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Abstract—This paper proposed a wearable smart sEMG
recorder integrated gradient boosting decision tree (GBDT) based
hand gesture recognition. A hydrogel-silica gel based flexible sur-
face electrode band is used as the tissue interface. The sEMG
signal is collected using a neural signal acquisition analog front
end (AFE) chip. A quantitative analysis method is proposed to
balance the algorithm complexity and recognition accuracy. A
parallel GBDT implementation is proposed featuring a low latency.
The proposed GBDT based neural signal processing unit (NSPU) is
implemented on an FPGA near the AFE. A RF module is used for
wireless communication. A hand gesture set including 12 gestures
is designed for human-computer interaction. Experimental results
show an overall hand gesture recognition accuracy of 91%.

Index Terms—Flexible, FPGA, gradient boosting decision
tree(GBDT), hand gesture, Neural Signal Processing Unit (NSPU),
smart sEMG recorder.

I. INTRODUCTION

HAND gesture is one of the common methods for com-
munication between human beings. For example, sign

language is widely used by people with speech impairment.
Automotive hand gesture recognition can be used as a Human-
Machine-Interface [1]–[3] enabling a more natural and more
efficient solution for information exchange between user and
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devices than by using traditional methods, such as mouse and/or
keyboard. Different methodologies have been proposed in lit-
erature for hand gesture recognition. The reported methods
can be divided into two categories: vision-based methods, and
non-vision-based methods. Vision-based methods use one or
more cameras to capture image or video stream of the user’s
hands with no wearable devices [4]. Both standard color image
sensor and infrared image sensor have been used in reported ap-
plications, such as Kinect [5] and Leap Motion [6]. Image-based
feature extraction will be applied for hand gesture recognition. A
high recognition accuracy performance usually can be expected.
However, the use of external cameras limits the portability and/or
the moving range of the user. In addition, it is usually sensitivity
to environmental factors, such as the change of the illumination.
Data glove is widely used as a non-vision-based hand gesture
recognition device [7], [8]. Different types of sensors are usually
implemented in the glove, such as the flex sensor and/or the
piezoelectric sensor for the detecting of the joint bending, and
the IMUs for the detecting of finger segment movement [9].
Compare to the vision-based method hand gesture recogni-
tion, the complexity of the recognition algorithm is relatively
low. However, a glove is always required, which may influ-
ence the hand movement and/or cause an uncomfortable user
experience.

Electromyography (EMG) is an electrical signal origins from
the skeletal muscle activities [10]. It can be acquired either
invasively or non-invasively. Non-invasive EMG can be acquired
from the surface of the skin, which is also called surface EMG
(sEMG) [11]. The movement of hand/finger is mainly con-
trolled by the muscles located on the lower arm. Hand gesture
recognition based on the sEMG signals acquired from the lower
arm has been widely investigated. Typical sEMG based signal
acquisition and/or feature recognition devices are fully wearable
with no limitation to the user’s moving range. The sEMG sensors
are usually placed on the user’s lower arm, with almost no burden
on the movement of the hand while compare to data glove
as mentioned above. In addition, this methodology enables a
potential to be applied for an assistant device for hand disabled
patients.

Fig. 1 illustrates a block diagram of a typical smart sEMG
recorder. It consists of 1) a tissue interface which feeds sEMG
signals into the electronic system, 2) a sensor interface which
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Fig. 1. The block diagram of a general smart sEMG recorder. It consists of
1) a tissue interface which feeds sEMG signals into the electronic system, 2)
a sensor interface which amplifies and quantizes the acquired sEMG signal,
3) a processing unit.

amplifies and quantizes the acquired sEMG signal, and 3) a pro-
cessing unit for further feature extraction and/or classification.

There are several commercial available sEMG acquisition
equipments, such as Biometrics [12] and Delsys [13]. Commer-
cial available device based hand gesture recognition has been
reported in literature [14], [15]. However, there is still room to
further reduce the size of the wearable devices, and/or to further
simplify the using process. Customized sEMG devices have also
been proposed in literature, with reported recording device size
varying from tens of centimeters to a few centimeters [16]–[23].
In addition, different types of electrodes have been selected for
sEMG recording, including dry electrodes of different materi-
als, and wet electrodes such as separate disposable Ag-AgCl
electrodes with gel. The use of separate electrodes cause extra
process on wearing the device. Armband with fixed electrodes is
available [24]–[27], but there is still room to improve the system
design.

The algorithm used for hand gesture classification is important
in such a smart sEMG recorder design. Various classification
algorithms have been proposed in literature. Deep learning is
popular in the recent years due to its high performance. Several
different architectures have been proposed for hand gesture
recognition [28]–[30] to improve the precision. However, the
complexity of such an algorithm is relative high, which makes it
very power hungry [31]. In addition, most of the deep learning
based sEMG signal processing and/or recognition algorithms
are verified and performed off-line, which greatly limits the
application flexibility. On the other hand, traditional pattern
recognition methods, such as Support Vector Machines (SVM)
[32], [33], decision tree [34], naïve bayes [25], Empirical Mode
Decomposition (EMD) [14], Principal Component Analysis
(PCA) [35], K-Nearest Neighbors (KNN) [19], Hidden Markov
Model (HMM) [22], Artificial Neural Network (ANN) [17],
linear regression [15], Linear Discriminant Analysis (LDA)
[36], have also been applied to hand gesture recognition. These
traditional methods shows a comparable performance in sev-
eral sEMG dataset, with a low requirement of training data.
However, the performance is usually sensitive to the selection
of the features. A robust hardware-friendly algorithm which
can be implemented near amplifier without performance de-
crease is expected. Gradient Boosting Decision Tree (GBDT)
is a boosting algorithm based on several weak decision tree
classifiers [37]. It features a low dependance on the feature
selection [38]. In addition, GBDT doesn’t require complicated

Fig. 2. The exploded diagram of the proposed smart sEMG recorder. It consists
of a flexible surface electrode band, an analog front end chip, a FPGA based
NSPU, and a RF module for wireless configuration and communication. The
flexible surface electrode consists of three layers: 1) the conductive hydrogel-
silica gel layer as the tissue interface, 2) the flexible printed circuit (FPC) layer
connected to the proposed electronic system, and 3) the non-woven fabric layer.

calculation, making it hardware friendly for a wearable smart
sEMG recorder.

This paper proposed a GBDT based hand gesture recognition
algorithm, which is implemented in a hydrogel-silica gel, flexi-
ble wearable smart sEMG recorder. A GBDT based hand gesture
recognition algorithm enabling online processing with low hard-
ware complexity is proposed. A quantitative analysis is applied
to perform a best trade-off between complexity and accuracy.
A near amplifier online neural signal processing unit (NSPU) is
design to perform the GBDT based algorithm achieving a good
balance between cost and accuracy. The NSPU is verified on a
FPGA platform near the recorder. The recognition result output
from the NSPU can be wirelessly sent to external hardwares. A
sEMG dataset with 12 different gestures are established using
the proposed setup. An overall accuracy of 90.7% is achieved.
A flexible band where the original EMG signal collect from is
designed, in order to increase the usability.

The rest of the paper is organized as follows. Section II
presents an overview of the proposed system. Section III de-
scribes the design of the human-computer-interface hand gesture
set and the GBDT based hand gesture recognition algorithm.
The details on the hardware implementation is introduced in
Section IV. Experimental results was illustrated in Section V,
while Section VI concludes the entire work.

II. SYSTEM OVERVIEW

Fig. 2 illustrated the architecture of the proposed smart sEMG
recorder. It consists of a flexible surface electrode band, an
analog front end chip, an FPGA based NSPU, and a RF module
for wireless configuration and communication.

The flexible surface electrode band integrated 32 contacts is
used as a tissue interface between the human skin and electronic
devices. Fig. 2 demonstrated the procedure of the design of
the surface electrode band. The flexible surface electrode band
consists of three layers: 1) the conductive hydrogel-silica gel
(CHSG) as the top layer, 2) a flexible printed circuit (FPC)
layer embedded in the middle, and 3) non-woven fabric at the
bottom. The conductive gel is formed by in-situ reaction. The
silica gel was punched to obtain the corresponding holes to



SONG et al.: DESIGN OF A FLEXIBLE WEARABLE SMART sEMG RECORDER INTEGRATED GBDT BASED HAND GESTURE RECOGNITION 1565

Fig. 3. Blockgram of the proposed smart sEMG recorder design.

match the electrode points on the FPC board. Subsequently, the
pre-gel solution was injected into the holes on the silica gel
to allow the reaction carrying on for 4.5 hours at 98 ◦C under
acidic conditions to get CHSG. Then the CHSG, the FPC and
the non-woven fabric were bonded to form the flexible surface
electrode.

The output signals from the band are fed into a 16 channel
neural signal acquisition analog front end (AFE) [39]. Fig. 3
illustrated the architecture of the entire system. The neural signal
acquisition chip integrated a 16-channel low noise amplifier
(LNA) as the input stage of the AFE. Each channel will be
connected with two electrodes as the input of the differential
LNA. The raw signal is amplified by 40 dB. Majority of the
common mode noise will be eliminated at the first stage benefited
from the high CMRR performance of the LNA. In order to
improve the area efficiency of the analog front end, the second
stage amplifier, the programable gain amplifier (PGA), and the
ADC are shared by all the channels. The gain of the PGA is
tunable, enabling the gain of the two stages varying from 46 dB
to 64 dB. The SAR ADC features a 12 bit resolution and a
maximum sampling rate of 20 kHz for each channel. An extra
multiplexer (MUX) is used for the channel control.

The sampling rate of the proposed AFE is tunable. Lower
power consumption can be expected if a reasonable lower sam-
pling rate is applied. In order to perform a high efficient signal
acquisition, an analysis on sampling rate is performed. Four clips
of raw sEMG signal were captured at a sampling rate of 2 KS/s
for 5 seconds. Fig. 4 illustrated the waveform and its spectrogram
of one of the four clips. According to the spectrogram, the
majority of the energy distributed in the low frequency band.
Fig. 5 calculated the accumulated spectral energy from the four
sEMG signal clips. About 80% of the energy gathered in the band
below 250 Hz. As a result, 500 S/s is chosen as the sampling
rate in the proposed system.

Fig. 4. The waveform and spectrogram of a 5 second raw sEMG signal
acquired at a sampling rate of 2 KS/s.

Fig. 5. The accumulated spectral energy from the four sEMG signal clips.

The digital control logic as well as the GBDT based NSPU
are implemented in an FPGA. The parallel port was used for
data communication between the AFE and the NSPU. A 4-bit
address header is added into the 12-bit ADC output to identify
the channel number of the quantized result. All the 16-bit data
are packaged to fit the Serial Peripheral Interface (SPI) protocol
for data writing to the TF card or the wireless channel, when
raw data output is required for training purpose. Under TF card
writing mode, the data from the parallel port will be buffered



1566 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, DECEMBER 2019

in a ping-pong buffer before writing into the TF card through
the SPI interface. The data prepared for TF card written can be
acquired at a sampling rate as high as up to 20 kHz, enabling
an acquisition of more information for off-line analysis. Un-
der bluetooth based wireless transmission mode, a commercial
Bluetooth Low Energy (BLE) module is used. Data acquired
from a single selected channel with a sampling rate of 500 S/s
can be transferred to the mobile device for real-time monitoring.
A timestamp is also sent through the wireless channel enabling
synchronization between the acquisition of the sEMG signals
and other external devices.

A GBDT based hand gesture recognition algorithm is im-
plemented. Several selected features are extracted. A pattern
recognition algorithm is applied for gesture classification. The
result will be sent out wirelessly through the BLE module.
The details of the GBDT based NSPU design are proposed in
the following sections.

III. THE GBDT BASED HAND GESTURE

RECOGNITION ALGORITHM

A. The Design of the Human-Computer Interaction
Gesture Dataset

The precision of the hand gesture recognition algorithm is
highly related to the number of gestures to be classified [40]. As
a result, The gesture set usually includes several individual ges-
tures, and each gesture represents for one word or one instruction
in their target applications. There are several open-source sEMG
datasets available for hand gesture recognition. NinaPro [41],
[42] is a large set including 61 gestures originally, and subsets
for different targets could be selected in different scenanios.
For example, CapgMyo [43] is a high density sEMG dataset
which include 22 gestures equivalent to those corresponding
in NinaPro. CSL-hdemg [25] is another open-source dataset
for this task. 26 gestures are included in this dataset, and the
ability to classify individual finger movement was shown in this
work. Fig. 6 illustrated the designed gesture set, G, used in this
proposed work for human-computer interaction. It consists of 12
different gestures, including combinations of finger movements,
and wrist involved gestures. This dataset enables user intention
expression, fundamental communication between users, and/or
page control during presentation.

The raw sEMG data were collected at a sampling rate of
500 S/s using the proposed system as presented in Section II,
with the flexible electrode band adhered to the middle lower arm.
The subjects were asked to perform repeatedly all the 12 gestures
from the designed gesture set, G. Each subject conducted all the
12 gestures for 10 times, and each gesture is lasted for 5 seconds.
The length of each raw sEMG data clip is 5 seconds with a label
identifying the corresponding gesture. The raw sEMG dataset is
defined as

S = {(Si,k, gi,k)} (1)

whereSi,k is a matrix with 16 rows representing signals acquired
from 16 channels for the ith clip of the kth subject, and gi,k ∈ G
is the gesture label for this clip.

Fig. 6. The selected gesture set. This dataset consists of 12 different gestures,
enabling user intention expression, fundamental communication between users,
and/or page control during presentation.

B. Feature Extraction of the Raw Acquired sEMG data

Each raw data clip, Si,k, was divided into several segments
using a sliding window with a length of 100 ms. There is
an overlap of 50 ms between two neighboring segments. The
segmented raw sEMG dataset is defined as

S′
= {(sj,k, gj,k)} (2)

where sj,k is the data of the jth segment, and gj,k = gi,k if the
jth segment is obtained from the ith clip.

Different features have been proposed in literature for
sEMG [29]. The extracted features, instead of the raw sEMG
data, were usually used as the input to different pattern recog-
nition algorithms. According to the mathematics theory behind
each feature extraction methodology, the extracted features can
be classified into four categories as

1) Time domain related features, which are widely used
in classical pattern recognition with low complexity. The
features are directly calculated from the time-domain data.

2) Autoregression coefficients, which can be estimated from
the sEMG data, revealing some characteristics of the mus-
cle activity.

3) Frequency domain features, which are extracted after
frequency domain transfer, i.e. Fourier transform.

4) Wavelet transformation and others, which are extracted
after domain transfer other than traditional frequency
domain transfer, i.e. a variety of different wavelet, and
Hilbert-Huang transfer.

Time domain features are selected in the proposed work due
to its low complexity. It enables lower requirement in hardware
implementation. 9 time domain related features are selected



SONG et al.: DESIGN OF A FLEXIBLE WEARABLE SMART sEMG RECORDER INTEGRATED GBDT BASED HAND GESTURE RECOGNITION 1567

TABLE I
THE SELECTED FEATURES

Fig. 7. An example of a single decision tree used in the GBDT model with
a depth of 3. Each circle represents one comparator node, which performs
comparison with a preset threshold. Each square node is a leaf node owning
a predicted score for one specific gesture.

and calculated for each channel, generating m = 9× 16 = 144
features for each segment. The selected features are shown in
Table I. A feature vector zj,k ∈ Rm was generated for the jth
segment of the kth subject. The dataset directly used by the
classification algorithm was generated, which can be represented
as D = {(zj,k, gj,k)|zj,k ∈ Rm, gj,k ∈ G}.

C. The GBDT Based Classification Algorithm

Gradient Boosting Decision Tree (GBDT) is used in this
work for classification due to its low complexity. GBDT is a
boosting algorithm using decision trees as its base weak learner.
The GBDT model, F , is a set of classification and regression
trees (CART). Each individual tree in the set F is a binary tree
as illustrated in Fig. 7. Each circle represents one comparator
node, which performs comparison between the input and a preset
threshold. The input is one of the m extracted features. Each

square node is a leaf node with a predicted score for one specified
gesture, which represents a probability of this gesture to be the
true gesture for this sample. The set F is composed of several
subsets Fg , which includes trees for the gesture g. Given a
feature vector zj,k, an additive assembling model is used, to
get a predicted score for each gesture as:

p̂
(g)
j,k =

∑

f∈Fg

f(zj,k) (3)

which means the predict score for one gesture p̂
(g)
j,k is the

summation of the predict scores obtained from all the trees
in Fg.

After all the trees for all the gestures have been traversed, and
the predicted scores for every gesture have been calculated, the
largest predicted score will be the final prediction, which can be
generated as:

ĝj,k = argmax
g

p̂
(g)
j,k (4)

where ĝj,k is the predicted gesture for the jth segment of the kth
subject. If ĝj,k = gj,k, the prediction is correct.

The threshold assigned to each comparator node, and the
predicted score on each leaf node can be optimized by training.
The structure of a GBDT model, including the total number of
trees and their maximum depth are decided during the training
as well. [44] The training of GBDT is an iteration process. In
each iteration, a new tree will be obtained in a gradient descent
manner using logarithmic loss function for each gesture. As a
result, the number of trees in the set Fg for each gestures is
equal to the iteration round K, and the total number of trees
in F is 12×K. There are several open source library for the
training of a GBDT model offline on a PC or a server, such as
XGBoost [45], LightGBM [46]. XGBoost library was selected
in this work for model training.

There is a trade-off between the recognition accuracy and the
model complexity. A quantitative analysis is performed between
the maximum tree depth and the recognition accuracy, as well as
between the category tree number and the recognition accuracy,
based on the Ninapro dataset to provide a general analysis. As
illustrated in Fig. 8(a), five different category tree numbers, K,
were selected, in order to find a common turning point on the
accuracy versus tree depth curve. According to the results, a
common tuning point at around 5 is observed. Fig. 8(b) shows
the relationship between the accuracy and the total tree number
for each gesture, K. The maximum tree depth was fixed to 5. A
turning point was observed around 80. A quantitative analysis
has also been applied on the dataset acquired using the hardware
proposed in this work. As illustrated in Fig. 8(c), the depth of 5 is
also suitable for the proposed dataset. In addition, the accuracy
of the depth of 4 or 3 is not significantly lower, which shows
a possibility to further shallower the structure. As illustrated
in Fig. 8(d), the tree number of 100 performed better than 80.
However, the accuracy gap is less than 0.5%. According to the
above quantitative analysis, an optimized tree depth is fixed to
5, with a tree number fixed to 80 for the model training in this
work.
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Fig. 8. (a) Quantitative analysis on the relationship between the maximum
tree depth and the recognition accuracy. The catagory tree number, K, is equal
to 50, 70, 100, 130 and 160 for each line, respectively. A common turning point
at around 5 is observed. (b) Quantitative analysis on the relationship between
the category tree number and the recognition accuracy. The depth of the tree was
fixed to 5. A common turning point at around 80 is observed. (c, d) Quantitative
analysis using the proposed dataset in this work.

IV. HARDWARE IMPLEMENTATION OF THE

GBDT BASED NSPU

The training of the GBDT model was operated offline, while
the inference procedure of a pre-trained GBDT model was
implemented in FPGA. Fig. 11 shows the architecture of the
proposed GBDT based NSPU. In order to reduce the latency
of tree traversing, a parallel traversing method was proposed
in this paper. A pipeline structure is used to increase hardware
efficiency for traversing of different trees.

A. Implementation of the Parallel Traversing Tree

Traditional tree traversing visits the root node firstly. The child
nodes are visited according to the comparison results from a
higher layer. The latency is proportional to the depth of the
tree [47]. In order to reduce the traversing latency, instead of
exploring a path from the root node to the leaf nodes layer
by layer, a parallel traversing was applied in this work. The
comparison of all the leaf nodes are performed at the same time.

For a tree with a depth of n, 2n predicted scores are output.
There are 2n − 1 comparison modules required, as illustrated in
the dotted block in Fig. 11. A threshold loaded from the memory
and a selected feature are fed into the comparator. The thresholds
of all the comparators are loaded simultaneously in one clock
cycle. A predicted score is selected as the output according to
the results of the comparators.

Fig. 9 present an example on how to perform the parallel
traversing tree methodology to a tree with a depth of 3. There are
seven comparator nodes integrated in this tree. A truth table was
generated with different combinations of the comparison results

Fig. 9. An example truth table for a 3-depth tree traversing. If the output
address is 00010000, the predict score attached to the right child of node 5 will
be output. The traversing path is highlighted in red.

Fig. 10. Padding irregular trees.

from all the seven nodes. An 8-bit one-hot address code is used to
denoted the predict scores as listed on the right. The comparator
results are presented in 0/1, representing a movement to the left
child node, or the right child node, respectively. The pre-coded
results can be used to select a predict score. For example, with
an output address of 00010000, the predict score on the right
child node of node 5 will be the output. The traversing path is
highlighted in red.

B. Padding of the Pruned Trees

In order to avoid overfitting of a GBDT model, pruning is
applied during the training procedure [48]. As a result, the tree
structure is sometime incomplete as illustrated in Fig. 10(a). The
pruned tree structures may lead to abnormal in the arrangement
of node comparators, and/or score address generating module.
In order to improve the robustness of the system, virtual nodes
are added to the pruned locations as illustrated in Fig. 10(b).
These virtual nodes will generate a fake ”comparison result”
always leading to the left child node with a same predicted score
as the original score of the virtual node. As illustrated in the
dotted block in Fig. 11, the results of the comparators are directly
controlled if it is a virtual node.

In order to keep consistence during the tree generation proce-
dure between the regular tree and the pruned tree, level traversal
will be used. A reference full binary tree is used to generate a
padded binary tree from its original irregular structure. As shown
in Fig. 12, the reference tree is traversed simultaneously with the
target tree, providing a reference full structure for generating.
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Fig. 11. Architecture of the proposed GBDT based NSPU. The recorded sEMG data are fed into the feature extraction module from the analog front end. A start
signal will be sent to all the parallel tree pipelines for different gestures when the extracted features are ready. The result generator compares the output from all
the GBDT models to find out the gesture with the maximum value.

Fig. 12. Algorithm for the generation of the padded tree.

C. Tree Pipeline

Two times of memory access were required while implement-
ing the parallel traversing methodology, for thresholds loading
and predict score loading, respectively. A pipeline, as illustrated
in Fig. 13 is applied to reduce the latency due to loading.

Fig. 13. The pipeline used for parallel tree traversing methodology. There are
four steps in the pipeline.

The entire process of calculating the predict score of a single tree
can be divided into four stages: 1) load the threshold parameters
from memory, 2) compare the loaded thresholds at each node,
3) fetch a predicted score according to the comparison results,
4) add the predicted score to the sum from previous process. A
finite state machine is used to control the pipeline. The pipeline
won’t start until the features are ready for a new frame. All the
instantiated trees will be operated one by one. The final predicted
score will be available after the operation to the last tree is done.
Instead of calculating all the trees in one pipeline, a series of
tree pipelines is established, with a total number equals to the
number of gestures. By doing this, one tree pipeline is dedicated
for one gesture, and only corresponding trees will be calculated
in that pipeline. As a result, those tree pipelines operate in the
means of parallel. As the tree number of each gestures are always
the same, the results of the parallel tree pipelines will be output
simultaneously.

V. EXPERIMENTAL RESULTS

Fig. 14(a) shows the photography of the proposed smart
sEMG recorder. The length of the flexible band is 25.5 cm.
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Fig. 14. (a) The photography of the proposed smart sEMG recorder. (b) the
processing PCB for gesture recognition, (c) the acquisition PCB for sEMG
recording, (d) The microphotography of the multiple channel analog front end
chip integrated in the acquisition PCB,. (e) the electrode side of the band, and
(f) the outer side of the band.

Fig. 15. The measured frequency response of the whole signal chain of the
AFE chip.

Fig. 16. The measured output spectrum of the whole signal chain of the AFE
chip with different gain setting.

TABLE II
MEASURED PERFORMANCE OF THE HYDROGEL-SILICA GEL BASED ARM BAND

Fig. 17. An example fragment of sEMG signals and gestures.

The band is surrounding the middle place of one’s lower arm
to collecting sEMG signals. Two PCBs were used as shown
in Fig. 14(b) and (c), respectively. Fig. 14(d) illustrated the
microphotography of the multiple channel analog front end
chip integrated in the acquisition PCB with a size of 2.8 cm ×
3.2 cm. The two PCBs are sealed in a customized box with
a size of 3.2 cm × 4.3 cm. A Xilinx Artix-7 XC7A50 T
FPGA is integrated on the processing PCB. The proposed hand
gesture recognition algorithm is implemented on this FPGA.
Fig. 14(e) shows the connection between the flexible band and
the customized box. They are attached together using a standard
1.27 mm connector, and the customized box can be folded on
the outer side of the band.

The analog front end chip has been fabricated in TSMC
180 nm COMS process, occupying a silicon area of
2.6 mm× 2 mm. The measured frequency response of the whole
signal chain with LNA, PGA and ADC is illustrated as Fig. 15
(the HP doesn’t match with the amplifier). Two bits can be used
to tune the gain from 45.6 dB to 63.3 dB. Fig. 16 shows the
measured output spectrum of the whole signal chain. With a
input of 16 mVpp at 1 KHz, when the gain is set to 45.6 db, a
ENOB of 9.4 bit can be achieved. The BLE module is also placed
on the top-left corner of the acquisition PCB. An nRF52832 BLE
chip produced by Nordic is used for this module.
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TABLE III
COMPARE WITH STATE-OF-THE-ART WEARABLE SEMG RECORDERS, SOME OF THESE ALSO DID THE TASK OF HAND GESTURE RECOGNITION

Fig. 18. The confusion matrix of the MCC results.

Table II summarizes the performance of the hydrogel-silica
gel based arm band. The hydrogels with a conductivity of
7.1 ± 0.2E-3 S/cm possessed an excellent storage moduli about
12.6 ± 1.7 kPa (stretching) and 44.2 ± 0.2 kPa (Compressing),
respectively. Meanwhile the corresponding experiment certified
the hydrogels had a great adhesion strength about 41.7±3.0 kPa.
In addition, the hydrogels showed a fine transparency about 62.8
± 4.8% as the content of water was 69.6 ± 0.2%.

A dataset was established using the proposed hardware. 7
right handed human subjects participated in the data collection.
The armband is adhered to the subject’s middle lower arm with
the customized box containing the PCBs located at the thumb
side of the arm. The subjects were asked to perform all the 12
gestures in turn. Each gesture was lasted for 5 seconds, with a
5 seconds for relaxation between two gestures. This procedure
was repeated for 10 times by each subject. Fig. 17 shows an
example fragment of the 16 channel recorded sEMG signals as
well as their corrsponding gestures.

To evaluate the performance of the proposed GBDT based
hand gesture recognition algorithm, a Monte Carlo cross-
validation (MCC) have been performed. In each run of the
MCC, 70% data selected randomly to form a training set, with
the remaining 30% data used as the test set. 10 runs have

TABLE IV
THE MCC RESULT METRICS

been done, with different divisions of the dataset. An overall
accuracy of 90.7% is achieved. A series of metrics, including
precision, sensitivity, specificity, and F1-score, are calculated
and presented in Table IV. A confusion matrix was illustrated
in Fig. 18.

Table III compares the performance of the proposed work with
state-of-the-art armband designs. The proposed work features
a flexible armband with one of the best recognition accuracy
and a compact size. The GBDT-based algorithm features lower
hardware requirement.

VI. CONCLUSION

This paper proposed a compact, flexible, wearable smart
sEMG recorder integrated gradient boosting decision tree based
hand gesture recognition algorithm. A parallel traversing tree
structure is proposed and implemented in hardware to reduce the
latency. A pipeline is applied to improve the hardware efficiency.
A 91% recognition accuracy is achieved on a human-computer-
interface hand gesture set designed in this work.
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