. Unfortunately, the
detection with a camera had its drawbacks in terms of light
and privacy. In [10], detecting vital signs using radar was used
to classify the subject’s age by using single range-FFT image.
However, their classification method did not observe the charac-
teristic of the breathing waveform. Patients suffering from res-
piratory disorders or COVID-19 have a unique breathing char-
acteristic that cannot be represented by heart and breath rates.
Furthermore, the system in [10] had not been implemented to
perform a detection in real-time. Thus, based on this background,
the challenge is to develop a non-contact monitoring device that
can classify breathing waveform based on the characteristics of
the signal in real-time.
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One of the non-contact technologies that does not need a
good lighting for object detection is radar. There are three types
of radar: Continuous Wave (CW) radar [11], [12], Ultra-Wide
Band (UWB) radar [13], [14] and Frequency-Modulated Con-
tinuous Wave (FMCW) radar [15]–[17], which can be used to
detect human vital signs [18], [19]. FMCW is able to perform
small multi-object detection with a reasonable low transmit
power [20]. Compared to camera, FMCW radar as a non-contact
sensor has an advantage in terms of light and privacy [21]. With
its frequency modulation, FMCW radar has broader range and
higher resolution detection so that it can detect subtle movement
such as chest displacement, which contains breathing informa-
tion [22], [23].

To answer the challenge mentioned earlier, we used FMCW
radar to build a non-contact monitoring device that detects
the breathing disorder of a multiple subjects in a room. They
can be detected simultaneously by calculating the Angle of
Arrival (AoA) of the received signal and utilizing the Multiple
Input Multiple Output (MIMO) of FMCW radar. Fast Fourier
Transform (FFT) and some signal processing are implemented
to obtain the breathing waveform.

Adding Machine Learning (ML) will help the system de-
tect and analyze different breathing disorder behaviour. We
conducted the experiment using several machine learning al-
gorithms to choose a suitable ML model for our system.
We proposed a stacked ensemble model to further enhance
the performance of our system in classifying breathing wave-
form data. We compared the performance of several classi-
fiers that have been proven to be effective in similar cases
such as Multinomial Logistic Regression (MLR) [24], Deci-
sion Tree (DT) [25], [26], Random Forest (RF) [27], Sup-
port Vector Machine (SVM) [28], [29], eXtreme Gradient
Boosting (XGB) [30], [31], Light Gradient Boosting Ma-
chine (LGBM), CatBoosting Classifier (CB), Multilayer Per-
ceptron (MLP) [32], [33] and three proposed stacked ensemble
models.

The stacked ensemble model was first introduced by [34] and
proven to be better than any single model in terms of prediction
performance [35]. This study built stacked ensemble models
using a stacking technique to combine multiple classification
or regression models. There are numerous ensemble-modeling
methods [36], [37], the most well-known of which are bagging
and boosting [38]. Bagging calculates the average of multiple
similar models with high variance to reduce the spread of
data. Boosting creates multiple incremental models to reduce
bias while keeping the variance low. However, stacking works
differently, and it can combine various models or learners and
has a concept called meta learner. This classifier uses the pre-
dictions as features to make a final prediction among all of the
predictions.

Three different stacked ensemble classifiers, namely Stacked
Ensemble Classifier (SEC), Boosting Tree-based Stacked Clas-
sifier (BTSC), and Neural Stacked Ensemble Model (NSEM),
were proposed and evaluated. Based on the results, the NSEM
algorithm achieves the best performance with a mean accuracy
of 97.1% using 10-fold CV. In the real-time implementation,
multiple subjects with different breathing characteristics could

be identified simultaneously, and the system was able to identify
five different types of classes.

Our previous study [30] successfully detected the breathing
waveform using FMCW radar with one transmitter and one
receiver antenna. The range FFT and phase change information
was used to provide chest displacement information. The help
of the MFCC Feature Extraction (FE) and XGBoost algorithm
has successfully achieved 87.375% accuracy in classifying five
breathing classes. In this study, the system was developed in
terms of radar and machine learning. The challenge of this
research is to develop the detection of multiple persons and
increase the accuracy in detecting breathing classes.

Our contributions are listed as follows.
� Two-transmitter and four-receiver antennas are used to

determine each subject’s Angle-of-Arrival (AoA) estima-
tion. This AoA estimation helps the system plot the range-
azimuth Map to estimate and track the position of objects.

� Multi-person breathing waveforms can be recognized si-
multaneously based on the range FFT, 2D-FFT, AoA, and
phase change.

� The combination of MFCC and statistical FE helps the
system distinguish different breathing classes with a better
performance than [30].

� Proposing a stacked ensemble learning approach for sys-
tem performance improvement and showing that the pro-
posed model outperforms previous research [30].

The rest of the chapter is summarized as follows: Section 2
explains the proposed method, Section 3 demonstrates the ex-
periment and result, and Section 4 concludes the study.

II. PROPOSED SYSTEM

In this study, we developed five types of detection of respi-
ratory signals with FMCW radar which can be used to monitor
breathing conditions of several subjects simultaneously without
physical contact. Five types of respiratory signals that can be
detected are normal breathing, deep and quick breathing, deep
breathing, quick breathing, and hold breathing.

Normal breathing signals have a breathing rate at about 12-
20 breaths per minute with an amplitude ranging from 1-12
mm [39], [40]. Deep and quick breathing signals have a big
amplitude with a high breathing rate. It usually occur in hy-
perventilation [41], Kussmaul [39]and biot patients [42]. Deep
breathing signals have a big amplitude with a low breathing
rate. It often attacks patients with hyperpnea symptoms. Quick
breathing signals have a small amplitude with a high breathing
rate. Asthma [43], [44], COVID-19 and tachypnoea patients [29]
are often attacked with shortness of breath or quick breathing.
Hold breathing signals have a tiny amplitude that is almost
imperceptible. Respiration of bradypnea patients has the same
characteristics as hold breathing signals [45].

Our proposed system, shown in Fig. 1, consists of 4 main
modules: FMCW radar module, object tracking module, breath-
ing extraction module, and ML module. FMCW radar produces
s(t) signal and transmits it through Tx transmitter. The reflected
signal of the object is received by the receiver antenna as r(t).
A breathing waveform can be obtained by passing the received
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Fig. 1. Four main modules of the proposed system.

Fig. 2. The basic concept of FMCW radar.

signal through several signal processing blocks. The addition
of the ML model will help the system to classify the breathing
disorder. The following subsection will explain the proposed
system in detail.

A. MIMO FMCW Radar

In this subsection, we briefly describe the basic concept of
MIMO FMCW radar [46]. FMCW is a continuous signal with
linearly-changing frequency with time, as shown in Fig. 2.

An FMCW signal is transmitted to an object at time index t
as

s(t) = A cos

(
2πfct+ π

B

T
t2 + φ(t)

)
, (1)

where A is the transmitted signal power, T is the sweeping time,
fc is the starting frequency of the chirp, B is the sweeping band-
width, and φ(t) is the phase. The object reflects the transmitted
FMCW signal with the same frequency change, and the reflected
signal is received by the receiver at time td as

r(t) = αA cos

[
2πfc(t− td) + π

B

T
(t− td)

2 + φ(t− td)

]
,

(2)

where α is the resized scale. The received signal is mixed with
the transmitted signal and passed through the low pass filter
(LPF) to produce a beat signal

b(t) = LPF (s(t)r(t))

=
α(A)2

2
cos

(
2π

Btd
T

t+ 2πfctd − π
B

T
(td)

2 +Δφ(t)

)
,

(3)

where Δφ(t) is the residual phase noise, Δφ(t) = φ(t)−
φ(t)(t− 2R(t)

c ). The chest movement can be expressed as
R(t) = Rconst +Rl, where Rcons is a constant range from the
radar and Rl is the relative movement of the object. We have
td = 2R(t)

c ,and fc =
c
λ

, where λ is the wavelength and c is the

Fig. 3. (a) Texas Instrument - IWR1443 board with three-transmitter and four-
receiver antennas, (b) IWR1443 antenna configuration.

Fig. 4. Two-transmitter and four-receiver antennas form eight virtual array
antennas.

speed of light. Note that fb =
2BR(t)

cT . Thus, we have

b(t) ≈ α(A)2

2
cos

(
2π

2BR(t)

cT
t+

4πR(t)

λ
+Δφ(t)

)

=
α(A)2

2
cos (2πfbt+Φb(t) + Δφ(t)) , (4)

where Φb(t) is the phase of the beat signal. The signal in (4) can
be expressed as a complex signal as

b(t) = αAej(2πfbt+Φb(t)+Δφ(t)). (5)

In this study, we used a Texas Instruments - IWR1443 board
which has three-transmitter and four-receiver patch antennas
as shown in Fig. 3(a) [47]. This antenna has a configuration
as shown in Fig. 3(b). For our proposed system, we used a
linear antenna configuration. The linear arrangement of antennas
with the MIMO concept can provide a higher resolution result
with fewer antenna elements. Thus, we picked two-transmitter
antennas, Tx1 and Tx3, and four-receiver antennas, Rx1, Rx2,
Rx3, and Rx4, antennas of the IWR1443 board.

To process the signal received by the radar, a Uniform Linear
Array (ULA) is formed from two transmitters and four receivers.
Two transmitters with a distance of 2λ and four receivers spaced
by λ

2 produce four additional receiver antennas spaced by λ
2 .

Thus, the system has eight virtual array antennas where each
element is spaced by λ

2 as shown in Fig. 4. This additional an-
tenna exists because each receiver antenna receives two reflected
object signals from the first and second transmitters, as shown
in Fig. 5(a).

For multiple receiver antennas, the signal received by each
receiver increases the distance Δd to the reference point as
shown in Fig. 6 and described as

Δdn = dn sin θ, (6)
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Fig. 5. (a) Transmitting and receiving FMCW signals with the MIMO concept,
(b) The vibration of an object with different phase value.

Fig. 6. Multiple receiver antenna concept.

where θ is the AoA and dn as the antenna distance of receiver
n. Therefore, the phase change for nth antenna becomes

δn =
2π

λ
dn sin θ, (7)

and such as, AoA obtained is

θ = sin−1

(
δnλ

2πdn

)
. (8)

This azimuth angle is obtained from the real-time delay of each
virtual array element.

Detection of multiple objects in front of the radar is processed
using 2D-FFT, AoA, and object tracking. Multiple objects in
front of the radar will produce multiple peaks in the spectrum
analysis. 2D-FFT and AoA analysis provide the position and
angle of the object. If the object’s position has been obtained,
the detection of chest motion is focused on the tracking point.
Furthermore, the extraction of breathing waveform at that loca-
tion was carried out.

Based on the concept as mentioned earlier, for MIMO FMCW
withN receiver antenna, there is an additional phase shift for the
nth receiver antenna, which is arranged linearly. The received
signal for the nth receiver antenna is given by

bn(t) = αAej(2πfbt+Φb(t)+Δφ(t)+ 2π
λ
dn sin(θ)), (9)

where 1 ≤ n ≤ N and dn is the relative distance between the
reference object and the nth receiver antenna. The basic idea
for detecting a vibrating object such as Fig. 5(b) is to send
multiple chirps separated by time. Each received chirp will have
a different arrival delay. Because chest displacement has a tiny
movement, the FFT range of each chirp will have peaks with the
same location but with different phases. The phase difference
of the signal (ΔΦb) represents chest displacement ΔR, which
is caused by lung activities [15]. It can be calculated by the

Fig. 7. FMCW chirps configuration consists of a sequence of chirps followed
by idle time.

Fig. 8. The received chirps at one of the receiver antennas and the radar cube
data.

equation

ΔΦb =
4πΔR

λ
, (10)

where ΔΦb is the phase change of the beat signal and ΔR
is the position change. From this information, the phase shift
can be obtained and used to analyze the signal in the frequency
domain. To synthesize the total number of MIMO channels, the
system must be able to distinguish the Tx channels based on
the original antenna. One of the easiest ways is to use the time
division technique. Using this method, the transmitting antenna
alternately transmits its signal at different times. A chirp of
two transmitters, transmitter one and transmitter three, is sent
alternately using the Time Division Multiplexing (TDM) MIMO
method as shown in Fig. 7. Each received chirp data is stored in
each column of the radar cube presented in Fig. 8. The FFT on
each sweep informs the range of the beat signal spectrum. FFT
on the receiving channel provides information on the angular
spectrum for each distance so that an azimuth-range plot can
be obtained. The azimuth angle of the object will have a wide
angular resolution of ≈ 2

N radians.
Since we used TDM MIMO FMCW, the MIMO calibration

is implemented with a conventional beamformer on the receiver
side [48]. Each signal received by the receiver has a different
arrival time. The signal received by all antennas is processed
by Fourier transform followed by multiplication of the steering
vector. The signal output is the combination of the sum of all
sensors.
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Fig. 9. Object tracking steps.

Fig. 10. Signal processing step for extracting the breathing waveform.

B. Object Tracking

In our previous study [30], 1D-FFT was used to detect an
object in front of the radar. An object in front of the radar will
produce a peak in the frequency domain analysis, as shown
in Fig. 2. In 1D-FFT, the highest peak represents the object
information. Detection of an object’s breathing signal can be
obtained only by doing once FFT process. If there are two
objects in front of the radar, there will be two peaks in a
received FMCW signal. The detected peaks through the 1D-FFT
fluctuate in terms of frequency and magnitude. This will not be a
problem in detecting one subject because the highest peaks can
be directly identified as our object. If there are multiple subjects
in front of the radar, there will be several peaks that need to be
identified. Thus, the challenge in detecting multiple subjects is
to separate and identify the information for each subject in a
received FMCW signal so that each piece of information is not
swapped with each other. Therefore, in this study, 2D-FFT and
FMCW MIMO were used to track each object in a certain range
and angle. With 2D-FFT, the position and angle of each subject
can be obtained from the range-azimuth map. Besides, in this
study, differential processing is used to cancel static objects, and
smoothing processing is used to remove the high-frequency sig-
nals. If the subject has been identified, then the phase extraction
is carried out on each detected object. Furthermore, the process
of extracting the respiratory signal can be carried out for each
subject. The object tracking steps is briefly described in Fig. 9.

C. Extracting Breathing Waveform

In this study, several signal processing techniques as shown
in Fig. 10 are used to identify the breathing signals. Changes of
the signal in each process can be seen in Fig. 11. The details of
each block will be explained in the following parts.

1) RANGE - Fast Fourier Transformation (FFT): As men-
tioned earlier, the received signal r(t) passed through the mixer
and a Band Pass Filter (BPF) to produce a beat signal b(t).
This beat signal is sampled with an Analog to Digital Converter
(ADC) and transformed to the frequency domain using FFT to

Fig. 11. Extracting breathing waveform: (a) raw data (beat signal) of FMCW
in real and imaginary form, (b) output of range FFT that show the spectrum of the
signal, (c) phase extraction output, (d) unwrapping output, (e) phase difference
output and, (f) noise removal and BPF output.

produce a signal spectrum. The object distance to the radar can
be determined by detecting the peak value of the signal spectrum,
as shown in Fig. 2.

Chest movement with a small amplitude <12 mm can be
observed by applying slow time FFT [15]. To detect a small
movement, the displacement distance is obtained from the phase
change across multiple chirps, as shown in Fig. 8.

2) Extracting and Unwrapping the Signal: The phase value
from chirp m̂ is obtained by extracting and unwrapping the
signal as

Φm̂
b = unwrap

[
tan−1

(
I

Q

)
,

]
(11)

where I and Q is imaginary and real part of the measured
signals respectively. In this step, phase ambiguity should be
prevented while unwrapping the signal. This phenomenon may
occur because the operator tan−1 changes the radian phase
into a phase with an interval of 2π under the [−π, π] domain.
The output of unwrapping should be in the range of ]−π, π],
which is a zero centered, 2π length interval with the modulo-2π
operator [49], with no loss of generality by subtracting π radian
as

Φ(t− 1, t) =

⎧⎨
⎩

ΔΦt, if |ΔΦ(t)| < π
ΔΦt + 2π, if ΔΦ(t) ≤ −π
ΔΦt − 2π, if ΔΦ(t) ≥ −π,

(12)

where Φ(t) is the phase at the current time index t and Φ(t− 1)
is the phase at the previous time index. After extracting and
unwrapping the signal in (9), the phase difference in (10) is
obtained, and ΔR can be calculated.

3) Noise Removal: The unwrapped differential phase close
to −π or π suffers from a noise-induced phase wrapping error.
This error can be eliminated by calculating the forward and
backward phase difference for each time index t. Let a(t) be
the unwrapped differential phase at time index t. The forward
differential phase is defined as a(t)− a(t+ 1) and backward
differential phase is defined as a(t)− a(t− 1). If the forward
or backward differential phase exceeds the threshold then a(t)
will be replaced by the interpolated value. The output of phase
difference BPF block without noise removal and output of
phase difference BPF block with noise removal are presented
in Fig. 12.
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Fig. 12. Output of (a) phase difference, (b) BPF block without noise removal
and output of (c) phase difference, (d) BPF block with noise removal.

Fig. 13. Second order of IIR BPF using cascaded bi-quad.

4) 2-nd Order of IIR Cascaded Bi-Quad BPF: Human res-
piration causes a chest displacement in the range of 0.1−0.5 Hz
with an amplitude of 0−12 mm [83]. To obtain this respiration
signal, a BPF filter, which passes signals with a frequency
between 0.1 and 0.5 Hz, is used. The 2-nd order IIR cascade
bi-quad BPF, as shown in Fig. 13, can be used to obtain the
breathing signal [30]. The denominator coefficient ã, numerator
coefficient b̃, and the gain K̃ follow

ã =

[
1 ã1,1 ã1,2

1 ã2,1 ã2,2

]
=

[
1 − 1, 963 0, 964

1 − 1, 850 0, 868

]
,

b̃ =
[
b̃0 b̃1 b̃2

]
=

[
1 0 − 1

]
, K̃ =

[
0, 116 0, 031

]

D. Machine Learning Development

This section presents the detailed machine learning process,
such as data preparation steps, FE approach, classification tech-
niques, hyperparameter optimization, and evaluation metrics in
our research experiment.

1) Data Preparation: In this study, we used a breathing
waveform data set that was manually collected and labeled.
Each data in the data set is recorded for 5 seconds. The data set
consists of 4000 data, divided into 80:20 percentage portions for
training and testing respectively. It is approximately 3200 data
for training and 800 data for testing the system. See Table I for
the details. Most ML algorithms work best with an equal number
of samples in each class since most algorithms are designed to

TABLE I
TRAINING AND TESTING DATA SET

maximize accuracy while minimizing errors. Hence, if the class
distribution is not balanced, ML algorithms will perform poorly
and simply predict the majority class in all cases [50], [51]. This
case will lead to a phenomenon called “accuracy paradox [52],”
the situation where a high accuracy value does not correspond
to a high-quality model because the model is biased towards the
majority class and can obscure the obtained results. However, to
avoid the issue, we assumed that we had a balanced data set to
train the model.

Our data set contains five classes of breathing waveform as
described in Table I. The reason for classifying into these five
classes is related to the breathing pattern of several disease
symptoms as described in the beginning of Section 2 and in [30].

Our focus is mainly to detect the symptoms of COVID-19
patients that mostly appear with quick and short breathing symp-
toms called tachypnoea. In this condition, the breathing rate is
higher than the normal breathing, where the normal breathing
rate for an average adult is 12 to 20 breaths per minute [53], [54]
and can be higher in children. This critical breathing behavior
needs supervised care and quick treatment. If it is not handled
correctly, it can lead to a crucial situation of respiratory distress
and cause a life-threatening issue for the patient.

Before applying the breathing waveform data set to our model,
we need to normalize the data by converting them to a standard
unified scale. The purpose of normalization is to reduce the
unwanted variation between the data sets and allow the data
on different scales to be compared.

In this study, we used z-score standardization to ensure that
the distribution has the mean (μ) = 0 and the standard deviation
(σ) = 1. The formula for calculating the z-score of a point, x,
is described as z = x−μ

σ , where, x is the original feature vector.
For this study, we set each data to be limited to 5 seconds with
85 step sizes.

2) Features Extraction (FE): Several FEs are performed to
reduce the number of features in our data set. New features were
created and selected from the original data set. Selected features
represent some of the most important information from the
original features. This study used statistical and Mel-Frequency
Cepstral Coefficient (MFCC) FE described in the following
paragraphs.

1) Statistical: Statistical-based FE method [55], [56] uses a
statistical approach to determine the relationship between
each input variable and the target variable. Besides, it
selects the input variable with the strongest relationship
with the target variable to be evaluated. This study uses
statistical FE to calculate the basic statistical feature of res-
piratory signals such as mean, median, variance, standard
deviation, absolute deviation, maximum, kurtosis, and
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Fig. 14. MFCC FE technique.

skewness. Overall, eight statistical features were obtained.
Then in the features selection step, we run an ANOVA F
-value test [57], [58] to choose the best statistical features
among them. The ANOVA F-value test can be defined by
F = between−groupvariability

within−groupvariability
where “between-group variability” is

K̂∑
i=1

n̂i(Ȳi. − Ȳ )
2

(K̂ − 1)
(13)

where Ȳi. denotes the sample mean in the ith group, n̂i

is the number of observations in the ith group, Ȳ denotes
the overall mean of the data, and K̂ denotes the number
of groups. “within-group variability” is,

K̂∑
i=1

n̂i∑
j=1

(Yij − Ȳi.)
2

(N̂ − K̂)
(14)

where Yij is the jth observation in the ith group out of
K̂ groups, and N̂ is the overall sample size. This F-
statistic follows the F-distribution with degrees of freedom
d̂1 = K̂ − 1 and d̂2 = N̂ − K̂ under the null hypothesis.
The statistic result will be large if the “between-group
variability” is larger relative to the “within-group vari-
ability”, which is unlikely to happen if the population
mean of the groups all have the same value [59]. From the
ANOVA F-value test result, we decided to choose only six
features for our statistical features, namely mean, median,
maximum, standard deviation, kurtosis, and skewness.

2) MFCC: Previously in [30] we proposed MFCC FE. MFCC
method [60]–[62] involves windowing technique, apply-
ing the Discrete Fourier Transform (DFT), getting the
magnitude log, then distorting the frequencies on the mel
scale, followed by applying the Inverse Discrete Fourier
Transform (IDFT) as shown in Fig. 14.

3) MFCC-Stat: Prior to training, we plotted our data (which
had been extracted via FE) in a two-dimensional graph of
linear discriminant analysis (LDA). LDA is a generative
probabilistic model that can reduce the dimensions [63].
LDA attempts to project the sample onto a straight line
with interclass projection points as close as possible and
intraclass projection points as far apart as possible. Thus,
we used LDA to see the effect of using different FE in
Fig. 15. Based on the observation in Fig. 15, the scattering
point of the data with the combination of both statistical
and MFCC FE has fewer numbers of overlapping classes
and is better separated than the one with MFCC FE only.
Thus, we decided to use this approach for our proposed
system and applied it to our data set.

Fig. 15. LDA scattering point for (a) raw data, (b) data with statistics FE, (c)
data with MFCC FE, and data with the combination of MFCC and statistics FE.

Fig. 16. Stacking-based ensemble learning framework for breathing waveform
classification.

3) Classification Techniques: XGB classifier was used in our
previous study to classify breathing waveforms in a real-time
system [30]. However, we proposed a two-level classification
model based on stacked ensemble learning in this study. In
ensemble learning, several algorithms were utilized, and two-
level predictions were implemented to get the best performance.
Stacking technique learns high-level classifiers on top of the base
classifiers [34], [64]–[66]. This technique can be regarded as a
meta-learning approach. The base classifiers are called first-level
classifiers. The second-level classifiers learns to combine the
first-level classifiers. Thus, a framework of the proposed model
is given in Fig. 16. The framework consists of a stack with
the first level as the base model, which is comprised of several
individual learners, and the second level as the meta-classifier
(combiner), which takes those individual learners’ predictions
to get the final output prediction. Some classifiers used in this
study are described in the following explanation.
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TABLE II
PARAMETER SETTINGS FOR BASE AND META-CLASSIFIER OF THE PROPOSED

STACKED ENSEMBLE MODELS

1) Individual Classifier
In the stacked ensemble learning method, the first-level
classifiers that consist of multiple individual classifiers are
trained parallelly. Thus, to build a robust ensemble model,
we utilize and explore several individual classifiers from
single model algorithms such as MLR, DT, and SVM;
homogeneous ensemble models such as RF, XGB, LGBM,
and CB; to a neural network algorithm such as MLP.

2) Meta-classifier (Combiner)
Meta-classifier or combiner [67] trained multiple classi-
fiers, either in a serial or parallel manner. To construct a
stacked ensemble learning, we employ a meta-classifier in
the second-level prediction. Meta-classifier will learn how
to combine the output predictions made by individual clas-
sifiers in the first level. Thus, meta-classifier in the second
level requires the presence of other learning algorithms
that have already been trained on data. See Fig. 16 and
Table II as a reference on how we built the meta-classifier
for this study.

In this study, we combined the idea of stacking with K-fold
cross-validation (CV) to avoid the over-fitting problem that com-
monly occurs in ensemble learning. K-fold CV is a widely used
technique to evaluate classification performance. The modern
form of stacking that uses internal K-fold CV was the idea of
Breiman in [66]. Since then, stacking has been transformed into
an algorithm known as the Super Learner [68], which learns
the ideal combination of base learner fits. Algorithm 1 [64]
demonstrates the general stacking procedure, which consists of
three major steps:
� Step 1: Use K-fold CV to train first-level classifiers and

prepare a training set for the second-level classifiers. In-
stead of using all the training example D, we split D into
K equal-size subset and then run the learning algorithm K
times. For each subset, we learned a classifier from K − 1
subsets and used the learned model to predict the remaining
subset. The final prediction accuracy is averaged over K
runs. The final prediction of the first-level classifiers will
then be used as the input feature space for the second-level
classifiers.

� Step 2: Construct a new data set based on the
results of the first-level classifiers. Assume that
each examples in Dk is {xi, yi}. We created a

corresponding example {x′
i, yi} in the new data set, where

x′
i = {hk1(xi), hk2(xi), . . . , hkT (xi)}. Using the newly

constructed data set, we train a second-level classifiers.
� Step 3: Use the second-level classifiers to com-

bine the first-level classifiers. For an unobserved ex-
ample x, the predicted class label of stacking is
h′ (h1(x), h2 (x), . . . , hT (x)), where {h1, h2, . . . , hT }
are the first-level classifiers and h′ is the second-level
classifiers.

4) Hyperparameters Optimization: This study uses the
search space, a dictionary where the hyperparameter arguments
and values are used for the random search CV. As the classifier’s
performance is dependent on the hyperparameters, all candidate
classifiers are optimized prior to selection. The optimization
method used in this study is a random search with 10-fold CV
where random combinations of hyperparameters are utilised to
discover the optimal solution for each classifier. The algorithm
assumes that not all hyperparameters are of equal significance.
Random combinations of parameters are explored in each iter-
ation of this search pattern. Due to the random search pattern,
where the model may end up being trained on optimized pa-
rameters without aliasing, the probabilities of discovering the
optimal parameter are considerably higher. The final values for
each classifier based on the hyperparameter configurations that
had the best performance across 10-fold CV are presented in
Table III.

5) Evaluation Metrics: To assess the model performance,
we calculate four different measurements of multiclass classifi-
cation problem [69] [70]: (1) Accuracy = TP+TN

TP+FP+FN+TN ,
i.e., the proportion of accurately predicting the breathing wave-
form classes to all observed breathing waveform classes; (2)



672 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 16, NO. 4, AUGUST 2022

TABLE III
HYPERPARAMETER SEARCH SPACE FOR EACH ALGORITHM. THE FINAL VALUE IS GENERATED FROM RANDOM SEARCH WITH 10-FOLD CV PROCEDURE

Recall = TP
TP+FP , i.e., the proportion of correctly predicted

positive breathing waveform class in actual class compared to
all observations in a predicted class; (3) Precision = TP

TP+FN ,
i.e., the proportion of correctly predicting the positive breathing
waveform class to the total predicted positive observations; and
(4) F1 score = 2 × Precision × Recall

Precision + Recal , i.e., the weighted
average of precision and recall.

Where TP, FP, TN, FN are
� True positive (TP): correct positive prediction occurs when

the system correctly predicts that the patient does have a
disease related to the measured class.

� False positive (FP): incorrect positive prediction (falsely
predict positive) occurs when the system incorrectly pre-
dicts that the patient does have a disease related to the
measured class. In actual condition, the patient does not
have the related disease.

� True negative (TN): correct negative prediction occurs
when the system correctly predicts that the patient does
not have a disease.

� False negative (FN): incorrect negative prediction (falsely
predict negative) occurs when the system incorrectly pre-
dicts that the patient does not have a disease related to the
measured class. In actual condition, the patient does have
the related disease.

In the medical problem, there is a critical miss classifica-
tion case that requires specific attention, namely FN. FN in-
dicates a condition when the system does not detect the class
correctly even though the actual condition is positive for the
measured class. An example case related to this study: The
system does not detect the presence of COVID-19 suffered by
the patient; instead, the system detects that the patient is healthy
or suffered from other diseases such as asthma. This condi-
tion will be dangerous because the patient may not get proper
treatment.

FP cases need to be considered as well although they might
not be as dangerous as FN cases. FP indicates a condition when
the system detects positive to the measured class, but the actual
condition is negative to the measured class. FP cases are more
tolerable because it is acceptable to classify non-COVID-19
sufferers as positive COVID-19 and follow up with more medical
tests. However, for the FN case, it is clear that we should not miss
in identifying a COVID-19 patient or classifying a COVID-19
patient as a non-COVID-19 sufferer. This will endanger the
person itself and those around him.

These FP and FN cases can be observed from the precision and
recall values of each class. Therefore, it is important to mention
both the precision and recall for each class to ensure that the
used algorithm is not only good in terms of accuracy but also
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must be suitable for precision and recall values in each class. A
system with a low recall has significant FN cases, while a system
with low precision has an immense FP value. Since FN is more
dangerous than FP, the recall has a higher priority than precision
for evaluating the classification algorithm.

High recall with low precision implies that most classes have
been detected, but most detections are false (high FP). High
precision with low recall indicates that most predicted classes
are correct, but most classes have not been detected (high FN).
High precision with high recall implies an ideal classification
algorithm that classifies all the classes correctly. In contrast, low
precision with low recall means a poor classification algorithm
that does not detect the most fundamental truth class (high FN),
and most detections are false (high FP).

III. EXPERIMENT RESULTS AND DISCUSSION

A. Machine Learning Model

The experiment was conducted by selecting the base models
for the first-level classifier and followed by choosing the second-
level classifier. In this step, we employ individual classifiers
described in Section II, Subsection C on machine learning
development. The purpose is to build an ensemble model based
on stacking and select a second classifier as a meta-classifier. In
building a good ensemble model, the diversity of base models
and the meta-classifier selection plays an important role in
achieving the best accuracy and generalization [71]–[73]. It
is crucial to choose the most suitable classifier, especially in
heterogeneous ensemble learning techniques such as stacking, as
the meta-classifier parameter can aid in selecting a classifier that
best fits the output of the base models. Therefore, the selection of
base and meta-classifier combinations is always a matter of con-
cern during the design of stacked ensemble architecture. In this
study, we utilized different classifiers to select the most suitable
classifier configuration for the system. We also proposed three
stacked ensemble-based models using various combinations of
base learner and meta-learner as explained in Table II with the
following considerations:
� SEC: This model employs MLR, DT, RF, SVM, and MLP

as our first-level classifiers based on the study and experi-
ment in [74]–[76] and LGBM as the meta-classifier. Using
various ML classifiers is suggested by [77]. In [77], they
stated that stacking is effective when multiple machine
learning models exhibit distinct abilities or have a low
correlation. Thus, employing various models that make
different assumptions about how to solve predictive mod-
elling tasks as the base models can improve the quality of
the stacking model. However, the idea to employ LGBM
as a meta-classifier in our proposed model was influenced
by the studies in [78], [79], and [80]. Using LGBM as a
meta-classifier, the one-sided gradient algorithm can filter
out samples with small gradients, eliminating unnecessary
calculation and computing and optimizing features to ac-
celerate the parallel computation. In addition, LGBM has
outperformed the existing boosting frameworks in terms of
efficiency and accuracy with much-reduced memory usage
in numerous comparison studies using public datasets [81].

� BTSC: The idea of selecting XGB, LGBM, and CB as
base models is because of their high performance in [82],
[83]. With a more robust heterogeneous baseline model, we
believe that we can achieve higher performance. Further-
more, [82], [83] use boosting algorithm which has proven
to be successful with high performance for the base learner
model. Hence, for the meta-classifier, we employed MLR.
Based on [84] formulation, we could process meta-learning
using stacking with a logistic regression (LR) classifier
trained on the probabilistic output of several first-level
classifiers. Several prior research have also utilized LR
as a meta-classifier [85]–[88], and it has been proved
that it can prevent the overfitting problem [84]. Although
we could use other classifiers, the simple LR as a meta-
classifier helps the system avoid overfitting conditions and
lead to high-performance results. In addition, according
to [89], the LR coefficients can be interpreted intuitively
as the significant weight of each first-level classifiers.
However, because this study is a multi-class classifica-
tion problem, we used MLR as the extension of the LR
model.

� NSEM: In this model, the meta-classifier is replaced with
MLP. However, the decision to use MLP is motivated by
the experiment of [82]. In their experiment, a boosting-
based model combined with MLP as a meta-classifier
outperformed both existing techniques and hybrid models
for stacked ensemble learning. Furthermore, the research
of [90] using MFCC FE demonstrated that an MLP as a
meta-classifier improved the overall performance of the
models. In addition, [91] also used MLP as one of their
meta-classifier. Thus, we employed an MLP as our meta-
classifier. MLP is a classification method based on neural
networks that have been proven to be adaptable in mod-
elling a complex problem [92]. MLP iteratively adjusts its
parameters during training using the loss function’s frac-
tional derivatives. The chance of data samples matching a
specific breathing waveform pattern was calculated using
the cross-entropy loss function.

We performed the experiment in two steps: (1) we fed the
MFCC-stat features data to these individual classifiers to evalu-
ate our proposed stacked ensemble models’ performance; (2) we
proceeded with the experiments starting from SEC to NSEM.
The experiment used the hyperparameter settings in Table III.
These settings were obtained by performing a random search
hyperparameter optimization to find the most optimal setting
for our system. The experimental results for these experiments
can be found in Table IV with its visualization in Fig. 17.

Fig. 17 depicts a visual comparison of the performance of
all breathing classification methods. The box plot presents the
performance of each model based on a 10-fold CV procedure
with average accuracy and variance. The upper part of the box
represents the highest data point, and the lower part represents
the lowest data point. A horizontal red line within the rectangle
represents the median of all values. The white diamond indi-
cates the mean value. In Fig. 17, outliers did not appear for
all algorithms. The more significant box-plot length indicates
that the distribution of MLR, DT, and SVM values is more
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TABLE IV
PERFORMANCES OF THE BREATHING CLASSIFICATION TASK (MEAN ± STD

WITH 10-FOLD CV)

Fig. 17. Box plot of the accuracy for all algorithms with a 10-fold CV
procedure.

varied than the other algorithms. Almost all high-performance
algorithms have a narrow distribution of values, suggesting that
the distribution contains values close to each other. However,
in general, the mean accuracy of the NSEM model is the best
among all algorithms, with the median value of the distribution
located in the third quartile. It indicates that seventy-five percent
of the values are below the upper quartile. Table IV summarizes
the performance of each algorithm, including the mean accuracy
and its standard deviation. The model’s best performance is
highlighted in bold.

Fig. 17 and Table IV show that even using a single classi-
fier, the system yielded promising performance. The obtained
accuracy using a single model such as MLR, DT, and SVM is
quite good because these models can classify each class with an
accuracy rate of more than 80%. On the other hand, using an
ensemble-based model produces a better result than a single
model algorithm. We can see those ensemble-based models
such as RF, XGB, LGBM, and CB can achieve an accuracy
rate of more than 90%. Additionally, MLP achieves comparable
accuracy to ensemble-based models due to the complexity of
multilayer networks.

Our three proposed models perform pretty well. SEC and
BTSC models achieved a similar average accuracy of 96.7%,
and the NSEM model achieved the best results with an average
accuracy of 97.1%. This result outperforms the previous ex-
periment in [30]. We show the detailed evaluation performance
of these three proposed models using the confusion matrix in
Fig. 18 followed by the classification report in Table V. As
shown in Fig. 18, in all three models, the majority of the miss
classifications were caused by incorrect predictions of deep
quick breathing becomes quick breathing, normal breathing

becomes quick breathing, normal breathing becomes deep quick
breathing, and conversely. These same miss classifications also
occurred in the previous study [30]. However, the intensity of
the error was decreased in this experiment.

In medical problem, the cost of FN is greater than the cost
of FP, which means that miss classifying a healthy person as a
COVID-19 patient is less risky than miss classifying a positive
COVID-19 patient as a healthy person, especially when the
patient’s life is at stake. As a result, recall is more critical than
precision. As shown in Table V, all classes in the three proposed
models have varied precision and recall performance, except for
the hold breathing class, which has a perfect recall, precision, and
F1-score performance. This ideal performance might happen
because the breathing waveform of the holding class is less
complex. Thus it is easier for the system to detect. COVID-19
patients often suffer quick and short breathing at unexpected
times. This condition is associated with a quick breathing class.
Therefore, the NSEM model is suitable for detecting COVID-19
patients due to its higher recall than its precision in recognizing
quick/short breaths.

Overall, the results demonstrate that the classification per-
formance of an ensemble-based model is superior to the single
model algorithm. The performances of our three proposed mod-
els reflect an improvement of 0.5% to 1.3% compared to the ho-
mogeneous ensemble models (XGB, LGBM, and CB) and MLP.
Furthermore, the result of this study achieved better performance
compared to our previous study [30]. The combination of MFCC
and statistic FE greatly contributes to this improvement. We can
conclude that the proposed ensemble models well performed to
classify five classes of our breathing waveform data.

B. Real-Time Measurement

The experiment was carried out in a room with the size of
3× 3 m. In the beginning, a subject was asked to sit in front of
the radar without any movement during the measurement, and
the chest displacement was detected, as presented in Fig. 19(a).
After going through some signal processing steps as described
in Section 2B, the breathing waveform was obtained and shown
in Fig. 19(b).

After the breathing signal was detected, the subject was asked
to imitate the breathing pattern of each class, and the system
recorded the signal. Fig. 20 presents five breathing pattern mea-
surements: holding the breath, normal breath, quick breath, deep
and quick breath, and deep breath. It can be seen that when the
subject imitates a different breathing pattern, the system could
detect a different breathing waveform as well, appropriate to the
breathing characteristics of each class.

ML model was then used to classify the breathing pattern of
multi-person in front of the radar. In this experiment, the subjects
were asked to sit in front of the radar at different distances and
angles, as shown in Fig. 21, and were asked to imitate different
breathing waveforms simultaneously.

In the next experiment, we performed the detection of four
subjects. The user interface of the system is shown in Fig. 22.
By applying 2D-FFT, the system is able to provide the range-
azimuth map, as shown in Fig. 22. It can be seen on the azimuth
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Fig. 18. The confusion matrix shows how the test values predicted classes compared to their actual classes.

TABLE V
THE CLASSIFICATION REPORT FOR THE PROPOSED ENSEMBLE-BASED MODEL

Fig. 19. (a) Chest displacement, (b) Breathing waveform.

Fig. 20. Breathing waveform in the time domain for (a) holding the breath;(b)
normal breath; (c) quick breath; (d) deep and quick breath; (e) deep breath
recorded by TI-IWR1443.

map that the four subjects were located in front of the radar at
different distances of 0.8, 0.9, 0.6 and 0 m with the angles of
−45o,−30o,−15o, and 39o from the radar.

Furthermore, our user interface also presents the real-time
measurement of chest displacement and breathing waveform.
Based on Fig. 22, four subjects with each different type of
breathing can be detected simultaneously in the system. The
first subject at 0 m with an angle of 39o in front of the radar was
detected as having quick breathing. The second subject located
at 0.6 m and −15o in front of the radar was detected as having
deep breathing. The third subject located at 0.8 m and −45o

in front of the radar was detected as imitating holding breath.

Fig. 21. (a) Experiment scenario, (b) photo of experiment environment from
the front side and (c) from the right side.

Fig. 22. Real-time detection for supervising four people simultaneously.

The fourth subject, located at 0.9 m and −30o in front of the
radar, was detected as having normal breathing. The experiments
demonstrate that the system successfully detects four subjects
with different breathing waveforms simultaneously. Thus, the
system can assist medical practitioners in simultaneously mon-
itoring several patients with breathing disorders in a room.

The system’s latency was evaluated by measuring the delay
time as shown in Fig. 23 . The time takes for the system to
activate the transmitter until displaying the breathing waveform
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Fig. 23. Delay for displaying breathing waveform and breathing class.

TABLE VI
DELAY TIME OF THE SYSTEM

for the first time is defined as the displaying breathing waveform
delay. It is defined as

tdisplaying breathing waveform = tUART + tgenerating FMCW

+ tFMCW travelling + tsignal processing.
(15)

The time takes for the system to activate the transmitter until
classifying the breathing class for the first time is defined as
displaying breathing class delay. It is defined as

tdisplaying breathing class = tUART + tgenerating FMCW + tFMCW travelling

+ tsignal processing + tclassification (16)

In classifying the breathing waveform, each data in the data set
was recorded for 5 seconds. Then we divided it into 85 windows.
For the first classification result, the system needs to wait for the
first 85 window sizes to be collected. Thus, the first classification
will take longer than the rest since the system needs to wait for
85 window size for the first time.

In measuring the delay time in Table VI, we used an Intel(R)
Core(TM) i7-4700HQ CPU with a speed of 2.4 GHz, 64-bit
operating system, 8 GB of installed RAM with the speed of
1600 MHz. The measured delay might yield different results
due to the radar hardware and computer specifications.

Based on the measurement, it took 5.079 ± 0.039 seconds
for the system to display the breathing class for the first time.
This delay happened only once at the beginning when the system
started the process. In the next classification updates, the system
uses the last 84 and 1 current window size. For updating the
breathing class, it took 0.059 ± 0.011 seconds.

IV. CONCLUSION

This study proposed a non-contact monitoring and classifica-
tion system for supervising patients with respiratory disorders,
such as COVID-19 patients. For multiple-object detection, the
FMCW radar calculated the range and angle of each object for
tracking the object’s position. FFT and some signal processing
such as unwrapping phase, noise removal, and 2-nd order IIR
cascaded bi-quad BPF were used to get the breathing signal
of the subjects. Some important information on the respiratory

signal was extracted by combining MFCC and statistical FE.
Based on the test result, the combination of statistical and MFCC
FE yielded better accuracy than the performance of each FE.
Several classification algorithms such as MLR, DT, RF, SVM,
XGB, LGBM, CB, MLP, and three proposed stacked ensemble
models, namely SEC, BTSC, and NSEM, were used. Based on
the results, the three proposed models well performed, with the
SEC and BTSC models achieving an average accuracy of 96.7%,
and the NSEM model achieving the best results with an average
accuracy of 97.1%. Moreover, these results outperform 9.7%
higher than the previous experiment that uses MFCC FE and
XGB algorithm. In addition, all classifiers in this experiment
perform satisfying results.

In a real-time implementation, multiple subjects with different
breathing characteristics could be identified simultaneously, and
the system was able to identify five different types of classes.
The experimental results show that the system can be used to
monitor the respiratory conditions of several patients in a room
simultaneously without physical touch. It is hoped that this
system can help medical practitioners to monitor the patient’s
condition. The development of this system can also be used to
search and detect the presence of humans trapped under the
rubble of buildings. This will be useful for saving people’s lives
in a disaster.
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