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Efficient Reward-Based Structural Plasticity on a
SpiNNaker 2 Prototype

Yexin Yan

Steve Furber”, Wolfgang Maass

Abstract—Advances in neuroscience uncover the mechanisms
employed by the brain to efficiently solve complex learning tasks
with very limited resources. However, the efficiency is often lost
when one tries to port these findings to a silicon substrate, since
brain-inspired algorithms often make extensive use of complex
functions, such as random number generators, that are expen-
sive to compute on standard general purpose hardware. The pro-
totype chip of the second generation SpiNNaker system is de-
signed to overcome this problem. Low-power advanced RISC ma-
chine (ARM) processors equipped with a random number gen-
erator and an exponential function accelerator enable the effi-
cient execution of brain-inspired algorithms. We implement the
recently introduced reward-based synaptic sampling model that
employs structural plasticity to learn a function or task. The nu-
merical simulation of the model requires to update the synapse
variables in each time step including an explorative random term.
To the best of our knowledge, this is the most complex synapse
model implemented so far on the SpiNNaker system. By mak-
ing efficient use of the hardware accelerators and numerical op-
timizations, the computation time of one plasticity update is re-
duced by a factor of 2. This, combined with fitting the model
into to the local static random access memory (SRAM), leads
to 62% energy reduction compared to the case without acceler-
ators and the use of external dynamic random access memory
(DRAM). The model implementation is integrated into the SpiN-
Naker software framework allowing for scalability onto larger sys-
tems. The hardware—software system presented in this paper paves
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1. INTRODUCTION

EUROPHYSIOLOGICAL data suggest that brain net-

works are sparsely connected, highly dynamic and noisy
[1], [2]. A single neuron is only connected to a fraction of poten-
tial postsynaptic partners and this sparse connectivity changes
even in the adult brain on the timescale of hours to days [3], [4].
The dynamics that underlies the process of synaptic rewiring
was found to be dominated by noise [5]. It has been further sug-
gested that the permanently ongoing dynamics of synapses lead
to a random walk that is well described by a stochastic drift-
diffusion process, that gives rise to a stationary distribution over
synaptic strengths. Therefore, synapses are permanently chang-
ing and randomly rewiring while the overall statistics of the
connectivity remains stable [6]-[9]. Theoretical considerations
suggest that the brain is not suppressing these noise sources
since they can be exploited as a computational resource to drive
exploration of parameter spaces, and several models have been
proposed to capture this feature of brain circuits (see [10] and
[11] for reviews).

The synaptic sampling model that has been proposed in [12],
[13] employs this approach for rewiring and synaptic plasticity.
The noisy learning rules drive a sampling process which mimics
the drift-diffusion dynamics of synapses in the brain. Although
the network is permanently rewired, this process provably leads
to a stationary distribution of the connectivity. This distribution
over the network connectivity can be shaped by reward signals,
to incorporate reinforcement learning, and can be constrained to
enforce sparsity [14]. The synaptic sampling model reproduces
a number of experimental observations, such as the dynamics
of synaptic decay under stimulus deprivation or the long-tailed
distribution over synaptic weights [12], [14]. Furthermore, when
equipped with standard error back-propagation this method was
found to perform on a par with classical fully connected machine
learning networks, at a fraction of the memory requirement [15].

However, the gain in efficiency of biology-inspired algorithms
such as synaptic sampling can often not be fully realized on ei-
ther dedicated neuromorphic hardware or standard digital com-
pute hardware, since these models require complex operations

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/


https://orcid.org/0000-0002-4267-7015
https://orcid.org/0000-0002-6286-5064
https://orcid.org/0000-0001-9042-5405
https://orcid.org/0000-0002-9938-2736
https://orcid.org/0000-0002-6524-3367
https://orcid.org/0000-0002-1178-087X
https://orcid.org/0000-0002-8724-5507
mailto:yexin.yan@tu-dresden.de
mailto:felix.neumaerker@tu-dresden.de
mailto:johannes.partzsch@tu-dresden.de
mailto:Bernhard.Vogginger@tu-dresden.de
mailto:sebastian.hoeppner@tu-dresden.de
mailto:christian.mayr@tu-dresden.de
mailto:david.kappel@phys.uni-goettingen.de
mailto:steve.furber@manchester.ac.uk
mailto:maass@igi.tugraz.at
mailto:robert.legenstein@igi.tugraz.at

580 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 13, NO. 3, JUNE 2019

such as random number generation or exponential functions. The
former hardware usually has very narrowly configurable plas-
ticity functions unsuitable for this kind of exploration [16]-[19].
Thus, synaptic weights that experience complex plasticity func-
tions are usually precomputed in software and then run statically
on mixed-signal [20], [21] or on digital neuromorphic hardware
[22]. On the other hand, standard digital compute hardware is in
principle flexible enough, but the functions required by the plas-
ticity models are very expensive to compute on standard hard-
ware which significantly narrows down the gain in efficiency.
Despite recent efforts to simulate spiking neural networks on
GPUs [23], there is, to the best of our knowledge, no hardware
support available for random number generation, especially true
random number generation, and exponential function in GPUs.
A common workaround on digital hardware is to store massive
amount of random numbers and look-up tables for the expo-
nential function before the simulation starts [24]. This reduces
computation time at the cost of increasing the requirements for
the already limited memory of embedded applications. The 2nd
generation SpiNNaker system strives to break the trade-off be-
tween computation time and memory by employing dedicated
hardware components for these time- (and energy-)consuming
operations. Standard advanced RISC machine (ARM) proces-
sors are augmented with hardware accelerators for random num-
bers [25] and exponential functions [26]. We show that this al-
lows us to implement complex learning algorithms in a compact,
power efficient package. In addition, by fitting the model into the
local static random access memory (SRAM), dynamic random
access memory (DRAM) can be switched off, further reducing
the power consumption. This potentially offers a new compute
substrate especially for mobile and biomedical applications such
as neural implants that are strictly limited by the power budget,
computation speed and memory capacity of the silicon chip on
which they are executed.

In this article we present the main features of the prototype
chip of the 2nd generation SpiNNaker system in detail and show-
case the benefits of the architecture for experiments on reward-
based synaptic sampling [14]. We show that the architecture
allows us to exploit the advantage of the synaptic sampling algo-
rithm. The model is efficiently implemented thanks to the hard-
ware accelerators, the software optimizations and the floating
point unit available in ARM M4F. We show a speedup of more
than 2 due to the use of hardware accelerators. Our hardware-
software system optimizes the implementation of reward-based
synaptic sampling with respect to the memory footprint, compu-
tation and power and energy consumption. We built a scalable
distributed real-time online learning system and demonstrate
its usability in a closed-loop reinforcement learning task. Fur-
thermore, we study a modified rewiring scheme called random
reallocation that recycles the memory of synapses by immedi-
ately reconnecting them to a new post-synaptic target. We show
that this more efficient version of synaptic sampling also leads
to faster learning.

In Section II we give an overview of the prototype chip, focus-
ing on the random number generator and the exponential func-
tion accelerator. Section III shows the reward-based synaptic
sampling model implemented in this work. Section IV presents
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Fig. 1. Overview of the SpiNNaker 2 prototype including 4 processing ele-

ments (PE) with ARM core, power management controller (PMC) and expo-
nential function accelerator (EXP), True Random Number Generator (TRNG),
Network-on-Chip (NoC), SpiNNaker router, shared on-chip SRAM (not used
in this work) and off-chip DRAM.

the software implementation and experimental results are pre-
sented in Section V.

II. HARDWARE
A. System Overview

SpiNNaker [27] is a digital neuromorphic hardware system
based on low-power ARM processors built for the real-time sim-
ulation of spiking neural networks (SNNs). On the basis of the
first-generation SpiNNaker architecture and our previous work
in power efficient multi-processor systems on chip [28], [29], the
second generation SpiNNaker system (SpiNNaker 2) is currently
being developed in the Human Brain Project [30]. By employ-
ing a state-of-the art CMOS technology and advanced features
such as per-core power management, more processors can be
integrated per chip at significantly increased energy-efficiency.
In this article we use the first SpiNNaker 2 prototype chip, with
architecture as shown in Fig. 1. Table I provides a brief summary
of the new hardware features which are relevant for this work,
in contrast to the first generation SpiNNaker [31] system. Fur-
thermore, the table includes an outlook on the final SpiNNaker 2
chip (tape-out 2020).

The processing element (PE) is based on an ARM MA4F pro-
cessor core with 128 KB local SRAM, an exponential function
accelerator [26], neuromorphic power management [33] and a
hardware pseudo random number generator (PRNG). The SpiN-
Naker router [34] handles on-chip and off-chip spike communi-
cation. Furthermore the chip provides a dedicated true random
number generator (TRNG). The various components are inter-
connected via Network-on-Chip (NoC). The chip has been fab-
ricated in 28 nm SLP CMOS technology by GLOBALFOUNDRIES
(Fig. 2).

The next two Sections (II-B, II-C) will give an introduction
of the hardware accelerators, i.e., the random number generator
and the exponential function accelerator.

B. Random Number Generator

The hardware PRNG is a specific implementation of
Marsaglia’s KISS [35] random number generator. The generated
sequence depends only on the initial seed. The provided 32-Bit
integer values are uniform distributed and accessible within a
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TABLE I
COMPARISON OF SPINNAKER 1 AND SPINNAKER 2

SpiNNaker 1~ SpiNNaker 2 Prototype SpiNNaker 2
(used in this work) (current plan, cf. [32])

Microarchitecture ARMVSTE ARMv7-M ARMv7-M
Max. Clock Frequency 200 MHz 500 MHz 500 MHz
Floating Point — single precision single precision
HW Accelerators — EXP, PRNG, TRNG EXP, LOG, PRNG, TRNG
Technology node 130 nm 28 nm 22 nm
ARM cores / chip 18 4 144

Fig. 2.
location of the building blocks [33].

Photo of the prototype chip fabricated in 28 nm technology, with the

delay of one clock cycle. An equivalent software implementa-
tion takes 35 clock cycles.! The model in this work uses uni-
form distributed floating-point numbers in the range from 0 to
1. Therefore, the conversion to floating point and the range scal-
ing adds another 7 clock cycles, resulting in 42 clock cycles in
total.

The main advantage of a PRNG over a TRNG is the re-
producibility, which simplifies debugging. However, due to the
properties of a PRNG not all effects of the randomness might be
seen, since the entropy of the sequence is reduced to the seed of
the generator. In order to facilitate to run an experiment with dif-
ferent random inputs and a higher entropy, the prototype offers
the possibility to scramble the seed of the PRNG with a value
generated by the TRNG. From a software point of view just the
initial configuration differs and no further changes on the code
are necessary. The entropy source of the TRNG is the jitter of
the different clock-generators of the chip [36]. In conventional
clock generators, this unwanted noise would be cancelled by the
control loop [37]. However, in this case the noise provides us
with an entropy source at minimal cost in terms of power and
area, since the clock-generators have to run anyway, for the PE
itself as well as for the SpiNNaker links. The principle is de-
scribed in detail in [25] and has been submitted as a patent [38].
The entropy of each single clock-generator is combined as true
random bus which is sampled by the PRNG in order to realize
the scrambling.

C. Exponential Function Accelerator

The exponential function accelerator calculates an exponen-
tial function with the signed fixed-point s16.15 data type. In the

! All clock cycle numbers in this paper are measured on the ARM core of the
prototype chip

implementation, the operand is divided into three parts:

y = exp(x) = exp(n) - exp(p) - exp(q) withz =n+p+q,
e N N —
Jint () frrac(p)  fooly(q)

ey
where n is the integer part, p and g are the upper and lower frac-
tional parts, respectively. fin (1) and frac(p) are calculated with
two separate look-up tables (LUTSs), and fyo1y(g) is a polyno-
mial. The split into two separate LUTs considerably reduces the
memory size and thus the silicon area compared to one combined
LUT, by taking advantage of the properties of the exponential
function. The split of the evaluation of the fractional part into a
LUT and a polynomial reduces the computational complexity of
the polynomial with minimum memory overhead. The overall
implementation achieves single-LSB precision in the employed
fixed-point format [26]. The exponential accelerator is included
in each PE, and makes up for approx. 2% of the silicon area of
each PE. The look-up and the polynomial calculation are par-
allelized, resulting in a latency of four clock cycles for each
exponential function. Writing the operand to the accelerator and
reading the result from it via the AHB bus adds additional two
clock cycles, resulting in 6 clock cycles in total. In pipelined
operation the processor writes one operand in one clock cycle
and reads the result of a previous exponential function in an-
other clock cycle, resulting in two clock cycles per exponential
function [26].

III. SPIKING NETWORK MODEL

To demonstrate the performance gain of the SpiNNaker 2
hardware for simulations of spiking neural networks, we im-
plemented the synaptic sampling model introduced in [14]. In
this section we briefly review this model for stochastic synap-
tic plasticity and rewiring. The model combines insights from
experimental results on synaptic rewiring in the brain with a
model for online reward maximization through policy gradient
(see Section III-C for details). The network has a large num-
ber of potential synaptic connections only a fraction of which is
functional at any moment in time, whereas most others are non-
functional (disconnected). The network connectivity is perma-
nently modified through rewiring. Synaptic weight changes and
rewiring are guided by stochastic learning rules that probe dif-
ferent network configurations. Hence, synaptic sampling, other
than usually considered deterministic learning rules that con-
verge to some (local) optimum of parameters, in our framework
learning converges to a target distribution p*(0) over synaptic
parameters 6. The learning rules are designed in such a way that
maxima of the distribution p*(80) coincide with maxima of the
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TABLE II
PARAMETERS OF THE NEURON AND SYNAPSE MODEL EQs. (4)—(8)

symbol value  description
Tr 2 ms time constant of EPSP kernel (rising edge)
Tm 20 ms  time constant of EPSP kernel (falling edge)
Te 1s time constant of eligibility trace
Ty =Tg 50 s time constants for Eq. (5) and Eq. (7)
1273} 5 Hz desired output rate
tref 5 ms  refractory time
T 0.1 temperature
« 0.02 offset to reward signals
B 105 learning rate
“w 0 mean of prior
o 2 std of prior

expected reward. We first summarize the general synaptic sam-
pling framework in Section III-A and III-B and then provide
additional details to its application to reinforcement learning in
Section III-C. All parameter values are summarized in Table II.
In Section III-D we discuss random reallocation of synapses, a
modified rewiring scheme that is more memory efficient.

A. Synapse Model

In our model for synaptic rewiring we consider a neural net-
work scaffold with a large number of potential synaptic con-
nections between neurons. For each functional synaptic connec-
tion, we introduce a real-valued parameter 6, that determines the
strength w; of connection 7 through the exponential mapping

w; = exp(ﬁi — 90) (2)

with a positive offset parameter 0y that scales the minimum
strength of synaptic connections. The mapping in Eq. (2) ac-
counts for the experimentally found multiplicative synaptic dy-
namics in the cortex (c.f. [7], [8], [39], see [14] for details).
For simplicity we assume that only excitatory connections (with
w; > 0) are plastic, but the model can be easily generalized to
inhibitory synapses.

The functional goal of network learning is determined by the
dynamics of the synaptic parameters 6;. It was shown in [14]
that for some target distribution p*(@) over synaptic parame-

ters with partial derivative -2- log p*(6) ‘ of the log-distribution
i t

with respect to parameter ; evaluated at time ¢, the stochastic
drift-diffusion processes
dbi(t) =B 55

logp 0)| dt+/26TdW;(t) (3)
¢

give rise to a stationary distribution over @ that is proportional
to p*(0) T.In Eq. (3) § plays the role of a learning rate and dWV;
are stochastic increments and decrements of Wiener processes,
which are scaled by the temperature parameter T'.

This result suggests that a rule for reward-based synaptic plas-
ticity should be designed in a way that p*(0) has most of its mass
on highly rewarded parameter vectors €. We use target distri-
butions p*(0) of the form p*(0) o ps(8) x V() where o
denotes proportionality up to a positive normalizing constant.
ps(0) can encode structural priors of the network scaffold, e.g.
to enforce sparsity. This happens when pg (@) has most of its

mass near 0. In our experiments we have used a Gaussian dis-
tribution with mean 1 and variance o2 for the prior ps (), such
that 5~ log ps (6) = 2 (1 — 0i(t)).

The function V(0) denotes the expected discounted reward
associated with a given parameter vector 6. In Section II1I-C we
will discuss in detail how the term B%i log V(0) can be computed
using reward-modulated plasticity rules.

Synaptic rewiring is included in this model by interpreting
each synapse ¢ for which 6; < 0 as disconnected. To reconnect
synapses we tested two approaches. In the first approach we
continued to simulate the dynamics of the prior distribution, i.e.
a process of the form (3) with p*(0) = ps(0) until the synapse
reconnects (6; > 0). This is the algorithm that was proposed in
[14]. In Section III-D we introduce another approach for rewiring
called random reallocation of synapses that makes more effec-
tive use of memory resources. The two approaches are compared
in the results below.

B. Neuron Model

We considered a general network of K stochastic spiking neu-
rons and we denote the output spike train of a neuron k by z (),
defined as the sum of Dirac delta pulses positioned at the spike
times t(l) t(2) o den, z() =00t l)) We denote by
PRE; and POST; the index of the pre- and postsynaptic neuron
of synapse 1, respectively, which unambiguously specifies the
connectivity in the network. Further, we define SYNy, to be the
index set of synapses that project to neuron k. Note that this in-
dexing scheme allows us to include multiple (potential) synaptic
connections between a given pair of neurons. In all simulations
we allow multiple synapses between neuron pairs.

Network neurons were modeled by a standard stochastic vari-
ant of the spike response model [40]. We denote by w;(¢) the
synaptic efficacy of the i-th synapse in the network at time ¢,
determined by Eq. (2). The membrane potential of neuron & at
time ¢ is then given by

Z yPRE

i € SYNg

i(t) + O(t), 4)

where ¥, (t) denotes the slowly adapting bias potential of neuron
k, and yege, () denotes the trace of the (unweighted) postsynap-
tic potentials (PSPs) that neuron PRE; leaves in its postsynap-
tic synapses at time ¢. It is defined as yprg, (t) = 2pre, (t) * €(¢)
given by spike trains filtered with a PSP kernel of the form
e(t) = 0(t) - CT’ (e” T o—e T ), with time constants 7,,, and
7. Here % denotes convolution and ©(-) is the Heaviside step
function, i.e. O(z) = 1 for > 0 and 0 otherwise.

Spike trains were generated using the following method. We
used an exponential dependence between the membrane poten-
tial and firing rate, such that the instantaneous rate of neuron k
attime ¢ is given by f(t) = exp(us). Spike events were drawn
from a Poisson process withrate f, (¢). After each spike, neurons
were refractory for a fixed time window of length ..

The bias potential ¥4 (¢) in Eq. (4) implements a slow rate
adaptation mechanism which was updated according to

di(t)
LT

=1y — Zk(t) y (5)
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where 7y is the time constant of the adaptation mechanism and
1 is the desired output rate of the neuron. In our simulations,
the bias potential ¥y () was initialized at -3 and then followed
the dynamics given in Eq. (5) (see [14] for details).

C. Reward-Based Synaptic Sampling

In areward-based learning framework we assume that the net-
work is exposed to a real-valued scalar function () that denotes
the reward at any moment in time in response to the network be-
havior. The value function V(@) determines the expectation of
r(t) over all possible network states while discounting future re-
wards, i.e. V(0) = ( [" e 7 r(r) dr ), with discounting time
constant 7, and (-) denotes the expectation over all possible
network responses.

The gradient B%i log V(0) can be estimated for the network
model outlined above using standard reward-modulated learning
rules with an eligibility trace (see [14] for details)

at = *?eei(t) + w;(t) Yore, (t) (Zeost; (t) — frost; (1))
(6)

where 7. is the time constant of the eligibility trace. Recall
that PRE; denotes the index of the presynaptic neuron and
POST; the index of the postsynaptic neuron for synapse i. In
Eq. (6) zposr, (t) denotes the postsynaptic spike train, feosr, (£)
denotes the instantaneous firing rate of the postsynaptic neu-
ron and w; (t) yere, () denotes the postsynaptic potential under
synapse 4.

This eligibility trace Eq. (6) is multiplied by the reward r(¢)
and integrated in each synapse ¢ using a second dynamic variable

dgi(t) _ *lgi(t) + (;Eg + a) ei(t) s (N

dt Tg

where 7(t) is a low-pass filtered version of r(¢) with time con-
stant 7,. The variable g;(¢) combines the eligibility trace e; ()
and the reward r(¢) in a temporal average. « is a constant off-
set on the reward signal. This parameter can be set to an ar-
bitrary value without changing the stationary dynamics of the
model [14]. In our simulations, this offset & was chosen slightly
above 0 (v = 0.02) such that small parameter changes were also
present without any reward. The variable g; (¢) realizes an online
estimator for 8%1_ log V(0) [14].

Putting it all together, by plugging Eq. (7) into Eq. (3) the
synaptic parameter changes at time ¢ are given by

a0,(1) = ( L (i—0.0) + g,»<t>) dt

o?
+ /28T dW;(t) .

Egs. (2) and (4)-(8) conclude the neuron and synapse dynam-
ics used in our simulations. The parameter values are given in
Table II.

()

D. Random Reallocation of Synapse Memory

In the original synaptic sampling model, outlined above,
whenever a synapse i is disconnected (when 6; < 0), it under-
goes a random walk according to Eq. (3) until #; again becomes

larger than zero and the synapse reappears. The dynamics of
synapses that are disconnected also become independent of the
network activity and are therefore not influenced by the pre-
and post-synaptic spike trains, since the eligibility trace Eq. (6)
vanishes. Nevertheless, synapses need to be updated even when
they are not used which wastes memory and CPU time. In a
typical simulation of synaptic sampling, where the majority of
synapses are non-functional most of the time, this overhead may
even dominate the simulation. Here, we discuss a more efficient
approach for synaptic rewiring called random reallocation of
synapse memory.

It has been previously noted that the synaptic sampling dy-
namics can be replaced by a more efficient approach for online
rewiring of neural networks [15]. The theoretical analysis there
has shown that the original synaptic sampling formulation, with
convergence to a stationary distribution p*(8), can be combined
with a hard constraint on the network connectivity such that
at any moment in time a fixed number of connections M is
functional, i.e. |@ > 0] = M. In this modified version of net-
work rewiring, whenever a connection becomes non-functional
another synapse is randomly reintroduced to keep the total num-
ber of synapses constant. Thus, non-functional synapses do not
need to be simulated and therefore don’t waste memory or CPU
time. It has been shown that this more efficient rewiring ap-
proach also leads to a stationary distribution of network config-
urations, that is identical to the original posterior p*(0) confined
to the manifold of the parameter space that fulfills the constraint
|6 > 0| = M (see [15] for details). This rewiring strategy has
already been successfully applied to deep learning [15] and im-
plemented on the SpiNNaker 2 prototype chip [41].

Here, we used a similar rewiring approach to the one in [15].
However, an additional limitation on the rewiring scheme comes
from the memory model of the software framework. In our im-
plementation, each neuron maintains a table of its post-synaptic
targets (see Section IV-C for details). Therefore, the free space
of synapses that become disconnected can most efficiently be re-
assigned to another postsynaptic target of the same presynaptic
neuron. Consequently, we decided to use a connectivity con-
straint that assures that the fanout of each neuron is constant
throughout the simulation. This is simply achieved by imme-
diately reconnecting each synapse that becomes non-functional
to a new randomly chosen postsynaptic target. Since drawing
random numbers becomes efficient due to the random number
generator (Section II-B), this approach has little computational
overhead.

Our results from the prototype chip presented in Section V-C
suggest, that random reallocation increases the effective usage
of the hardware, the number of active synapses in the network,
and also accelerates the exploration of the parameter space, lead-
ing to faster convergence to the stationary distribution. Interest-
ingly, the connectivity constraint used here is somewhat similar
to analog neuromorphic systems which contain synaptic ma-
trices fixedly assigned to postsynaptic neurons with only the
presynaptic sources flexible to some degree [42]. Rewiring in
such a setup has to operate ‘postsynaptic-centric’ and similar to
our approach has a fixed number of synapses per postsynaptic
neuron [43].
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TABLE III
COMPUTATION TIME FOR RANDOM NUMBER GENERATION
AND EXPONENTIAL FUNCTION

Computation time for random number generation

Random number type #clock cycles

Gaussian (software, Box-Muller Transform) 172
Gaussian (hardware, Inverse CDF, optimized) 21
Uniform (software, Marsaglia) 42
Uniform (Hardware) 5

Computation time for exponential function

Exponential function #clock cycles

Software (floating point, Newlib) 163
Software (fixed point, hardware emulation) 104
Hardware (fixed point, precision not enough) 6
Hardware (conversion from and to float) 15

IV. IMPLEMENTATION OF SYNAPTIC SAMPLING ON THE
SPINNAKER 2 PROTOTYPE

The software implementation of this model is optimized re-
garding computation time, memory, power consumption and
scalability, in order to bridge the gap between state-of-the-art
biologically plausible neural models and efficient execution of
the model in hardware. This is explained in more detail in the
following.

A. Numerical Optimizations

1) Reducing Computation Time With Hardware Generated
Uniform Random Numbers: The synaptic sampling model
draws one random number for each synapse in each simulation
time step (1 ms). Since thousands of synapses are simulated in
each core, random number generation could dominate the com-
putation time. As described in Section III, the Wiener process
requires Gaussian random numbers to be generated. But as de-
scribed in Section II-B, only uniform random number can be
generated by the accelerator. As shown in Table III, the gener-
ation of a pseudo Gaussian random number with Box-Muller
transform [44] in software requires 172 clock cycles. One op-
tion could be to convert the hardware generated uniform ran-
dom number into Gaussian random number with Inverse CDF
method [45] and look-up table, which reduces the computa-
tion time to 21 clock cycles. However, analytical and numerical
studies have found that for the simulation of Wiener process,
Gaussian random numbers can be replaced by uniform random
numbers without affecting model performance [46]. The gener-
ation of a uniform random number in software with Marsaglia
RNG [35], [47] requires 42 clock cycles, whereas with hardware
it takes only 5 clock cycles, including fetching the integer ran-
dom number from the accelerator and converting it to floating
point type in the range of O to 1.

2) Reducing Computation Time With Exponential Function
Accelerator: In the synapse model, the parameter 6 of each
synapse accumulates small changes in each time step. The ex-
ponential function accelerator, which calculates the exponential
function within 6 clock cycles (Section II-C), uses a fixed-point
data type whose precision is not enough for this model, because

Prototype chip

Interrupt

Addr, length

Addr, length
Addr, length

DRAM

DMA

Fig.3. Thetime and energy consuming interaction between the prototype chip
and the DRAM chip, which can be saved by storing data locally in SRAM.

the change of # would be rounded to zero. Calculating a floating
point exponential function with software libraries like Newlib
takes 163 clock cycles. Since high precision is only necessary
for storing the small change of 0, but not necessary for calcu-
lating intermediate variables like w, 6 can be stored as floating
point in memory, and when calculating w with exponential func-
tion, # can be converted to fixed point and calculated with the
exponential function accelerator. The result is then converted
back to floating point. Simulations show that the performance
of the model is not affected. This reduces the computation time
to 15 cycles with 6 cycles required by the hardware accelera-
tor and 9 additional cycles for the conversion of data type. For
the sake of comparison, emulation of exponential accelerator in
software takes 95 cycles instead of 6 [26]. Thus, with conversion
of data type, this approach would take 104 cycles with software
(Table III).

3) Reducing Memory Footprint With 16-bit Floating Point
Data Type: In order to simulate more synapses with limited
memory, which is the case when the synapse parameters are
stored in SRAM (see Section I'V-B), the single precision floating
point with 32 bits can be converted into half precision floating
point with 16 bits. For each synapse ¢, three parameters need to
be stored in memory: eligibility trace e;, estimated gradient g;
and synaptic parameter ;. Simulations show that converting e;
and g; to half precision does not affect the model performance.

B. Local Computation

By avoiding external DRAM access and instead storing all
parameters and state variables of the model locally in SRAM,
both energy and computation time can be saved.

To read (write) data from (to) the off-chip DRAM, the core
sends a read (write) request which is first stored in a DMA (Di-
rect Memory Access) queue in software, then sent to the DMA
unit, and at last sent to the DRAM. When the read (write) process
is complete, an interrupt is triggered and an interrupt handler is
called, which, in case of read request, processes the data from
DRAM. Then the next read/write request in the queue is sent
to DMA (Fig. 3). Since the DRAM access is time consuming,
the software can let DMA run in background and continue with
other tasks. When the read/write process is complete, the core
stops with the current task, handles the interrupt and then re-
sumes the stopped task after the interrupt handler is complete.
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Fig. 4. Memory model with master population table, synapse rows and

postsynaptic neuron ID.

Although this saves computation time compared to waiting for
the read/write process to complete, it still has the following draw-
backs:

1) Retrieving all synapse parameters in each time step, which
is necessary in this model, could easily saturate DRAM
bandwidth especially in the scaled up case with tens of
cores per chip [31], [48].

2) The energy consumption of DRAM access can be two
orders of magnitudes higher than SRAM access [49].

3) This only works if the other tasks are independent from
the data being fetched.

4) Managing the DMA queue and calling the interrupt han-
dler still consumes computation time, which becomes a
problem when memory is frequently accessed.

The drawback when not using external DRAM is the limited
memory space available in SRAM. This is not a problem for this
model, since on the one hand the required memory is reduced
with 16-bit floating point (Section IV-A), and on the other hand
due to the complexity of the model, the number of synapses per
core is limited by computation as is shown in Section V-B.

C. Memory Model

The memory model (Fig. 4) of this work is based on the soft-
ware for the first generation SpiNNaker system [50]. The spike
packet contains the ID of the presynaptic neuron. The master
population table contains keys which are presynaptic neuron
IDs. Each key is 4 bytes long and is stored together with the 4
byte starting address of the synapse parameters for the presynap-
tic neuron. These synapse parameters are stored in a contiguous
memory block called synapse row. Each row is composed of
4-byte words. For each presynaptic neuron, the first word is the
length of the plastic synapse region. In our implementation, the
plastic synapse region consists of 8-byte blocks with 2 bytes for
e;, 2 bytes for g; and 4 bytes for ;. After the plastic synapse re-
gion there is one word for the length of fixed synapse region. The
next word is the length of the plastic control region which stores
special parameters needed by the plasticity rules. In this work

time >
Timer Tick Timer Tick
tn  tn+l
Synapse P
HW buffer Process Plasticity Send HW buffer
in SRAM Spikes g o g Update »> Spikes in SRAM
T l Update
| | If ‘master’
Incoming core T
Spikes Generate Input Spikes,
Calc Reward
Core x
Spinn
Router
Other cores
Fig. 5. SpiNNaker software framework. Each simulation time step ¢,, is trig-

gered by the timer tick interrupt. At the end of the time step, the spikes are sent
to the SpiNNaker router which then multicasts the spikes to other cores.

this region is used to store the parameters for the PSP kernel of
input spike, e.g. i, and h (corresponding to the time constants
Tm and 7). Since the PSP kernel of the incoming spike is the
same for all synapses of the same presynaptic neuron, the param-
eters for the PSP kernel are shared in order to reduce memory
footprint. After the word for the length of plastic control region
follow the parameters for fixed synapses.

The synapse parameters should also include the index of the
postsynaptic neuron. One way to implement this is to add a 4-
byte word for each postsynaptic neuron in addition to the 8 bytes
for e;, g; and 0;, which is the case in the original SpiNNaker
software framework. Alternatively, since in this network all input
neurons have the same fanout, the indexes are stored in a 2-d
array (Post-syn. Neuron ID in Fig. 4), where the column index
stands for the presynaptic neuron ID and the entries represent
the postsynaptic neuron IDs. Each entry represents a synapse
and occupies one byte, supporting maximum 256 target neurons
per core. Since multiple synapses are allowed between a pair of
neurons, the ID of a postsynaptic neuron can appear multiple
times in each column of the 2-d array. In general, depending on
application, one of the two approaches can be chosen.

The master population table, synapse rows and postsynaptic
neuron ID are arrays generated by each core after the network
configuration is specified. Each core generates its own data in a
distributed way instead of having a centralized host PC gener-
ating data for all cores. This, combined with local computation
(Section I'V-B), drastically reduces the time for data generation
and transmission of data from host PC to chip, which could make
up significant amount of total simulation time especially in the
case of large systems [51], [52].

D. Program Flow and SpiNNaker Software Framework
Integration

The SpiNNaker system employs parallel computation to run
large scale neural simulations in real time. Although the proto-
type chip consists of only 4 cores, the software implementation
of the synaptic sampling model is integrated into the SpiNNaker
software framework allowing for scaling up onto larger systems.
The design of the program flow is based on [50].
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The timer tick signal of the ARM core is used to trigger each
time step in real time. The length of a time step can be arbi-
trarily chosen. For this implementation, one time step is one
millisecond. The timer tick signal triggers an interrupt. Then
the handler of the interrupt is called and processes the incoming
spikes from the last time step, which are stored in a hardware
buffer in SRAM. In this step, for each incoming spike, first the
starting memory address of its corresponding synapse parame-
ters is found in the master population table, then the synaptic
weights of the activated synapses in the synapse row are added
to the synaptic input buffers of the target neurons.

For the network model implemented in this work
(Section V-B), one of the cores, the “master core”, then sim-
ulates the environment that computes the global reward signal.
All cores continue with the synapse update and neuron update,
which integrate the synaptic weight onto the membrane potential
of the postsynaptic neuron. Next, the synaptic plasticity update
is performed, as now all required information is available, i.e.
incoming spikes, neuron states and global reward.

At last, the spikes of the neurons in each core are sent to
the SpiNNaker router, which then multicasts the spikes to the
cores containing the corresponding postsynaptic neurons. The
SpiNNaker router [34] allows for fast multicast of small pack-
ets, which is key to efficient spike communication for many-
core neuromorphic systems like SpiNNaker. The distributed
computation, synchronization with timer tick and communi-
cation with the SpiNNaker router allows for scaling up the
model implementation onto large systems consisting of millions
of cores.

V. RESULTS

In the following we show how the hardware accelerators and
numerical optimizations reduce the computation time for one
plasticity update of the synaptic sampling model. Then, we im-
plement a network model that performs reward-based synap-
tic sampling on the SpiNNaker 2 prototype, for which we also
provide power and energy measurements.

A. Computation Time of Plasticity Update

As shown in Section IV-A the generation of a uniform dis-
tributed random number takes 5 clock cycles with hardware ac-
celerator and 42 clock cycles with software. The floating point
exponential function with exponential accelerator and conver-
sion of data type takes 15 clock cycles, whereas the same algo-
rithm in software takes 104 clock cycles. The rest of the plas-
ticity update of a synapse takes 90 clock cycles. In total, the
plasticity update takes 110 clock cycles with hardware accelera-
tors and the equivalent implementation with only software takes
236 clock cycles (Table IV). For this application, the hardware
accelerators result in a speedup of 2 regarding the number of
clock cycles. Considering the increase of clock frequency from
200 MHz in SpiNNaker 1 to 500 MHz in the current prototype
chip, in total a speedup factor of 5 is achieved. In the plasticity
update, the computation time for random number generation and
exponential function reduced from 62% to 18%.

TABLE IV
NUMBER OF CLOCK CYCLES FOR PLASTICITY UPDATE

HW Accelerator ~ only Software

Random number generation 5 42
Exponential function 15 104
Rest 90 90
Total 110 236
(RNG + EXP) / Total 18% 62%
Input neurons Prototype Chip
Core 0 Core 1
Patterry Pattern 2 ° o
Reward Spinn f
( — O ::: ) router
‘ ¥ L)
— Core Zf \COFE 3
Population A \ / Population B
Env e o o0

Fig. 6. Illustration of the network topology (left) and its mapping to the
prototype chip (right).
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Fig. 7. Network activity and reward throughout learning. Shaded areas indi-

cate the presented patterns. Spike trains (top) of the two populations and input
spikes. 30 neurons were randomly chosen from the 200 inputs.

B. Network Description

Fig. 6 illustrates the network topology and the mapping to the
prototype chip. The network consists of 200 input neurons which
are all-to-all connected to 20 neurons with plastic synapses. Mul-
tiple synapses between each pair of neurons are allowed. In this
implementation 3 synapses between each pair of neurons are
initiated, resulting in 200 x 20 x 3 = 12000 plastic synapses.
2 spike patterns are encoded in the spike rate of the input neurons
and are sent to the hidden neurons (see Fig. 7). The 20 hidden
neurons are divided into two populations (A and B). The output
spikes of the hidden neurons are sent to the environment (Env),
which evaluates the global reward. A high reward is obtained if



YAN et al.: EFFICIENT REWARD-BASED STRUCTURAL PLASTICITY ON A SPINNAKER 2 PROTOTYPE 587

TABLE V
MAXIMUM NUMBER OF SYNAPSES PER CORE

Core Memory Con-  Real Time Constraint

straint

4 700
4 700

4 100
1 900

With Accelerators
Without Accelerators

input pattern 1(2) is present and the mean firing rate of popu-
lation A(B) is higher than population B(A). The global reward
is sent back to the network and shapes the plastic synapses be-
tween the input neurons and the two populations. The goal is
to let the two populations ‘know’ which spike pattern they rep-
resent and signal this with a high firing rate when their pattern
is present. In addition to the feedforward input, hidden neurons
receive lateral inhibitory synapses that are initiated to fixed ran-
dom weights between each pair of hidden neurons.

The network is mapped to the prototype chip with each core
simulating 5 neurons from the two populations (see Fig. 6). The
first core (“master core”) also generates the input spikes and
evaluates the reward. The 200 input neurons lead to 200 x 5 =
1000 pairs of neurons in each core.

The profiling results in Section V-A provide the computational
aspect when assigning the number of synapses to simulate on
each core. The ARM Cortex M4F core used in this prototype
chip is configured to run at 500 MHz, which means 500 000
clock cycles are available in each time step (1 ms). The com-
putation for one time step without plasticity update takes ca.
45 000 clock cycles for core 0 and 40 000 clock cycles for the
other cores. Since each plasticity update takes 110 cycles with
hardware accelerators and 236 cycles without hardware accel-
erators, the theoretical upper limit for the number of synapses
per core is ca. 4 100 with hardware accelerators and ca. 1 900
without hardware accelerators.

In terms of memory, the prototype chip has 64 kB Data Tightly
Coupled Memory (DTCM) per core, for all initialized data,
uninitialized data, heap and stack. By checking the binary file
size after compilation, the maximum number of synapses is es-
timated as 4 700. Thus, this model is limited by computation
rather than memory (see table V).

In the implementation, 3 000 plastic synapses per core are
simulated, in order to ensure the stability of the software. Since
3 000 plastic synapses can be simulated in each core, each pair
of neurons has 3 plastic synapses. Note that this is only the initial
configuration. Due to random reallocation of synapse memory,
the postsynaptic neuron could change, so that not each single
pair of neurons has 3 plastic synapses.

C. Implementation Results

The usability of the network is demonstrated in a closed-loop
reinforcement learning task implemented with 4 ARM cores.
The generation of input spikes and evaluation of output spikes
are also implemented on chip.

As shown in Fig. 7, the 200 input neurons send two spike
patterns in random order. Each spike pattern lasts for 500 ms.
Resting periods of 500 ms are inserted between two pattern pre-
sentations, where the input neurons only send random spikes

mean reward

reward

0.2 — memory reallocation
- - no memory reallocation

0 20 40 60 80 100 120 140 160 180
time (min)

Fig.8. Time-averaged reward over throughout learning for networks with (red)
and without (green) random reallocation of synapse memory.

with low firing rate representing background noise. The num-
bers at the top of Fig. 7 and shaded colored areas indicate which
patternis present. As discussed above, the 20 neurons are divided
into 2 populations (A and B), each representing one of the two
patterns. Neuron 1 to neuron 10 belong to population A, neu-
ron 11 to neuron 20 belong to population B. In the second row
of Fig. 7, blue and green curves represent population firing rates
of A and B, respectively. The firing rates were obtained with a
Gaussian filter (0 = 20 ms) applied to the raw spike trains. The
goal of learning is to let population A fire at a higher rate when
pattern 1 is present and let population B fire at a higher rate when
pattern 2 is present.

Fig. 8 shows the evolution of the mean reward with and with-
out random reallocation of synapse memory (see Section III-D).
The mean reward in each minute is low-pass filtered with a
Gaussian kernel with 0 = 2 min. Averages over 5 independent
trial runs using the true random number generator are shown
with solid lines, shaded areas indicate standard deviations. The
reward is normalized to the theoretically maximum reachable re-
ward. Atlearning onset the two populations respond randomly to
input spike patterns and the reward is low. The synaptic weights
explore the parameter space with the random process guided by
the global reward as described in Section III-A. Over time, the
network learns the desired input/output mapping and the reward
increases. After ca. 10 minutes of training, the two populations
learn to respond correctly to the two spike patterns with the
firing rate of one population higher than the other when the cor-
responding spike pattern is present, and reward becomes high.
Our results show that the reward increases much faster with
reallocation due to the accelerated exploration of the parame-
ter space. After the reward reaches a high value, the network
continues exploration and the reward might fluctuate while the
network searches for equally good network configurations.

D. Power and Energy Measurement Results

The optimizations described in Section IV result in consider-
able reduction of power and energy consumption. To show the
benefit of the optimizations, power and energy consumption is
measured in three cases. First, the synapse rows are stored in
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TABLE VI
POWER AND ENERGY CONSUMPTION

with DRAM, no no DRAM, no no DRAM, with

Accelerator Accelerator Accelerator
Power 285 225 225
(mW)
Time (ms) 1.58 1.58 0.76
Energy (nJ)  450.3 355.5 171
Reduction 0% 21% 62%

of Energy

the external DRAM memory, and the exponential function and
random number generation are done only with the software run-
ning on ARM core. Second, the synapse rows are stored in the
local SRAM memory, and the exponential function and random
number generation are still only done with the software running
on ARM core. At last, the synapse rows are stored in the local
SRAM memory, and the exponential function and random num-
ber generation are done with the hardware accelerators. For this
measurement, the software is run without random reallocation
of synapse memory. As summarized in table VI, the power and
energy consumption is reduced by local computation without
external DRAM and reduction of computation time.

First, the memory footprint is optimized by employing 16-bit
floating point data type and the compact arrangement of mem-
ory model described in Section IV-A and IV-C. The random
reallocation described in Section III-D increases the effective
number of synapses which is otherwise only achievable with
external memory like DRAM. The reduction of memory foot-
print allows for local computation with SRAM, as described in
Section IV-B. Switching off DRAM allows for a reduction of
power consumption by 21%, from 285 mW to 225 mW.

In addition, as summarized in Section V-A, the computation
time for each plasticity update is reduced by 53.4%. Without
the hardware accelerators, simulating the network with 3 000
plastic synapses per core for one time step (1 ms) takes 1.58 ms,
losing the real time capability. With the hardware accelerators,
the simulation of one time step is finished within 0.76 ms. To
measure the energy consumption, the length of the time step
is chosen to be the minimum required for each time step to
finish, i.e. 1.58 ms for without accelerators and 0.76 ms for with
accelerators. The reduction of computation time for plasticity
update reduces the energy consumption for one time step by
51.9%, from 355.5 pJ tol171 puJ .

In total, the energy consumption for the simulation of the
network for one time step is reduced by 62%, from 450.3 pJ to
171 pJ, making the system attractive for mobile and embedded
applications.

VI. DISCUSSION

In the following we discuss how the implementation of the
reward-based synaptic sampling model would scale for larger
networks on the final SpiNNaker 2 system. Finally, we argue
about the possiblility to realize this network model on SpiN-
Naker 1 and other neuromorphic platforms with learning capa-
bilities.

A. Scalability

The SpiNNaker architecture was designed for the scalable
real-time simulation of spiking neural networks with up to a mil-
lion cores [27]. SpiNNaker’s scalability is based on the multi-
cast network for routing of spike events [34] and a software
framework for mapping network models onto the system that
has shown to support the simulation of large-scale neural net-
works [52]. Building on this, the reward-based synaptic sam-
pling model can be scaled to future SpiNNaker 2 systems with-
out major restrictions, i.e. as our implementation is integrated
into the SpiNNaker software framework, the automatic map-
ping of larger networks onto many cores and the configuration
of routing tables comes for free. In principle, with more than 100
cores per chip in SpiNNaker 2 (cf. Table I), DRAM bandwidth
may become a bottleneck for some applications, but not in our
case, as synapse variables are stored and processed locally in
each core and DRAM is not used. Furthermore, a many-chip
implementation should not be limited by the communication
bandwith for spike packets between chips, as the reward-based
synaptic sampling model is mainly limited by the computa-
tion of the synapse updates and has rather moderate spike rates
(Section V-B). Still, we remark that, as in any large-scale neuro-
morphic hardware system, the fraction of energy consumed for
communication will increase with network size [53] demanding
optimized routing architectures [54].

Future work will include simulating larger networks of this
type on the full-scale SpiNNaker 2 system with many cores.
Such a scaled-up, real-time version of the synaptic sampling
framework, will enable us to explore reward-based learning on
high-dimensional input such as dynamic vision sensors [55] or
conventional high-density image sensors [56].

B. Comparison With SpiNNaker 1

Reward-based learning and structural plasticity have been im-
plemented on the SpiNNaker system before [48], [57]. The
reward-based synaptic sampling model implemented in this
work is more complex because of the need for random num-
ber generation and exponential function for each plastic synapse
in each time step. In addition, due to the lack of floating point
arithmetic, this synapse model would be very hard, if possible
at all, to be implemented in the first generation SpiNNaker sys-
tem, since the change of synaptic weight is very small in each
time step and can not be captured by the precision of fixed point
format.

C. Comparison With Other Neuromorphic Platforms

To the best of our knowledge, there exists today no neuro-
morphic hardware platform, except SpiNNaker 2, that would be
able to directly simulate complex learning rules such as synap-
tic sampling. Most other approaches have traded off accessible
model complexity for a more direct implementation of the neu-
ron dynamics. We discuss here how synaptic sampling could
still be emulated on other architectures.

Clearly, since synaptic sampling is inherently an online learn-
ing model, it cannot be directly implemented on neuromorphic
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hardware with only static synapses, such as TrueNorth [22],
NeuroGrid [58], HIAER-IFAT [54], DYNAPs [59] and Deep-
South [60]. However, the network dynamics could be approxi-
mated by alternating short time windows of network simulation
and reprogramming synaptic weights by an external device.

Architectures that do support synaptic plasticity on chip, such
as Loihi [61] and the BrainScales 2 system [62], have so far
quite limited weight resolutions (9-bit signed integer on Loihi
and 12-bit on BrainScales 2). Since 32-bit fixed-point format
was found to be insufficient for this model (cf. Section IV-A), it
is questionable, even with stochastic rounding, whether synaptic
sampling can be implemented with such low weight resolution,
and at what cost in performance. Also, in the case of Loihi, the
size of the microcode that is allowed for computing synaptic
updates is quite limited (e.g. 16 32-bit words). Besides, hard-
ware accelerators for complex functions like the exponential
function are not available on these two platforms, which makes
the implementation more challenging, especially in the case of
Brainscales 2, because the high data rate caused by accelerated
operation requires fast execution of learning rules. These restric-
tions put some doubt on whether complex learning mechanisms,
as the one considered here, can be implemented exactly. Also,
exact implementation of the synaptic sampling model seems in-
feasible on neuromorphic hardwares with configurable (but not
programmable) plasticity, like ROLLS [63], ODIN [64] and TI-
TAN [65] (see [66] and [67] for reviews). However, it might be
possible to realize simplified, approximate, versions of synaptic
sampling on these neuromorphic platforms.

VII. CONCLUSION

In this work, a reward-based synaptic sampling model is
implemented in the prototype chip of the second generation
SpiNNaker system. This real-time online learning system is
demonstrated in a closed-loop online reinforcement learning
task. While hardware features of the future SpiNNaker 2 and
its prototypes have already been published, this is the first time
learning spiking synapses have been shown on SpiNNaker 2.
As shown in Section I and VI-C, this is also one of the most
complex synaptic learning models ever implemented in neuro-
morphic hardware. The hardware accelerators and the software
optimizations allow for efficient neural simulation with regard
to computation time, memory and power and energy consump-
tion, while at the same time the SpiNNaker 2 system keeps the
full flexibility of being processor based. For this application, we
show slightly more than a factor of 2 speedup of the algorithm
compared to a pure software implementation. Coupled with the
2.5 fold increase in clock frequency, we can theoretically sim-
ulate 5 times as many synapses of this type in SpiNNaker 2 as
in SpiNNaker 1 in the same time span. In addition, we show
a reduction of energy consumption by 62% compared to im-
plementation without the use of hardware accelerators and with
external DRAM.
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