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Active Perception With Dynamic Vision Sensors.
Minimum Saccades With Optimum Recognition

Amirreza Yousefzadeh , Garrick Orchard , Teresa Serrano-Gotarredona , and Bernabé Linares-Barranco

Abstract—Vision processing with dynamic vision sensors (DVSs)
is becoming increasingly popular. This type of a bio-inspired vision
sensor does not record static images. The DVS pixel activity relies
on the changes in light intensity. In this paper, we introduce a plat-
form for the object recognition with a DVS in which the sensor is
installed on a moving pan-tilt unit in a closed loop with a recogni-
tion neural network. This neural network is trained to recognize
objects observed by a DVS, while the pan-tilt unit is moved to em-
ulate micro-saccades. We show that performing more saccades in
different directions can result in having more information about
the object, and therefore, more accurate object recognition is pos-
sible. However, in high-performance and low-latency platforms,
performing additional saccades adds latency and power consump-
tion. Here, we show that the number of saccades can be reduced
while keeping the same recognition accuracy by performing in-
telligent saccadic movements, in a closed action-perception smart
loop. We propose an algorithm for smart saccadic movement deci-
sions that can reduce the number of necessary saccades to half, on
average, for a predefined accuracy on the N-MNIST dataset. Ad-
ditionally, we show that by replacing this control algorithm with
an artificial neural network that learns to control the saccades, we
can also reduce to half the average number of saccades needed for
the N-MNIST recognition.

Index Terms—Artificial neural networks, convolutional neural
networks, machine vision, neural network hardware, object recog-
nition, robot vision systems, spiking neural networks.

I. INTRODUCTION

INTEREST in Dynamic Vision Sensors (DVSs) has grown
rapidly in recent years, while at the same time this inno-

vative technology is becoming more accessible to researchers,
highlighting such sensors’ potential to enable low-latency
sensing at low computational costs. However, DVSs operate
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differently than traditional frame-based sensors, and therefore
the processing of event data requires a different approach than
frame-based data.

Frame-based vision systems process frames (static images),
or sequences of frames, captured by a traditional camera. Frame
capture and frame processing are usually two separate steps,
with the quality of the captured frame affecting the quality of
the processing outcome. Acquiring high-quality frames usually
involves minimizing the relative motion between the frame sub-
ject(s) and the sensor during frame exposure to eliminate motion
artifacts. Conventional machine vision algorithms are designed
to process each frame individually, regardless of the amount
of information contained in it. This is only efficient if the rate
of change in the scene is similar to the frame rate, whereas in
practical applications there are sometimes moments without any
movement and moments with fast motion.

DVSs are event-driven temporal contrast sensors that operate
on a different principle, detecting the time and pixel location of
light intensity changes in the scene. For the subject to be visible
to the sensor, there has to be relative motion between sensor and
subject, because without motion - and under constant lighting
- there would be no pixel intensity changes for the sensor to
detect.

To ensure relative motion between sensor and subject, either
the sensor or the subject (or both) need to be moving. In a typical
sensing scenario the motion of the subject to be sensed cannot
be controlled, therefore moving the sensor is a more convenient
approach. This, however, poses the question of how to move the
sensor.

For actuated frame-based vision systems, sensor motion typ-
ically involves simply pointing the sensor towards the subject
using a pan-tilt unit or by mounting it on a moving platform
(such as a mobile robot). However, in biological vision - by
which event-driven vision sensors are loosely inspired - there is
growing evidence that the motion of the vision sensors (eyes)
plays a vital role in perception, and that such movement is both
well controlled (albeit subconsciously) and task-dependent [1].

Examples from nature include the jumping spider, which ac-
tively moves its retina [2], the praying mantis, which executes
a peering type motion for depth perception, or pigeons, which
move their heads back and forth to perceive depth. Even in
humans, there is growing evidence that micro-saccades during
fixation play a key role in perception [3], rather than just cor-
recting erroneous ocular drift, as was previously believed.

Intuitively, in an action-perception loop in natural animals,
it is obvious that perception influences action and that action
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influences perception. However, most works and benchmark
datasets focus on how best to perceive in order to influence
action, since with pre-recorded data it is not possible to influence
recordings through actions.1 This paper looks instead at how
best to act to influence perception.

More specifically, this study uses the DVS, an event-driven
temporal contrast sensor, to address the well-known MNIST [4]
recognition task. It investigates how such a sensor should move
to aid recognition in a closed action-perception loop, where the
system decides what action to take next (if any) based on the
sensory data it has received beforehand. We also look at whether
knowledge of the action taken can be used to improve accuracy
in the recognition task. For this, we mounted a DVS camera on a
pan-tilt unit looking at static images. In a real-world application,
for a example a moving robotic platform, the DVS should have
saccadic movements that are much faster than the motion of the
platform.

The MNIST dataset is well known in computer vision as a
relatively easy means of testing recognition models. It contains
70,000 labeled pictures of handwritten digits, 60,000 for training
and 10,000 for testing. We presented static MNIST samples
in front of a DVS which was mounted on a pan-tilt unit and
recognized the handwritten digit by analyzing the output events
of the DVS after each saccade. When we used saccades to
imitate biological eye movements and object recognition in the
proposed network, an interesting question arose: how is the
recognition task affected by saccade direction and how many
saccades are needed to recognize an object? As expected, we
noticed that each saccade can contain unique information about
the object related to the direction and speed of the saccadic
motion.

Since performing each saccade needs a mechanical move-
ment plus event processing, it is desirable to reduce the number
of saccades while keeping the same recognition performance.
After several experiments, we designed an algorithm that can
suggest the direction of the next saccade based on the current
information about the object. Our results show that smartly cho-
sen saccades can reduce the average number of saccades to
half in comparison to random saccades with similar recognition
accuracy. Interestingly, we noticed that a neural network can
perform this task and intelligently suggest saccades with almost
the same performance as an analytically developed algorithm.

Section II explains how a DVS works and previous ap-
proaches to use the MNIST dataset with these type of sensors
(or simulated sensors).

In Section III we explain our proposed approach for event-
driven processing and object recognition by using a DVS, the
proposed algorithm for prediction of an efficient subsequent
saccadic direction for better object recognition, and how a neural
network can be trained to intelligently suggest a next saccade
direction.

The results of the experiments are given in Section IV. In
this Section, we introduce our hardware-software platform for

1However, in this work we used pre-recorded data to compare our results with
other works, but from a different perspective. We tried to keep the performance
while using less information from the dataset, as will be explained later.

real-time object recognition with DVS saccades to demonstrate
the performance of the proposed algorithm in practice. Finally,
brief conclusions are provided.

II. BACKGROUND

This Section provides background information on DVSs and
previous experiences with event-driven MNIST datasets.

A. Dynamic Vision Sensors

DVSs output data in the Address Event Representation (AER)
format [8], where each event consists of a pixel address and a
single bit. The single bit indicates whether the intensity change
was positive or negative. The concept is illustrated in Fig. 1. As
shown in Fig. 1(a), when logarithmic change of light intensity
passes a threshold θ, an event will be generated. Fig. 1(c) shows
the reconstruction of DVS events for time interval during which
a propeller is rotating in front of the DVS. Reconstruction is
done with the jAER software [7] where black dots indicate
events with negative polarity and white dots indicate events
with positive polarity.

In a DVS each pixel spikes asynchronously as soon as it de-
tects a given change in light log-intensity. These sensors can
outperform frame-based vision sensors in terms of data com-
pression, dynamic range, temporal resolution and power effi-
ciency. Several different event-driven temporal contrast vision
sensors exist [5], [9]–[16]. For example, Samsung [17] recently
presented a 640 × 480 pixel DVS which consumes a total of
27 mW at a data rate of 100 keps and 50 mW at 300 Meps,
has better temporal resolution than a 2000 fps camera and a dy-
namic range of more than 80 dB. Gou et al. recently presented
the highest resolution DVS (with on-demand image acquisition)
with 768 × 640 pixels [18].

When something moves in front of a DVS, multiple pixels
almost simultaneously generate events that evoke synchrony-
based neural coding [3]. In this kind of coding, information is
not spike rate coded or spike rank/order coded [19]. Although
neurons spike asynchronously, information is coded not in the
exact time of each individual spike but in the simultaneous firing
of a group of spikes together.

In this work have employed two different event-driven sen-
sors. First, to compare accuracy with other published studies,
a pre-recorded dataset (N-MNIST) was used [20] which was
recorded using the Asynchronous Time-based Image Sensor
(ATIS) [12]. Secondly, the IMSE-DVS [5] was used to demon-
strate the approach in a closed loop system in real-time.

B. Previous Approaches to Event-Driven MNIST

MNIST is arguably the most popular dataset used thus far
for event-driven vision, and some different models have been
applied to different event-driven variants of the original MNIST
dataset. Three main event-driven versions of the MNIST dataset
have been reported. The first is a recording of a subset of MNIST
with different moving digits of different sizes presented to a
DVS [21]. The second approach is to convert frames to spikes
by means of intensity to delay conversion [22] or Poisson distri-
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Fig. 1. (a) Event generation for a DVS pixel when changing in light inten-
sity passes a pre-defined threshold θ. For a positive/negative change, a posi-
tive/negative event will be generated. (b) Propeller rotating in front of a DVS
[5]; the USB-AERmini2 board [6] time-stamps events from the DVS and sends
them to a computer through USB. (c) Reconstructed frame from DVS output
with jAER software [7]. It contains 864 events collected during 624 μs (1.3 Meps
- million events per second).

butions [23], [24]. The most recent approach is a full conversion
of the MNIST dataset at the original pixel scale, generated by
moving the sensor with fast saccades while viewing static digits
[20] (dubbed N-MNIST). This dataset is captured by mounting
the ATIS sensor [12] on a motorized pan-tilt unit and having
the sensor move while it views the MNIST samples on an LCD
monitor.

New techniques for efficient event processing are gradually
being introduced. HOTS [25] is a new hierarchical machine
learning technique that extracts visual features from events.
HFirst [26] is a hierarchical Spiking Neural Network (SNN)
for object recognition which uses a simple feed forward learn-
ing mechanism. This network has been implemented in low
power parallel platforms such as FPGAs and SpiNNaker [27]
and achieved 71.15% accuracy on the N-MNIST dataset [20]
without optimization.

Synaptic Kernel Inverse Method (SKIM) [28], a new learn-
ing method for synthesizing SNNs, achieved 92.87% accuracy
on the N-MNIST dataset. Spike Time Dependent Plasticity
(STDP) is an unsupervised bio-inspired learning method for
SNNs. Kheradpishe et al. [22] developed a multi-layer SNN
equipped with STDP, achieving 98.4% accuracy on the MNIST
dataset by converting all the MNIST frames to events through
intensity to delay conversion. J.H. Lee et al. [24] developed a
new method to adapt the famous error backpropagation tech-
nique for SNNs, achieving 98.66% accuracy on the N-MNIST
dataset.

N-MNIST contains three saccade recordings for each MNIST
sample. Based on our knowledge, no research has been done to
improve the performance of recognition by considering each
of these saccades as an individual source of information which
is coupled to the direction of the saccade. We have used the
N-MNIST dataset to benchmark performance of our proposed
method but in an entirely different perspective. While it makes
sense to use all the three saccades from each sample to improve
recognition accuracy, in real-time robotic applications each ad-
ditional saccade comes with a cost in power consumption and
recognition latency. Therefore when we used N-MNIST, we
considered the cost of each saccade along with the recogni-
tion accuracy and tried to use fewer saccades to recognize the
handwritten digits.

III. EVENT-DRIVEN RECOGNITION WITH SACCADES

In this Section, first, we explain the methods that we used
for processing saccadic events in a neural network. This neural
network is an efficient feed forward network that receives DVS
events and processes them to recognize handwritten digits. The
output of this network is a prediction vector that contains ten
values (one for each digit). Later on, in Section III-B, we inte-
grate this network into a closed-loop system along with a block
to control the direction of saccadic motion. This block, which
we call the “Next Saccade Prediction” (NSP) block tries to
suggest an optimal direction for the subsequent saccade based
on the current output of the feed forward handwritten digit
recognition network. The NSP block executes an analytical al-
gorithm in software to suggest the next saccade direction. In
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Fig. 2. Average event rate of a saccade (including all 28 × 28 pixels) in the
N-MNIST dataset per millisecond. A frame is constructed by integrating the
events in the time span of +/−5 ms (between 45 ms to 55 ms) around the peak
average event rate at 50 ms.

Section III-C we show how the NSP block can be replaced by a
neural network. In this case, both the feed forward and feedback
processing will be done by using neural networks. This allows
us to easily implement the system fully in hardware.

A. Feed Forward Symbol Recognition Neural Network

As mentioned earlier, a DVS is power efficient and has con-
siderably less latency than conventional frame-based sensors.
However, it is generally harder to extract information from the
DVS events by using conventional image processing methods.
To extract information efficiently, we propose processing groups
of events that are generated close together in time rather than
processing individual events. This is not a new idea and has been
used in efficient hardware implementations [29], [30]. There is
evidence that this kind of processing also takes place in bio-
logical cortex [31]. A block which is called “frame-maker” was
therefore designed to group events occurring close together in
time into a packet (equivalent to a frame in conventional image
processing).2 By using such a “frame-maker” after DVS sens-
ing, it was possible to create an automatic adaptive frame-rate
camera for our system input.

To build a frame from each saccade, one approach is to put a
fixed number of events in a frame [30]. This method may result
in multiple frames for a saccade. Also, each stimulus may need
a variable number of events to construct a precise frame. For
example, digit ‘8’ is bulkier than digit ‘1’ and will require more
events to have a clear frame.

In the N-MNIST dataset [20], each saccade takes about 100
ms. A saccadic movement has the highest velocity in the middle
of the saccade. Therefore, the output event reaches a maximum
around 50 ms after the start of a saccade. Fig. 2 shows the
average event rate of one saccade in the N-MNIST dataset. Our
experiments show that collecting events during a short time

2We report elsewhere [32] that the delay of processing such frames in hard-
ware is in the order of 20 μs. Consequently, the latency of processing the frame
once the events are available is negligible with respect to the time of collecting
them (10 ms).

Fig. 3. Three saccades captured from sample ‘80’ of test set in N-MNIST
dataset. The colors show the polarity of the events. Blue is for negative events
and purple is for positive events. Dark blue indicates places where both positive
and negative events occurred.

when the event rate is high will result in a sharp frame. As
illustrated in Fig. 2, a frame for each N-MNIST saccade can be
created by collecting all the events which are generated in a time
span of 10ms around the center of a saccade. The events outside
this time will not be processed.3 Fig. 3 shows three frames that
are generated by three saccades of a sample in the N-MNIST
dataset. Directions of these three saccades are shown in Fig. 4,
and are labeled SAC_H, SAC_DU, SAC_DD. Throughout the
paper we will use the same labels to refer to different “concepts”:
for example, in Fig. 3 use them for labeling “frames”, each
corresponding to one of the three saccades; later on we will use
them to label three “memories” or three “flag bits”, always each
corresponding to one of the three saccades.

Fig. 5 shows the block diagram of the system that has been
used to perform symbol recognition with a DVS through sac-
cadic movements. The output of the “frame-maker” block is

3This optimum 10 ms interval is dependent on the mechanical saccadic move-
ment used for these experiments. Speed and displacement have been kept fixed,
only changing the angle. For different speeds and displacements, one may need
to change this optimum 10 ms slice.
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Fig. 4. Direction of saccades in the N-MNIST dataset, SAC_DD (Diagonal
Down Saccade), SAC_DU (Diagonal Up Saccade) and SAC_H (Horizontal
Saccade).

Fig. 5. Block diagram of proposed feed forward system for symbol recogni-
tion with saccades, using a DVS. The DVS is connected to a moving pan-tilt unit.
The “frame-maker” block assembles a frame after each saccade and then stores
that frame in its corresponding memory (SAC_DD, SAC_DU or SAC_H). Here
we limit the direction of movements to three to remain compatible with the N-
MNIST dataset. The Control Block is responsible for controlling the direction
and speed of the pan-tilt unit movements based on the user input.

a 28 × 28 pixel binary frame,4 if polarity information is not
used; otherwise the output frame is 28 × 28 × 2 bits. After the
“frame-maker” block, a conventional Artificial Neural Network
(ANN) is implemented to process the frames and recognize the
handwritten digits. This ANN is called “Symbol Recognition
Neural Network” (SRNN) and receives a hyper-frame as its in-
put. The hyper-frame is a frame with 28 × 84 (28 × 28 × 3)
pixels (assuming polarity bit is ignored) and can contain all
the frames made by the three saccades of each sample. This
network should be able to work with one, two or three sac-
cades of each input sample, as illustrated in Fig. 6. Therefore,
during the training phase, SRNN was trained to accommodate
all possibilities. This means that the SRNN can use one, two or
all three saccades of a sample to predict the presented digit.5 We

4There is only one bit for each pixel in this frame, so multiple events with
the same address will not carry additional information. To save power, it is
recommended to adjust the DVS parameters (like threshold, refractory period,
...) and pan-tilt unit parameters (like the velocity and range of movement) in a
way that each pixel generates maximum one event for each frame.

5Recognition accuracy increases (on average) when more saccades are pro-
vided.

Fig. 6. “Symbol Recognition Neural Network” (SRNN) with one, two and
three saccades for a sample of N-MNIST dataset. Each column represents a
hyperframe with three frames, each for one saccade direction. When a saccade
direction is not available, its frame is left blank.

used a blank input in the position of the non-available frames to
construct the 28 × 84 pixels of a hyper-frame. The SRNN can
have an arbitrary number of layers with various architectures
(convolutional, fully connected, etc.). In this work, we tried a
few small but accurate enough neural networks to perform our
experiments.

For a given input sample i, we interpret the SRNN output
Ŷi = (ŷi0 , ŷi2 , . . . ŷij , . . . , ŷi9) as the vector of prediction prob-
abilities ŷij for each class j. The recognized digit is the one
with the highest prediction value. The sum of all the values in
a prediction vector is normalized to one. Therefore, each value
can be interpreted as a probability. The quality of the prediction
vector can be measured by calculating the following “prediction
loss function”

Li =
||Ŷi − Yi ||

2
(1)

where Li is the loss for sample i, Ŷi is called the prediction
vector for sample i and Yi is the ground truth label for sample
i represented using one hot encoding (yij = 1 if the class is j,
and zero otherwise).

B. Closed Loop Recognition With Analytical Algorithm

In biological vision, it is the movement of the retina (saccades
and micro-saccades) that enables one to see clearly [3]. In our
study, we used a standard pan-tilt platform to move the DVS
while the object in front of it was fixed. The information obtained
from saccades is determined by the movement parameters. A
movement can be described in terms of its velocity, distance,
and direction. The movement velocity can affect the rate at
which events are generated. For a clear saccade to be captured,
the movement has to be sufficiently fast over a short distance.
The recognition task can also be affected by the direction of the
movement. For example, horizontal saccades intensify vertical
edges but suppress horizontal ones. This also influences the
relative positions of positive and negative events, leading to
different perceptions of the same object (see Fig. 3).

Intuitively, two strong enough saccades of a DVS with differ-
ent directions should be sufficient to retrieve all the information
from a two-dimensional picture. For objects without any promi-
nent edges parallel to the direction of the saccade, just one
saccade could be enough for recognition. An extra saccade in-
creases power consumption and delay in recognition, but it may
also provide additional information about the object. In real ap-
plications, a robot can choose to perform an extra saccade or
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Fig. 7. Block diagram of the closed-loop recognition system. The NSP block
calculates the best direction for the next saccade, if it is needed.

not, depending on its current knowledge of the object. The same
decision can be made regarding the direction of the saccade.

As shown later in Section IV, we noticed that more than 94%
of the test samples in the N-MNIST dataset could be recognized
correctly with only one saccade. Therefore, performing an extra
saccade for those samples represented a waste of time and power.
In this Section, we look at how we can predict the need for an
additional saccade and the best direction for it. We added another
block to Fig. 5, called NSP. This block closes the loop of our
system, as shown in Fig. 7.

Fig. 7 shows the inputs and output of the NSP block. One
of the inputs is Ŷi which is generated by processing one or
more saccades. The other three inputs to the NSP block indicate
which saccades have contributed to recognition. This informa-
tion is important to avoid suggesting an already performed sac-
cade again. An ‘OR’ logic can determine which memory block
contains non-zero pixels. Memory blocks which correspond to
the saccades that have not been executed contain all zero values.

The output of the NSP block determines the next saccade
direction. The next saccade direction can be one of these four
possibilities (see Fig. 7):

1) No extra saccade
2) SAC_DD
3) SAC_DU
4) SAC_H
The NSP block is implemented in a closed loop with the

SRNN to perform the following tasks in the order shown:
1) Receive events from the first saccade and make the first

guess about the object
2) Predict the best direction for the next saccade, if necessary
3) Command the pan-tilt unit to perform the next saccade
4) Combine information from all the saccades performed so

far to improve recognition accuracy
5) Continue from step 2)
Our experimental results showed that if the SRNN is not sure

about the recognition results, the NSP block should request extra
saccades. To quantify the amount of uncertainty in a prediction
vector, we used the definition of entropy in information theory

Hi = −
∑

j

ŷij log2(ŷij ) (2)

Fig. 8 illustrates the relationship between entropy and predic-
tion loss (see (1)) for the test samples in the N-MNIST dataset
for a specific SRNN. It shows that having a small entropy cannot
guarantee a correct recognition. Sometimes, it is possible that

Fig. 8. Relationship between entropy and prediction loss for the 10,000 test
samples of the N-MNIST dataset after presentation of all the three saccades. A
two layer SRNN has been used. A sample is classified as correctly recognized
when the position of the maximum value in its prediction vector correctly shows
the class of the presented digit. For each 0.1 interval in the x-axis, we indicate
the percent of test samples within this interval (see boxes on the top part of the
figure).

the SRNN can be very confident but the answer is wrong. Our
experiments show that in these cases, performing extra saccades
cannot help to find the correct answer and the only solution is
to improve the SRNN.6 High entropy in a prediction vector
means less certainty about the results and this is the time when
performing extra saccades might be helpful.7

The NSP block can decide to ask for an extra saccade when
the entropy is higher than a predefined threshold θH . This θH is a
user-defined parameter and depends on the cost of an additional
saccade. Obviously, choosing a smaller θH will result in per-
forming more saccades on average and increasing the average
recognition accuracy. In Section IV the relationship between θH ,
the average number of saccades and the recognition accuracy
for our experiments will be explained in detail.

If the NSP block asks for an extra saccade, another mechanism
will also be needed to define the best choice among different
saccade directions. For this purpose, we decided to extract some
statistics from the training set of the N-MNIST dataset.

Before performing any saccade, our system does not have
any information about the presented object. In this case, the
NSP block chooses the saccade that shows the best average
performance among all the three saccades during training. For
each of the possible next saccade directions, we have defined a
vector which is called “Confidence Coefficient Vector” (CCV).

To explain how to calculate the CCVs, suppose that the first
saccade is SAC1. The possible next saccades are SAC2 and
SAC3. The CCV for SAC2 and SAC3 is a 10-element vector

6In this work we do not intend to improve the capability of the SRNN with
novel techniques, rather we would like to use the available network as efficiently
as possible.

7For example, when the prediction vector is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] entropy
is zero, while it is maximum (3.32) when the prediction vector is [0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]. In the first case, the network is confident that the
presented sample is digit ‘0’ while in the second case, the network is not sure
about any of the classes.
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which is computed using the following equations:

A = {i|Li(SAC1, SAC2, Blank)

< Li(SAC1, Blank, SAC3)}
B = {i|Li(SAC1, Blank, SAC3)

< Li(SAC1, SAC2, Blank)}
CCV (SAC1 → SAC2) = mean(Ŷi(SAC1)) for all i ∈ A

CCV (SAC1 → SAC3) = mean(Ŷi(SAC1)) for all i ∈ B

where:
1) i is the sample number
2) Ŷi(SAC1) is the prediction vector for sample i after pre-

sentation of SAC1
3) CCV (SAC1 → SAC2) is the Confidence Coefficient

Vector when SAC2 is performed after SAC1
4) CCV (SAC1 → SAC3) is the Confidence Coefficient

Vector when SAC3 is performed after SAC1
5) Li(SAC1, SAC2, SAC3) is the prediction loss function

in (1) when SAC1, SAC2 and SAC3 is performed. If one
of the inputs is Blank, it means the prediction vector from
which the Li is calculated, did not have information about
that specific saccade.

In other words, the CCV is the average of the prediction
vectors for the training set samples with the minimum prediction
loss for a pre-defined next saccade. CCVs are calculated once,
after training the SRNN. This method can easily be extended
for more than three saccades.

The NSP block chooses the next saccade which has the most
similar CCV to the current prediction vector. In this way, we
hope that the upcoming saccade will be in a way that is best for
the existing guess of the SRNN. The similarity of two vectors
can be calculated by measuring their Euclidean distance. This
method, even though it is not a very precise method for choosing
the next saccade direction, is nevertheless quite simple.

The algorithm for the NSP block can be summarized as fol-
lows:

1) The first saccade is always the one that shows the best
average results for the training samples.

2) Once the entropy (see eq. (2)) of the prediction vector of
the first saccade has been calculated, it is compared with
θH to see whether an extra saccade is needed or not.

3) If an extra saccade is needed, the best saccade can be
found using the CCVs

4) Calculate the entropy again and compare it with θH to see
whether an extra third saccade is needed or not.

5) Continue from step 3)

C. Closed-Loop Recognition With a Neural Network

Next, we investigated the use of an ANN to predict which
saccade should be performed next. In this case, both feed for-
ward and feedback paths will be equipped with neural networks
which reduce the complexity of the system. Therefore we re-
placed the proposed algorithm by a neural network inside the
NSP block in Fig. 7. Note that using a Neural Network to predict

Fig. 9. Inputs and outputs of “Next Saccade Prediction Network” (NSPN).

the next saccade simplifies the implementation complexity (in
hardware) and scales well as datasets become more complex. An
algorithmic implementation is not so obvious to implement in
hardware and may need significant changes when complicating
the dataset.

Fig. 9 shows the inputs and outputs of the “Next Saccade Pre-
diction Network” (NSPN). Inputs and outputs of this network
are highly compatible with the previously presented NSP block.
The “Symbol prediction vector” is the output of the SRNN.
The other four inputs indicate the currently executed and avail-
able saccades. Previously, in the NSP block we only used three
inputs for providing this information, which was enough. How-
ever, during training, we noticed that the neural network can
learn better if the inputs are normalized. We wanted to train
the network to predict the best saccade direction for the initial
movement as well, so we decided to add an active input for
this case which is called “NO-Saccade”. The “NO-Saccade” in-
put is equal to the ‘NOR’ of the other three inputs (SAC_DD,
SAC_DU, SAC_H).

The NSPN outputs are four values which represent a “cost”
for each action. In the current implementation, the pan-tilt unit
will move in the direction with minimum predicted cost (Hard-
Threshold).8 For example, when the value of output “Cost of No
extra saccade” is the minimum, it means the NSPN is suggesting
not to do any further saccade, because the current information
about the object might be enough.

To train this network, we calculated a “cost” for each action
for all the possible combinations of inputs and used it for su-
pervised learning. To calculate this “cost”, first, we determined
the power and latency cost of an additional saccade. This value,
which we call “saccade cost” (or “mechanical cost”) SC , is
equivalent to the θH in the previously introduced NSP block.
When this value is high, the NSPN is more likely to suggest no
extra saccade for the next action. Here, we used the same SC for
all three saccades. Another critical parameter to determine the
cost of each action is how much this action will help to reduce
the “prediction loss” (see eq. (1)).

We define the “cost” of each action as the sum of the “predic-
tion loss” value (which is calculated after performing the action)
and the SC

Costi = SC + Li (3)

For the “No extra saccade”, SC value is zero. Otherwise, it
is a predefined constant value. From the four possible next ac-
tions, the system picks the one whose output predicts the mini-
mum cost. Our goal is that the system learns to reduce the total

8Another suggestion is not to restrict the DVS to move in the direction of one
of these three saccades, but to let it move in a mixture of directions based on
the cost of each saccade (Soft-Threshold).
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Fig. 10. Different experimental configurations for testing whether feeding
direction information can be helpful for learning.

number of saccades required to achieve the same recognition
performance.

IV. EXPERIMENTAL SETUPS AND IMPLEMENTATION RESULTS

Section IV-A describes the results of our experiments for
saccade-based recognition with the DVS moving in a prede-
fined direction. Later on, we describe the results for closed loop
recognition, when DVS movement was controlled by the NSP
block (Section IV-B) and the NSPN (Section IV-C). For all
Neural Network blocks we used Tensorflow python library on
GPUs for off-line training. The systems were then implemented
as real-time interactive platforms with the DVS on a pan-tilt
unit, while using MATLAB for all the processing.

A. Feed Forward Recognition With Saccades

This Section reports only the test results for the open loop
system in Fig. 5 when the DVS moves in a predefined direction
(i.e., no saccade prediction). For these experiments we used the
pre-recorded N-MNIST dataset [20].

Our goal here is to study under what condition it is rele-
vant to provide specific information about direction of provided
saccades to improve recognition. To do so, we designed the
experiments shown in Fig. 10. In experiments ‘1’ and ‘3’, in-
put hyper-frames are built by allocating saccades in the same
positions, while for experiments ‘2’ and ‘4’, saccade positions
are intentionally shuffled. Let us call these saccade positions
“channels”.

To see the effect of network size, three different network
sizes for the SRNN were implemented: a 3-Layer network

TABLE I
ACCURACY OF EXPERIMENTS IN FIG. 10 FOR DIFFERENT NETWORK SIZES,

USING ONLY POSITIVE EVENTS, AFTER ‘3’ EPOCHS

TABLE II
ACCURACY OF EXPERIMENTS IN FIG. 10 FOR DIFFERENT NETWORK SIZES,

USING ONLY POSITIVE EVENTS, AFTER ‘50’ EPOCHS

(3C5x5-128FC-10FC), a 2-Layer network (3C5x5-10FC) and
a 1-layer network (10FC).9

The spikes’ polarity bits reveal information about the move-
ment direction. To find out the effect of using spikes’ polar-
ity, we have done all the experiments with and without using
spikes’ polarity. Each experiment was carried out once using
only the positive polarity events and once using both polarity
events. When only the positive polarity was used, input size
was 28 × 28 × 3, while when using both polarities input size
was 28 × 28 × 3 × 2. In the second case, the network size was
therefore larger.

By comparing experiments ‘1’ and ‘2’ in Fig. 10 we wanted
to find out if it helps or not to feed all saccades through the
same channel. To have a fair comparison, we always used the
same input size, but the hyper-frame arrangements are different.
In this case, accuracy is calculated by averaging the prediction
vectors of all three saccades.

By comparing experiments ‘3’ and ‘4’ in Fig. 10 we wanted
to find out the effect of feeding explicit information about di-
rection when all three saccades are available. In experiment
‘3’ a hyper-frame contains only one arrangement of saccades
(SAC_DD/SAC_DU/SAC_H) while in experiment ‘4’ all six
possible shufflings are provided.

We also tested the speed of learning. We report the accuracy of
the networks after 3 training epochs and also after 50. It should
be noted that the number of training samples in each epoch in
the different experiments was not equal. While there are 60,000
training samples in the N-MNIST dataset, in experiments ‘1’
and ‘2’ we had 180,000 (60,000 × 3), in experiment ‘3’ we
had 60,000 and in experiment ‘4’ we had 360,000 (60,000 × 6)
hyper-frames in each epoch.

Tables I, II, III and IV show the results obtained in all the
Fig. 10 experiments. Based on the results we concluded the
following:

9FC indicates a Fully Connected layer while C indicates a Convolutional
layer. For example, 3C5x5 means a convolutional layer with three feature maps
and kernel size of 5 × 5 and 10FC means a fully connected layer of 10 neurons.
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TABLE III
ACCURACY OF EXPERIMENTS IN FIG. 10 FOR DIFFERENT NETWORK SIZES,

USING BOTH POSITIVE AND NEGATIVE EVENTS, AFTER ‘3’ EPOCHS

TABLE IV
ACCURACY OF EXPERIMENTS IN FIG. 10 FOR DIFFERENT NETWORK SIZES,

USING BOTH POSITIVE AND NEGATIVE EVENTS, AFTER ‘50’ EPOCHS

TABLE V
ACCURACY DIFFERENCE BETWEEN ‘50’ AND ‘3’ TRAINING EPOCHS, FOR

EXPERIMENTS ‘1’ AND ‘2’ IN FIG. 10, WHEN USING ONLY POSITIVE EVENTS

TABLE VI
DIFFERENCE OF ACCURACIES BETWEEN EXPERIMENTS ‘1’ AND ‘2’ AND

BETWEEN EXPERIMENTS ‘3’ AND ‘4’ IN FIG. 10 AFTER 50 EPOCHS WHEN

USING BOTH POLARITIES

1) Feeding explicit direction information accelerates learning.
This can be seen by comparing the accuracy of the networks
after 3 and 50 epochs. For experiments ‘1’ and ‘2’ which had
the same number of hyper-frames in each epoch, Table V shows
the difference between accuracies after 3 and 50 epochs. It can
be seen that by using explicit direction information (experiment
‘1’), the training process converges faster.

2) When network size is smaller, feeding explicit direction
information (experiments ‘1’ and ‘3’) improves recognition ac-
curacy. This indicates that larger networks with more learn-
ing capacity can extract saccade directions from each frame
themselves without the need of explicit information10. Table VI
shows the difference between accuracies of experiments ‘1’ and
‘2’ and between accuracies of experiments ‘3’ and ‘4’. It shows
that when network size is larger, the difference between accura-
cies drops.

3) Using polarity of spikes improves the recognition accuracy.
This can be because of multiple reasons. First, the network

10To investigate more about this fact, we have done another experiment. In
this test, we trained three neurons (each corresponds to one saccade direction)
to predict the direction of a saccade. The input of each neuron was a 28 × 28
pixel frame. We found out that this network could predict the saccade direction
(which the input frame is made of) with more than 98% accuracy without using
spikes polarity.

Fig. 11. Hardware setup for moving the DVS with a pan-tilt unit.

TABLE VII
ACCURACY OF TWO-LAYER(5C5X5-10FC) SRNN FOR THE DIFFERENT

COMBINATIONS OF INPUT SACCADES WITH N-MNIST DATASET (ONLY

POSITIVE POLARITY EVENTS ARE USED)

size is larger in this case (input size is twice, which results in
more synaptic connections for the input layer). Second, there is
additional information about the object in the negative polarity
spikes, as the edges producing positive events are not identical
to the edges producing negative events. The third reason is that
using both polarities at the same time contains information about
the movement direction.

4) In experiments ‘1’ and ‘2’, the final prediction vector for
each sample is the average of the prediction vectors for all three
saccades. In experiments ‘3’ and ‘4’, the neural network receives
all the saccades and mixes them. Experimental results show that,
in general, averaging the prediction vectors for all three saccades
is not always the best strategy and a neural network itself may
find a more optimized way to mix the prediction vectors.

B. Using Closed-Loop Next Saccade Prediction Algorithmic
Block

Fig. 11 shows the hardware setup with the DVS mounted on
a mechanical pan-tilt unit so that it can be moved in a desired
direction. We have used this setup for a real-time demo [33],
however, for reporting the next results, we have used the N-
MNIST dataset, so that interested readers can reproduce them.

For the closed loop recognition experiments, we selected a
2-layer SRNN (5C5x5-10FC) with the configuration of exper-
iment ‘3’ in Fig. 10 and we used only positive polarity events.
Table VII shows the average accuracies of the SRNN for each
saccade combination of the N-MNIST dataset. As can be seen,
adding an extra saccade always increases accuracy.

From Table VII, it can be seen that SAC_H has the best aver-
age accuracy among all three saccades of the training samples.
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Fig. 12. Confidence coefficient vectors (CCVs) of SAC_H→SAC_DD and
SAC_H→SAC_DU.

Therefore, the NSP block always choses SAC_H as the initial
saccade. The next action can be “No extra saccade”, “SAC_DD”
or “SAC_DU”.

If the entropy of the prediction vector is higher than θH ,
the NSP block should choose the “SAC_DD” or “SAC_DU”
as the second saccade. In Section III-B we explained the
method to extract CCVs. The confidence vector for SAC_DD
after SAC_H, for example, can be calculated by averag-
ing the prediction vectors11 of those training samples that
showed the best results when SAC_DD was performed after
SAC_H. Fig. 12 shows the CCVs of SAC_H→SAC_DD and
SAC_H→SAC_DU. These vectors show which saccades are
better for which classes. In Fig. 12, for example, it can be seen
that for digit ‘5’ SAC_H→SAC_DD has more confidence than
SAC_H→SAC_DU.

Fig. 13 shows the results of the analytical approach to sac-
cade prediction using different θH . As expected (Fig. 13 A and
B) the average number of saccades and the accuracy decrease
by increasing θH . Fig. 13(C) shows the relationship between
accuracy and the average number of saccades for the different
θH . For example, if θH is set at ‘0.09’ the average number of
saccades will be ‘1.54’, while accuracies for training and testing
samples will be 99.24% and 97.57%, respectively. By looking
at Table VII, we notice that this is almost equal to the result of
the open loop recognition with three saccades per sample. This
means that by using the NSP block, it is possible to reach the
highest possible accuracy of the SRNN while only performing
half of the number of saccades on average.

C. Using Closed-Loop Next Saccade Prediction Neural
Network

This Section shows the results obtained with the closed loop
network configuration with a neural network in the feedback
path. In this experiment, we used the same SRNN which was

11These prediction vectors are calculated only after presenting SAC_H.

Fig. 13. Results of analytical approach to saccade prediction with different
entropy thresholds (θH ). Green marks show the accuracy and average number
of saccades when θH is ‘0.09’. For this θH accuracy is close to the highest
accuracy of our SRNN, while instead of using all 3 saccades per sample, only
1.54 saccades in average are used.

used in Section IV-B and we only replaced the NSP block by a
neural network (which we call “Next Saccade Prediction Net-
work” NSPN). This network is shown in Fig. 9 and was trained
using the training samples of the N-MNIST dataset12. We used a
small but fully connected 4-layer network (50FC-50FC-50FC-
4FC) for the NSPN.

The NSPN was trained with different SC . Fig. 14 shows the
network accuracy versus the average number of saccades for
different SC . As the SC is decreased, the network elicits more
saccades and accuracy increases. With a SC of 0.002 (when
the average prediction loss is 0.05 for the training samples), for
example, the system needs to perform on average 1.71 saccades
per sample to achieve an accuracy of 97.6% for the testing data
and 99.2% for the training data. These results are very similar
to the results of the NSP block in Section IV-B. This experiment
shows that if the SC is adjusted to a reasonable value (like

12The NSPN is using the output of the SRNN. Therefore, the NSPN will be
trained after the SRNN.
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Fig. 14. Network accuracy for N-MNIST dataset and average number of
saccades per sample for different SC . The network was trained with 50 epochs
for each SC , and training was repeated 10 times. Bars indicate the spread of
the average number of saccades. The reason that sometimes the plots are not
monotonic is because training neural network is a stochastic process and starts
from different random states. The average trend is similar to what is expected.
Green marks show the accuracy and average number of saccades when SC is
0.002, for both training and test samples. In this case, accuracy is close to the
highest accuracy of SRNN while rather than using 3 saccades per sample, 1.71
saccades are used in average.

Fig. 15. The NSPN outputs for the initial saccade.

0.002), the SRNN can maintain its accuracy (see Table VII),
requiring on average around half of the saccades (1.71 saccades
rather than three saccades).

Next we study the features of the NSPN more carefully and
provide more results. For the following experiments a SC of
0.002 is used.

As seen in Fig. 15, the NSPN always chooses SAC_H as the
initial saccade. Table VII shows that SAC_H is the best saccade,
on average, for both training and testing samples.

Table VIII shows the NSPN actions after the first saccade. For
more than 41% of the samples one single saccade was sufficient,
and the error rate for this category was low (0.41%). This means
the saccade prediction network correctly determined the sam-
ples that were easy to recognize from the first saccade. For the
other samples, the network suggested an extra saccade. Since

TABLE VIII
SECOND SACCADE CHOICE FROM THE NSPN FOR TESTING SAMPLES

‘SAC_N’ means no extra saccade was chosen. Error rate is computed
after performing the second saccade (except for ‘SAC_N’).

TABLE IX
SACCADE CHOICE STATISTICS FROM THE SACCADE PREDICTION NETWORK FOR

TESTING SAMPLES

‘All SAC+’ indicates samples that needed more than three saccades.

the initial saccade was SAC_H, the NSPN did not recommend
SAC_H again for the second saccade, as expected.

After the second saccade, the network may decide that a
third saccade is required for some samples. Table IX shows the
percentage of test samples for each combination of saccades
after all necessary saccades have been performed. For more
than 41% of the samples, the system only asked for one saccade
and recognized them with 99.59% accuracy. This means that
recognition of these samples was an easy task for the SRNN.

For around 52% of the samples (15.51 + 36.82), the NSPN
asked for one additional saccade. These samples have been rec-
ognized with 98.44% accuracy while the same samples have
been recognized with 94.87% accuracy before performing the
second saccade.

For around 5.12% of the samples, the NSPN asked for two
additional saccades. These samples have been recognized with
76.88% accuracy while the same samples have been recognized
with only 41.93% accuracy after the first saccade. These samples
were hard to recognize and, as expected, the NSPN requested
three saccades for them.

When recognition loss is high, the NSPN sometimes asks to
perform more than three saccades, repeating one of the previous
saccades. In Table IX, for 0.75% of the samples, the NSPN
requested more than three saccades. The 31.81% error rate in this
group of samples indicates that these samples were very difficult
to recognize. In real scenarios (i.e., not a pre-recorded dataset),
repeating a saccade may provide additional information.

V. CONCLUSIONS AND DISCUSSIONS

Our aim in this paper was to answer the question of how to
perform saccades with a DVS to improve accuracy, speed and
power consumption in a robotic platform. The first step was to
mount a DVS on a motorized pan-tilt unit to perform object
recognition with saccadic movements. In this step, the objective
was to determine the effect of saccade direction, velocity and
distance on the information captured by the DVS.
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Our experimental results show that to achieve better object
recognition the internal parameters of the recognition system
should ideally match the saccade velocity while the distance of
movement should be sufficiently short. The best saccade direc-
tion depends on the shape of the object. The first saccade can
be random or move in the direction that, on average, is optimal
for all cases. In our experiment, most of the objects could be
recognized with the first saccade, although in some cases the
system needed to perform an extra saccade to gain enough in-
formation for recognition. A proposed analytical approach and
later on, an Artificial Neural Network, were used to predict the
need for an extra saccade and also predict the best direction for
the next saccade based on the information obtained from previ-
ous saccades. The schemes were shown to halve the number of
saccades required while preserving the accuracy of the network.

When solving specific problems with a neural network, there
is always the open question of how to choose the number of
layers and the number of neurons per layers, or whether to use
a fully connected topology or a convolution-like arrangement.
In this paper we had to face this issue with two sub neural net-
works, the SRNN and the NSPN. During our explorations we
tested many possible topologies, although we did not exhaus-
tively try all possibilities. Consequently, we cannot claim that
the proposed topologies are the optimum for our problem. Our
strategy was always to look for the smallest possible networks
that provided reasonable performance on the N-MNIST dataset.
On the other hand, we were intentionally not looking for the
optimum topology, as we wanted to see some improvements
when playing the number of saccades. For the SRNN we re-
ported and compared three different topologies, a 3-layer one,
a 2-layer one, and a 1-layer one. For the first two we decided to
use for the first layer a convolution processing as this, in general,
helps to improve accuracy while having fewer parameters. For
the NSPN, we observed that a slightly deeper network with 4
fully-connected layers gave good results while yielding a rela-
tively small network. We observed that if we made the network
deeper or wider, it would result in overfitting and performance
was not improving.

Regarding datasets, in this paper we focused on the N-MNIST
dataset for two reasons. The first one, because it is recorded with
a spiking retina sensor, the DVS, providing a natural spiking in-
put for our setup. The second one, because it is starting to be
used by other researchers world-wide, thus providing a good ref-
erence for further comparisons. Definitely, the choices we made
with respect to network topologies and parameters are somehow
tuned to this specific problem of N-MNIST digit recognition.
However, extending the methodology for other more complex
datasets should not be too difficult. Depending on the complex-
ity of the dataset, maybe using more saccades helps in general to
retrieve more information. Additionally, the general experience
is that for more complex datasets, deeper and wider neural net-
works are required. On the other hand, our intuition tells us that
using the NSPN instead of the NSP could help when changing
to more complex datasets, because adapting an algorithm might
be more difficult than training a neural network.

In this paper we have focused on analyzing the impact
of reducing the number of saccades when performing object

recognition with a DVS camera, and using the N-MNIST dataset
as benchmark. It is always interesting to compare against other
methods (where saccades don’t play any role), and thus have
some comparison with other techniques. It should be noticed,
however, that during our work, our goal was not to obtain an op-
timum recognition, and thus optimize the architecture for that.
Our goal was always to study under which conditions one could
reduce the number of saccades. To compare with other methods,
let us take as reference for this work the result shown in Table IV
for the 3-layer case (3C5x5-128FC-10FC) and when presenting
all 3 saccades. In this case the accuracy on the N-MNIST test
set was 98.8% (or 1.2% error rate). Therefore, let us compare
with respect to other works that use 3 layers and do not apply
any pre-processing to the dataset (like distortions, expansion of
the dataset, etc). Focusing first on other works for spiking neural
networks, we can find the following in the literature. Recently,
Mostafa [34] reported a 3-layer FC spiking network trained
directly in the spiking domain by a clever adaptation of back-
propagation, and where each neuron is allowed to fire just one
spike (which would be higly beneficial if implemented in hard-
ware). He used the original MNIST dataset, properly adapted
to a 1-spike-per-neuron representation. He reports an error rate
of 2.45%. Also recently, Wu et al. [35] have reported another
smart adaptation of the backpropagation training technique for
the spiking spatio-temporal domain, and they report results for
both, the MNIST (converted into spikes through Bernoulli sam-
pling from intensity to spike rate) and N-MNIST datasets. Using
a 3-layer architecture, they report for the MNIST case an error
rate of 1.11% and for the N-MNIST case 1.22%. In another re-
cent work, Lee et al. [36] also propose a spiking domain version
of backpropagation, reporting an error rate of 1.34% for the N-
MNIST dataset when using a FC 3-layer MLP. Stromatias et al.
[37] obtained 2.23% on the N-MNIST dataset for a 2-layer sys-
tem, where the first layer was an untrained convolutional layer
of spiking Gabor filters, and the second layer was a FC classifier
trained from the spiking outputs of the first layer. For the case of
non-spiking neural networks (typically referred to as ANNs - Ar-
tificial Neural Networks) benchmarking MNIST on similar ar-
chitectures, we can mention the original work of LeCun [4] using
the Lenet4 convolutional neural network with 1.1% error rate, or
the 3-layer FC network by Hinton [38] with 1.54% error rate. A
full list of reported results on the MNIST (but using any architec-
ture and technique, except spiking ones) is maintained at [39].
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