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Abstract—We present results from a new approach to learn-
ing and plasticity in neuromorphic hardware systems: to enable
flexibility in implementable learning mechanisms while keeping
high efficiency associated with neuromorphic implementations,
we combine a general-purpose processor with full-custom analog
elements. This processor is operating in parallel with a fully
parallel neuromorphic system consisting of an array of synapses
connected to analog, continuous time neuron circuits. Novel analog
correlation sensor circuits process spike events for each synapse in
parallel and in real-time. The processor uses this pre-processing to
compute new weights possibly using additional information follow-
ing its program. Therefore, to a certain extent, learning rules can
be defined in software giving a large degree of flexibility. Synapses
realize correlation detection geared towards Spike-Timing Depen-
dent Plasticity (STDP) as central computational primitive in the
analog domain. Operating at a speed-up factor of 1000 compared
to biological time-scale, we measure time-constants from tens to
hundreds of micro-seconds. We analyze variability across multiple
chips and demonstrate learning using a multiplicative STDP rule.
We conclude that the presented approach will enable flexible and
efficient learning as a platform for neuroscientific research and
technological applications.

Index Terms—Digital signal processing, learning, neuromorphic
hardware, spike-time dependent plasticity, synapse circuit.

I. INTRODUCTION

IN THE modern landscape of information technology ma-
chine learning is gaining more and more in importance.

Major companies use artificial intelligence for their products
[1]. This development is driven by advancements in methods
such as deep learning [2], [3] that were originally inspired by
concepts from neuroscience. Together with the availability of
substantial computational performance, these methods enable
complex machine learning applications, such as image [4] or
speech recognition [5]. Specialized hardware can lower the cost
of these methods in terms of energy, time, and therefore money
[6], enabling either a scaling to larger problem sizes or the use
in new devices outside of data centers.
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On the other hand, using simulations of neural networks as
a major tool for research in neuroscience depends on efficient
simulators for large-scale networks. This opens the opportunity
to build specialized hardware systems that serve as efficient
platforms for research as well as technology. Multiple systems
with this goal have been proposed, e.g., [7]–[10].

While the problem can be approached in different ways, the
concept of analog neuromorphic hardware [11], [12] promises
especially area and energy efficient solutions as demonstrated
by, e.g., [13]–[15]. These systems use the concept of a physical
model to emulate neural networks: the temporal development
of the membrane voltages of the neurons is emulated by custom
analog circuits, representing the neuron and synapses of the em-
ulated network. However, neurons and synapses built this way
are limited to at best a family of models that are compatible with
their physical realization. On the other end of the spectrum,
software allows the simulation of arbitrary models by solving
numerical equations.

Especially, there exists a large set of different models for
learning and plasticity, so that a flexible hardware implementa-
tion is desirable. This is true for technical applications where
one network is often trained with different methods for pre-
training and fine-tuning [3], as well as biology where different
plasticity rules are found depending on cell type and brain
region [16], [17]. But besides flexibility, efficiency is a key
concern in both domains. Large-scale simulations have been
demonstrated in the past [18]–[20], but, especially with plas-
ticity, simulation time quickly becomes a limiting factor even
on medium-sized networks [21]. Similarly, in the technical
domain, significant effort is put into accelerating learning in-
cluding the use of Graphics Processing Units (GPUs) and Field
Programmable Gate Arrays (FPGAs) [6], [22].

For this study, we follow a novel hybrid approach to learning
as a trade-off between efficiency and flexibility: we use full-
custom analog circuits for real-time and parallel processing of
spikes in the emulated synapses. These circuits serve as sensors
for an embedded general-purpose processor that implements
the learning rule in software. This way, we offer a solution
that allows biologically realistic plasticity while emulating net-
works a thousand times faster than in biology. Using physical
models for core components, this speed-up is not affected by
network size or activity. In this study we present results from
a scaled-down prototype that demonstrates for the first time
plasticity in such a hybrid system using analog components
together with an embedded Plasticity Processing Unit (PPU).

The study starts with a description of analog circuits and the
architecture of the PPU in Section II. After that, we introduce
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Fig. 1. Photograph of die and test system. The active die area is 1.7×
2.2 mm2. The host computer communicates via USB with an FPGA board.
The FPGA controls Digital to Analog Converters (DACs) on the board for bias
generation and communicates with the chip through a Serializer/Deserializer
(SerDes) interface.

the theoretical background and methods in Section III. Then,
results are presented for simulations in Section IV and for
experiments in Section V. Finally, Section VI discusses results,
followed by conclusion and outlook in Sections VII and VIII.

II. DESCRIPTION OF CIRCUITS

The circuits presented in this paper are part of a proto-
type ASIC for the next generation of a large Neuromorphic
Hardware system [7]. All results have been measured using
the setup shown in Fig. 1. The individual components of the
chip and their functional relations are depicted in Fig. 2. The
central elements are an array of 2048 synapses and 64 neuron-
compartment circuits, which implement the analog, continuous-
time emulation of their biological counterparts. Similar to the
predecessor system described in [7] the presented chip operates
faster than wall-clock time. To simplify the calibration of the
analog elements to the model equations, the acceleration factor
is fixed at 103. Therefore, one second in the model time scale is
emulated in one millisecond by the presented system.

The focus of this paper is the plasticity sub-system, which
observes the activity of the emulated neural network and mod-
ifies its parameters in reaction to these observations depending
on the configured plasticity rule. The neuron circuits are not
covered in this publication.

The plasticity sub-system is a mixed-signal, highly-parallel
control loop simultaneously monitoring the temporal corre-
lation between all pre- and post-synaptic firing times. The
plasticity rule itself is implemented as software running on an
embedded micro-processor, the PPU. It evaluates the signals
from the analog correlation sensors located within the synapses
and computes weight updates. Besides the synapse, it can

Fig. 2. Block diagram of the presented system. The prototype ASIC is shown
to the left. A photograph of the system can be seen in Fig. 1. “CD” stands for
“correlation data” and “PSC” for “post-synaptic current.”

observe firing rates of neurons and modify parameters of the
emulated neurons as well as the topology of the network.
Connection to the outside world allows the integration of third
factors, for example a reward signal [23].

The parallel analog implementation of the correlation sensors
in every synapse allows the plasticity sub-system to handle the
high rate of simultaneous events1 The circuit maintains a local
eligibility trace that depends on the relative timing of pre- and
post-synaptic firing.

A 128 channel single-slope Analog to Digital Converter
(ADC)2 digitizes the stored trace information for the PPU.

A. Synapse

1) Basic Operation Principles: In Fig. 2 the synapses are
arranged in a two-dimensional array between the PPU and
the neuron compartment circuits. Pre-synaptic input enters the
synapse array at the left edge. For each row, a set of signal
buffers transmit the pre-synaptic pulses to all synapses in the
row. The post-synaptic side of the synapses, i.e., the equivalent
of the dendritic membrane of the target neuron, is formed by
wires running vertically through each column of synapses.

At each intersection between pre- and post-synaptic wires,
a synapse is located. To avoid that all neuron compartments
share the same set of pre-synaptic inputs, each pre-synaptic
input line transmits—in a time-multiplexed fashion—the pre-
synaptic signals of up to 64 different pre-synaptic neurons.
Each synapse stores a pre-synaptic address that determines the
pre-synaptic neuron it responds to.

Fig. 3 shows a block diagram of the synapse circuit. The main
functional blocks are the address comparator, the DAC and
the correlation sensor. Each of these circuits has its associated
memory block.

The address comparator receives a 6 bit address and a pre-
synaptic enable signal from the periphery of the synapse array

1Due to the acceleration factor of 103 every component has to handle a
thousandfold higher data rate as a comparable unaccelerated system operating
at biological time scale.

2The initial design of the Analog to Digital Converter (ADC) was done by
Sabanci University, Turkey.
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Fig. 3. Block diagram of the synapse circuit.

as well as a locally stored 6 bit neuron number. If the address
matches the programmed neuron number, the comparator cir-
cuit generates a pre-synaptic enable signal local to the synapse
(pre), which is subsequently used in the DAC and correlation
sensor circuits.

Each time the DAC circuit receives a pre signal, it generates
a current pulse. The height of this pulse is proportional to the
stored weight, while the pulse width is typically 4 ns. This
matches the maximum pre-synaptic input rate of the whole
synapse row which is limited to 125 MHz. The remaining 4 ns
are necessary to change the pre-synaptic address. The current
pulse can be shortened below the 4 ns maximum pulse length
to emulate short-term synaptic plasticity [24].

Each neuron compartment has two inputs, labeled A and B
in Fig. 3. Usually, the neuron compartment uses A as excitatory
and B as inhibitory input. Each row of synapses is statically
switched to either input A or B, meaning that all pre-synaptic
neurons connected to this row act either as excitatory or
inhibitory inputs to their target neurons. Due to the address
width of 4 bit the maximum number of different pre-synaptic
neurons is 64.

The remaining block shown in Fig. 3 is the correlation sensor,
which has a 4 bit static memory associated with it. Its task
is the measurement of the time difference between pre- and
post-synaptic spikes. To determine the time of the pre-synaptic
spike it is connected to the pre signal. The post-synaptic spike-
time is determined by a dedicated signaling line running from
each neuron compartment vertically through the synapse array
to connect to all synapses projecting to inputs A or B of the
compartment. This signal, which is called post subsequently,
has a similar pulse length as the pre signal.

The correlation sensor measures the causal (pre before post)
and anti-causal (post before pre) time differences and stores
them as exponentially weighted sums within the synapse cir-
cuit. In comparison to earlier implementations [14] by the
authors the circuit has been improved in two main aspects:
first, only one instance of the time measurement circuit is
now re-used for causal as well as anti-causal time difference
measurements, resulting in strongly reduced mismatch between
the causal and anti-causal branches of the activation function.
Second, the time-constant of the exponential is now truly
adjustable over more than two orders of magnitude to fit most
biological models of spike-time dependent plasticity [25].

Due to the implementation in a much smaller process feature
size, 65 nm instead of 180 nm, four static memory bits could
be allocated for additional calibration of transistor variations

TABLE I
KEY PARAMETERS OF THE SYNAPSE CIRCUIT

Fig. 4. Block diagram of the correlation sensor circuit.

within each synapse. Table I summarizes key parameters of the
synapse implementation.

2) Correlation Sensor Circuit: The structure of the corre-
lation sensor is shown in Fig. 4. The input stage receives
pre and post signals and uses them to generate the internal
timing. A time to voltage conversion circuit generates a voltage
representing the elapsed time between the most recent pre and
post events. This voltage is scaled by the storage gain parameter
and the result is used as argument to an exponential function.
This exponentially weighted time difference is added to one of
two storage circuits. The selection of the storage circuit depends
whether the last input event seen has been a pre or post signal.
Pre before post is stored in the causal storage, post before pre
in the anti-causal one.

To counteract the effects of fixed-pattern noise created by
transistor variations, the time to voltage as well as the storage
gain stages have two digital calibration inputs each. The four
calibration bits are stored locally in each synapse. The time
constant of the time to voltage conversion can be set for one
row of synapses by a control voltage. The same applies to the
storage gain stage, where the storage gain control signal adjusts
one row of synapses. In the prototype chip the gain and time
constant input signals of each row are shorted and connected to
two external input pins.

The values stored in the causal and the anti-causal storage
cells can be read out simultaneously for all synapses in a row.
A parallel single-slope ADC at the top of the synapse array
converts the analog values read out from the storage cells into
digital words for the PPU (see Fig. 2).

Fig. 5 depicts the correlation sensor circuit. To enhance
the readability of the circuit diagram, the individual blocks of
Fig. 4 are not marked. See the caption for assignments of the
components to the different functional blocks.

As stated above, the correlation sensor monitors the tem-
poral correlation between pre and post synaptic firing events.
This is accomplished by charging the capacitors Ccausal and
Canti−causal with a constant current. The selection of the capac-
itor depends on the temporal order of the pre and post signals.
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Fig. 5. Simplified circuit diagram of the correlation sensor. All supply con-
nections are 1.2 V if not stated otherwise. A thick gate symbol depicts a
thick gate-oxide transistor capable of 2.5 V operation. The assignment of
the components to the functional blocks depicted in Fig. 4 is as follows:
timing control—M1-2, I1-6, G1-2, δ1; time to voltage conversion—M3-10,
Ccausal , Canti−causal; exponential—M13; storage gain—M11-12, Ctransfer ;
storage—M14-17; storage output buffer—M18-19, Cstorage .

Fig. 6. Exemplary timing of the correlation sensor circuit. The timescale is of
the order of the correlation sensor time constant τc .

As can be seen in Fig. 6, the arrival of a pre pulse starts the
charging of Ccausal after discharging it quickly to its initial
value, while Canti−causal starts charging after a post pulse. Two
or more pre or post pulses in succession would only restart
the discharge/charge process without changing the capacitor.
Therefore, the correlation sensor only supports plasticity rules
based on nearest neighbor schemes [26].

To determine the temporal order, the input stage of the corre-
lation sensor utilizes a D-latch formed by I1 and I2. Each time
a post follows a pre or vice-versa, the D-latch gets toggled by
M1 or M2, respectively. To orchestrate the precise discharging
and switching of capacitors within the limited area of the
synapse, the circuit makes use of the delays of the individual
components. In Fig. 8 a subset of the relevant signals is shown.
The inverters I1 and I2, which form the D-latch, have a very
low drive strength. This leads to a significant delay between the
internal node being discharged by an external pre or post pulse,
and the respective inverted internal node (storeAntiCausal in
case of a pre pulse or storeCausal after a post signal).

This time difference is used by G2 to produce a short pulse at
the gate of M12 to precharge Ctransfer (see below). The current
charging the capacitors Ccausal and Canti−causal, and therefore
controlling the time constant of the correlation sensor, is gener-
ated by an adjustable current sink M4. The gate voltage of M4
is shared by all synapses of a row. To reduce the fixed pattern
noise within a synapse row, the length of M4 can be digitally
controlled in four steps by approximately 20%. This allows to

Fig. 7. Results of a Monte-Carlo simulation showing the effect of the two-bit
digital time-constant calibration built into each synapse. The two histograms
show the distribution of the gradient of the charging curve of Ccausal (dashed
trace in Fig. 9) over 1000 MC-runs each. The uncalibrated case is shown in
blue, the calibrated in red.

Fig. 8. Timing of the correlation sensor circuit: zoom-in on the time axis
around the post event shown in Fig. 6. The following abbreviations are used
for the capacitor labels: Cc(ausal) , Ca(nti−causal) , and Ct(ransfer) .

reduce the fixed pattern noise by selecting for each synapse
the value which minimizes synapse to synapse variation within
the row. Fig. 7 shows the results of a Monte-Carlo simulation
demonstrating the effectiveness of this approach.

In the full-size neural network chip each row will have an
individual bias generation for M4, which allows different time
constants in different rows, as well as the calibration of the
row mean of the time-constant. The presented prototype chip
directly connects all time-constant inputs to an external input
pin which is driven by the test controller (see Fig. 2).

The state of the D-latch determines whether Ccausal or
Canti−causal is charged by M4 through the inverter chains
formed by I3 to I6 and M7 as well as M10.

The subsequent discussion is based on the temporal relations
depicted in Fig. 8. As can be seen in Fig. 6, the charging process
of Ccausal or Canti−causal starts after it has been discharged to
the ramp reset voltage by the pre or post event. In the case
shown in Fig. 8, Canti−causal is discharged. The initial discharge
is initated in two steps: first, after arrival of a post pulse,
Canti−causal is connected to M3 by enabling M5. The enabling
of M3 is delayed to make sure the other capacitor, Ccausal is



132 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 1, FEBRUARY 2017

disconnected from M3 by M8. This is essential since at this
moment Ccausal holds the last causal time-difference measure-
ment result which should not be altered by the discharge of
Canti−causal. At the beginning of the post pulse the voltage on
Ccausal is as follows:

V begin post
Ccausal

= Vramp reset −
IM4 · (tpost − tpre)

Ccausal
. (1)

After a pre pulse a similar equation holds for the voltage on
Canti−causal

V begin pre
Canti−causal

= Vramp reset −
IM4 · (tpre − tpost)

Canti−causal
. (2)

The intial discharge process finishes within the time-interval
set by the length of the post pulse. After post becomes inactive,
M3 is deactivated and the charging of Canti−causal by the
current flowing through M7 and M4 starts. Simultaneously,
the transfer of the causal result from Ccausal to the storage
capacitor Cstorage causal is initiated. In Fig. 5 only one of the
two identical storage circuits is drawn. Depending on the state
of the storeCausal and storeAntiCausal signals, M14 or M15
connect one of the storage circuits to M13. The timing of
these signals assures that M14 and M15 are never activated
simultaneously.

The charge transfer starts by enabling M9, thereby connect-
ing Ccausal to Ctransfer. To avoid any crosstalk from the previ-
ous transfer process, M12 is always activated prior to M9 and
charges Ctransfer to Vdd. After M9 is enabled, charge charing
between Ccausal and Ctransfer starts. The charging process will
be completed before post becomes inactive, but Ccausal and
Ctransfer will stay connected until the end of the storage cycle.

After the post pulse, before the charging of Ctransfer and
Ccausal starts, the voltage on Ctransfer can be calculated as
follows:

V end post
Ctransfer

=
V begin post
Ccausal

Ccausal + V begin post
Ctransfer

Ctransfer

Ctransfer + Ccasual
. (3)

Since Ctransfer has been charged by M12 at the very beginning
of the post pulse, V begin post

Ctransfer
is zero and (3) simplifies to

V end post
Ctransfer

=
V begin post
Ccausal

Ccausal

Ctransfer + Ccasual
. (4)

The capacitance of Ctransfer is adjustable in four steps to
allow the reduction of synapse-to-synapse variations.

Fig. 9 shows a simulation of the charging process of Ccausal

and Ctransfer by M11. After the post pulse, as long as the
storeCausal signal is active, Ccausal and Ctransfer are connected
by M9 and their voltages are equal. The charging current is set
by the gate voltage of M11. In the presented prototype chip, this
voltage is directly connected to an analog input pin and set by
the test controller (see Fig. 2).

Before the time difference is stored for a causal or anti-causal
measurement, its exponential value has to be calculated. This
is accomplished by M13. While M13 is connected to one of
the storage capacitors Cstorage by M14 or M15, it discharges
the respective storage capacitor. The amount of charge it can

Fig. 9. Simulation showing the charging of Ctransfer (solid trace) after a post
pulse (at t = 40 μs). The dashed trace shows the voltage on Ccausal and the
dashed-dotted trace the voltage on Canti−causal . During the charging process,
the appropriate Cstorage capacitor is discharged.

remove from Cstorage depends on its gate voltage, which fol-
lows the time course shown in Fig. 9.

The purpose of the charge sharing between Ccausal and
Ctransfer is the reduction of the voltage representing the mea-
sured time difference below the threshold voltage of M13. This
ensures the operation of M13 in weak inversion. Therefore, we
can use the sub-threshold model to calculate the current through
M13 at any time t

IDS(t) =
W

L
ID0 exp

(
VGS(t)

nkT/q

)
(5)

VGS(t) = VCtransfer
(t) (6)

IDS(t) = ICstorage
(t). (7)

Since VCtransfer
(t) changes after Ctransfer has been discharged

to its initial voltage during the post pulse, V end post
Ctransfer

, (5) has
to be integrated over the time interval from the post pulse, tp,
to te, the point in time when VCtransfer

(t) has been charged
completely, i.e., VCtransfer

(t) is close to zero

ΔQCstorage
=

te∫
tp

ICstorage
(t)dt. (8)

To solve this integral a simple linear model is used for the
charging of Ctransfer from V end post

Ctransfer
to zero

V end post
Ctransfer

= VCtransfer
(t), t = tp (9)

VCtransfer
(t) = V end post

Ctransfer
·
(
1− t− tp

te − tp

)
, tp ≤ t ≤ te. (10)

The time difference te − tp can be calculated from the cur-
rent through M11 and the involved capacitances as follows:

te − tp =
V end post
Ctransfer

· (Ctransfer + Ccasual)

IM11
. (11)
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Solving (8) gives

ΔQCstorage
=

W

L

nkT

q
ID0

te − tp
VCtransfer

(tp)
exp

(
VCtransfer

(tp)

nkT/q
−1

)
.

(12)

Using the result of (12) the change in the voltage stored on
Cstorage can be calculated

ΔVCstorage
=

ΔQCstorage

Cstorage
. (13)

For typical values of the transfer gain, which controls te − tp by
setting IDS of M11, the deviation between (12) and the ideal
exponential activation function is below 1%. Also, due to the
exponential decay of ICstorage

(t), only the very first part of the
charging of Ctransfer contributes to ΔVCstorage

significantly. If
the discharge of Ctransfer is interrupted by an arriving pre pulse,
the resulting error is minimal.

No control signal is needed to end the charging of Ctransfer,
avoiding any distortions caused by clock-feedthrough. The
current ICstorage

(t) is reduced to the minimum sub-threshold
current without negative gate overdrive as VGSM13

approaches
0 V. Since M13 is a thick oxide transistor with a long gate, this
current is below 1 nA. Measured total leakage on Cstorage was
1.7 mV/ms at 50◦ and only 0.14 mV/ms at room temperature
(approx. 25◦). The usable dynamic range of VCstorage

is 1.3 V.
M13 together with M14 or M15, respectively, also protect the

thin oxide transistors used in the time difference measurement
circuits from the higher supply voltage of the storage circuits.
To reach sufficient storage times the utilization of thick oxide
transistors is necessary to avoid gate tunneling currents. The
gate voltage of M14 and M15 comes from the thin oxide supply
voltage, thereby limiting their source voltages to save values.

As a second function M14 and M15 act as cascodes to limit
the voltage swing at the drain of M13, thereby reducing the
variation of ΔVCstorage

as a function of the stored voltage on
Cstorage.

The storage circuits themselves use MIM-capacitors as stor-
age cells, sitting on top of the each synapse, whereas Ccausal,
Canti−causal, andCtransfer are implemented as MOS-capacitors.
Ctransfer uses several individual transistors to accomplish the
digital calibration feature.

Each storage circuit uses a source follower (M18) for the
readout of the stored correlation results. A pass-transistor
(M19) connects the source follower to the correlation readout
line if the readback enable signal of the row is active. There are
two readout lines per synaptic column, thereby causal and anti-
causal data of every synapse in one row can be simultaneously
connected to the inputs of the correlation ADC at the top of the
synapse array.

Each storage capacitor of the synapse array can be cleared
individually by activating a causal or anti-causal column cor-
relation reset signal together with a row-wise correlation reset
enable. During network operation the PPU generates a pattern
on the correlation reset inputs, depending on the results of the
plasticity calculations, before it applies the column reset enable.
The reset voltage can be adjusted, as can the bias current of the
readback source followers, to adjust the readback voltage range
to the input range of the correlation ADCs.

Fig. 10. The PPU is part of the plasticity sub-system and computes weight
updates. It consists of a general-purpose part implementing the Power ISA
and a special-function unit to accelerate computations using Single Instruction
Multiple Data (SIMD) operations. The processor has access to 16 kiB of on-
chip memory and uses a 4 kiB direct-mapped instruction cache. The special-
function unit consists of a shared control unit for multiple datapath slices
operating on 128 bit vectors. See Fig. 11 for details of the vector unit.

B. Plasticity Processing Unit

Fig. 10 shows an overview of the PPU. It is a general-purpose
micro-processor extended with a functional unit specialized
for parallel processing of synapses. The general-purpose part
implements the Power ISA 2.06 [27] in order to be compatible
with existing compilers. We have chosen a 32 bit embedded
implementation. Instructions are issued in order and can retire
out of order. The core does not have a floating-point unit, but
includes fixed-point hardware multiplier and divider. In the
presented chip it has access to 16 kiB of main memory with
a direct-mapped instruction cache of 4 kiB. The SystemVerilog
source code of the implementation is available as open source
from [28].

The special-purpose functional unit implements an instruc-
tion set extension for accelerated processing of synapses.
Following the SIMD principle a single control unit operates
multiple—two for the presented chip—datapath slices. Each
slice operates on 128 bit wide vectors of either eight or sixteen
elements. Of these vectors 32 can be stored in a dedicated regis-
ter file in each slice. Fig. 11 shows a block diagram of the unit.

The vector unit is organized as a weakly coupled co-
processor with five functional units that have their own reser-
vation stations. Upon encountering vector instructions, the
general-purpose part sends them to a queue, which completes
execution on the general-purpose side. The vector unit takes
instructions in order from this queue, decodes them and distrib-
utes them to the appropriate functional units.

The five functional units provide operations for arithmetics,
comparison, permutation, load/store from main memory, and
load/store from synapses. Table II lists what types of operations
are implemented. All operations are available in two modes
treating their operands either as vectors of sixteen 8 bit or eight
16 bit elements. This allows trade-offs between throughput and
accuracy and is also necessary to support the capability of
combining synapses to achieve weights of higher resolution.
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Fig. 11. Detailed view of the special-function unit for SIMD operations within the PPU. The general-purpose part sends instructions with optionally a 32 bit
operand from the general-purpose register file via a queue. The decoding unit dispatches instructions to the respective reservation station upon availability. When
operands are available and the execution unit is ready, the reservation station issues the operation to the control unit, which controls the multiple parallel datapaths.
The vector register file has a single port for reading and writing. Access is arbitrated between reservation stations using a pseudo-random fair scheme. The serial
load/store unit accesses main memory through a shared datapath.

TABLE II
IMPLEMENTED OPERATIONS

A minimum of 8 bit is required, since the ADC uses that
particular resolution. In addition to the two modes of different
size, vector elements can be treated either to be in signed
integer or signed fractional representation. For the latter case
saturating arithmetic is used, while integers always use modular
arithmetic. The arithmetic functional unit is centered around a
fused multiply-add data path, which also executes instructions
for simple addition, subtraction, and multiplication.

The comparison unit writes results to a vector condition
register holding flags for equality, less than, and greater than
for each byte. These flags can be used by a select operation
provided by the permutation unit to selectively combine two
registers into one depending on a previous compare operation.
Also, arithmetic and load/store operations support conditional
execution using the vector condition register. Further opera-
tions provided by the permutation unit are bit-shifting, loading
vectors from general-purpose registers, and conversion between
fractional 16 bit and storage representation.

The two load/store units serve different purposes: one is
meant for initialization of vector registers by sequentially load-
ing words of 32 bit length from main memory. The other uses a
fully parallel bus for accesses on synapses and the ADC. In the
presented chip this bus has a width of 256 bit.

C. Input/Output With Analog Part

A specialized Input/Output (IO) unit translates the load and
store operation on the parallel bus into transactions to the
appropriate blocks based on the used address. Potential targets
are synapse memory, ADC, and correlation readout. Typically,
the PPU will iterate over all rows of synapses sequentially
reading weights and correlation data and writing back updated
weights. Therefore, the access unit allows multiple transactions
to be in progress simultaneously. For example, performing a
Static Random Access Memory (SRAM) read operation, while
an analog-to-digital conversion of correlation data is ongoing.

The presented chip can process 32 synapses in parallel,
when using byte-mode operations. Therefore, it takes two steps
to compute updates for a full row of 64 synapses. Since IO
operations work on full rows, the access unit supports buffering:
results are kept in the output registers of analog blocks after a
read transaction completes. If the next read refers to the same
row, the buffered results are returned immediately.

The access unit also executes requests from outside of the
chip performed through a 32 bit wide bus. Arbitration with PPU
accesses uses a pseudo-random fair scheme: a flip-flop indicates
which requester is favored upon conflict. For every conflict the
state of the flip-flop is inverted.

D. Considerations for Plasticity Processing

The architecture includes several design decisions geared
towards the main use-case of computing weight updates.
Synaptic plasticity models from biology are typically local to
the synapse, i.e., synapses can be computed independently.
This is true for classical Spike-timing dependent plasticity
(STDP) models [17], [26] and many phenomenological models
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[29]–[33]. Therefore, parallel processing of synapses is viable
and we realize this using the SIMD approach.

The vector unit is weakly coupled to the general-purpose part
of the processor: the two parts do not synchronize instruction
execution or share instruction tracking logic. Only when the
instruction queue is full, does the general-purpose part stall.
This allows to overlap execution in both parts to a large extent.
The general-purpose part is primarily concerned with control-
flow and sends the plasticity kernel to the vector unit as a stream
of instructions.

For the execution of the plasticity kernel it is important,
that IO accesses and computation are pipelined to achieve
good performance. While new weights for the current row
of synapses are computed, the ADC should simultaneously
convert analog values for the next row. To achieve this in an
efficient and automatic way, we use reservation stations for out
of order execution of vector operations. Each functional unit
shown in Fig. 11 has a reservation station (shown in green).
Within one reservation station instructions are issued in order.

Implementing several reservation stations is more costly than
following a simpler scheme for in-order issue as it is done
in the general-purpose part. Because control logic is shared
for all vector slices, this additional cost does not impinge on
scalability to larger synapse arrays. On the other hand, area of
the vector slices themselves has to be minimized. This reflects
for example in the use of a single-port register file instead of
a more typical three-port variant. Thereby, register access is
a bottleneck for execution—an instruction will typically read
two operands and write one result requiring three cycles on the
register file—that has to be minimized. Therefore, we opted for
a multiply-accumulate unit with internal accumulator, so that
multiplication and summation can be done in one instruction
and instructions can be chained without dependency on the
register file.

Apart from that, we selected a minimal set of instructions
focusing on fixed-point arithmetics and IO operations to save
area in the vector slices. The only concession are pack and un-
pack operations as part of the permute unit to efficiently convert
between weight representations for storage and computation
(see Section III-B).

To save power while plasticity is not needed at all or waiting
for the next update cycle, the clock of the PPU is gated.
The clock is disabled when the PPU enters the sleep state
by executing the Power ISA wait instruction. Any interrupt
request, for example from a timer or an external request, re-
enables the clock and wakes the processor up.

III. THEORY AND METHODS

Fig. 12 shows the experimental protocol used for simulations
with the PPU and all later measurements in hardware. The
synapse is stimulated with presynaptic spikes at times Xi =
0, T, 2T, . . . , NT where T is the interspike interval and N is
the total number of spikes. Postsynaptic spikes are shifted by
Δt giving firing times Yi = Δt, T +Δt, 2T +Δt, . . . , NT +
Δt. The synapse circuit accumulates this stimulation into the
two local traces a+ and a− as described in Section II-A. The
ADC converts the analog traces into 8 bit digital values A+

Fig. 12. Protocol for single synapse experiments. Regular spike trains with
a relative shift of Δt are sent to the pre and post inputs of the correlation
measurement circuit in the synapse. The local traces a± are read out using the
ADC. For experiments reported in Section V-D the PPU computes new weights.

and A−, respectively. These values together with the synaptic
weight w are the input for the PPU that computes the new
weight w′.

For this study we use a multiplicative STDP rule as reference
model (see for example [26])

w′ = w +

⎧⎨
⎩
λ(wmax − w) exp

(
− δ

τ+

)
for δ > 0

−λαw exp
(

δ
τ−

)
for δ ≤ 0.

(14)

Here, λ is a scaling parameter, wmax is the maximum weight,
δ is the time difference between pre- and postsynaptic firing
(δ > 0 if the presynaptic event occurs before the postsynaptic
one), τ± are time constants, and α controls the asymmetry
between the pre-before-post (δ > 0) and post-before-pre (δ <
0) branches.

The exponential term in (14) is realized by the synapse
circuit itself (see Section II-A) and accumulated on the local
traces a±. The a± correspond to the voltage on Cstorage in
the synapse circuit. We use a different symbol here to refer
to the value visible to the PPU, i.e., including offset from the
source follower of the readout circuit. The a± are also inverted
compared to the physical voltage, so that a± = 0 V corresponds
to the reset value onCstorage. In an idealized model of the actual
circuit, these traces are given by summing over previously
observed spike-pairs

a+ =
∑

pre−postpairs

η+ exp

(
− δ

τ+

)
(15)

a− =
∑

post−prepairs

η− exp

(
δ

τ−

)
(16)

with the analog accumulation rates η±. The summed up pairs
are selected according to a reduced symmetric nearest neighbor
pairing rule as defined in [26]. This is the same pairing scheme
as was already used in [14]. To approximate the rule described
by (14), the PPU uses the converted digital values A± to
compute

A =A+ −A− (17)

w′ =w +

{
λ(wmax − w)A for A > 0

λαwA else.
(18)

After the update, the accumulation traces a± are reset to zero.
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A. STDP Interaction Box

To quantify the measured STDP curves we extract two
measures from the observed a±(Δt) dependency: the amplitude
â± and the full width at half maximum (FWHM) τ̂±. For
illustration they are plotted together as a box with height â±
and width τ̂± in Fig. 15. The amplitude is given as

â± = max a± −min a±. (19)

FWHM is given as the range wherea± is below (1/2)(max a±−
min a±) + min a±.

B. Bit-Representation of Weights

Each synapse provides 6 bit of SRAM memory for weight
storage. Two synapses can be combined to increase the effective
weight to 12 bit. The PPU uses either 8 bit or 16 bit operations
giving some freedom in how weights are represented for com-
putation. For this study, we use a fractional number format with
saturating arithmetic, i.e., over- and underflows are prevented
by saturating to maximum and minimum values [34]. Weights
are aligned to use the range from 0 to 1, i.e., one zero bit is
added to the right for 8 bit computations as follows:

7 0

−1 2−1 2−2 2−3 2−4 2−5 2−6 2−7

0 w5 w4 w3 w2 w1 w0 0
.

Here, the wi are the individual bits of the weight with w5

being the most significant bit (MSB). For 12 bit weights the
representation is as follows:

15 8

−1 2−1 2−2 2−3 2−4 2−5 2−6 2−7

0 w11 w10 w9 w8 w7 w6 w5

7 0

2−8 2−9 2−10 2−11 2−12 2−13 2−14 2−15

w4 w3 w2 w1 w0 0 0 0

Bits w11 . . . w7 are physically stored in one synapse, while
w6 . . . w0 reside within the other one. Special pack and un-
pack operations are implemented to facilitate conversion be-
tween the shown representation for computation and the stored
representation.

Since for this study synaptic transmission of events to the
neuron is not used, weights are permanently kept in a vector
register. So no IO operations are performed.

IV. SIMULATIONS

To quantify the inaccuracies added by weight resolution and
numerical precision of computations performed by the PPU,
we simulate the protocol outlined in Fig. 12 and Section III
with an idealized synapse circuit and ADC. This means, that
accumulation by the synapse follows equations (15) and (16)
exactly. The PPU computes weight updates according to (17)
and (18) using 8 bit mode for 6 bit weight resolution and 16 bit
mode for 6 bit and 12 bit weight resolutions.

Fig. 13. Simulation results for weight updates with idealized synapses and
ADC. The red points show the weight w′ as computed by the PPU after
stimulation. The blue lines show the result w′

theo with perfect precision.
(a) 16 bit computational mode for 12 bit weight resolution. (b) 8 bit compu-
tational mode for 6 bit weight resolution. (c) 16 bit computational mode for 6
bit weight resolution. (d) Error w′ −w′

theo introduced by limited numerical
precision. (blue: A, red: B, green: C).

A. Numerical Accuracy

Fig. 13 shows results for N = 32 spike-pairs with time-
constants τ± = 20 μs and accumulation rates η± = 0.25 V.
Weights are computed with λ = 0.4, wmax = 1, and α = 1.
The initial weight is w = 0.5. The blue curves show the pre-
dicted result for updates performed without limited numerical
precision based on the accumulated values a±. The residuals
shown in Fig. 13(d) therefore represent the error introduced
by discretization of a± to 8 bit values A± in the ADC and
numerical errors introduced by fixed-point arithmetic. This
error is generally small: below 3.4× 10−3 for Fig. 13(a), below
1.9× 10−2 for Fig. 13(b), and below 1.5× 10−2 for Fig. 13(c).

Notably, 6 bit weights systematically are smaller than pre-
dicted. According to these results, the use of the 16 bit mode
for 6 bit synapses reduced the error especially for large updates,
i.e., small |Δt|.

B. Updating Performance

The simulation used for the previous section also provides
performance results in terms of achievable update rates. De-
pending on the learning task a minimum update rate may be
required for correct functionality [35]. The classical model of
STDP assumes immediate updates to the weight and so any
delay can lead to mismatch to software simulations. Table III
shows performance results for four different scenarios with and
without ADC conversions and for different weight resolutions.
The number of cycles represents the total time to update the full
array of synapses. Row time is the resulting duration for a single
row assuming a clock frequency of 500 MHz. The biological
update rate shows the frequency of updates as seen by a single
synapse translated into the biological time domain. The latter
number assumes, that the update program iterates over all rows
updating synapses in turn and is therefore a worst-case estimate.

The update frequencies are in all cases high compared to
spike frequencies in the range of approximately 1–15 Hz ex-
pected from biology [36]–[38]. A previous study has identified
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TABLE III
UPDATE RATES IN SIMULATION

1 Hz as a lower threshold for a particular correlation detection
task [35]. However, their updating mechanism did not use an
ADC but only employed a threshold comparison leading to
larger errors on the accumulation traces a± for longer delays. It
is, therefore, conceivable that for the same task the PPU-based
approach is less sensitive to update frequency.

The ADC requires 560 ns for the conversion of one row
of synapses. Rows 1 and 2 in Table III show that all other
operations can execute in less time. Therefore, conversion by
the ADC limits the update rate. Updates for 12 bit weights
are generally faster, because two rows of synapse circuits are
combined into one logical one. This leads to half the number of
ADC conversions and computational operations. The addition-
ally required pack and unpack operations to convert between
stored and logical representation (see Section III-B) do not
impact performance.

V. EXPERIMENTS

Fig. 1 shows the produced chip and the test setup used for
experiments. The chip contains 64 neurons with 32 synapses
each for a total of 2048 synapses. A single-ended SerDes link
provides communication with a Xilinx Spartan-6 FPGA for
control and event data. Link and internal logic operate with
the same clock signal provided via a chip pin. The system
is designed for frequencies up to 500 MHz and operated at
97.5 MHz in this study.

The FPGA is equipped with 512 MiB of DDR3-SDRAM
and communicates with a PC via USB 2.0. Due to the real-
time nature of neuromorphic hardware and the small time-
scales involved, communication with the chip is buffered in
the on-board SDRAM attached to the FPGA and played-back
under precise timing control. The FPGA uses a byte-code
with instructions of variable length to provide efficient coding
with 64 bit effective time stamp resolution. The byte-code is
executed at a clock frequency of 97.5 MHz leading to a best-
case temporal precision of 10.26 ns. Responses and events are
recorded with annotated timing information using the same
byte-code representation.

A. Weight Linearity

We first analyze the DAC within the synapse. Fig. 14 shows
the average output current for a total of 96 synapses on one chip
over the full range of 64 possible weight values. The current
was measured by sending a high-frequency input spike train to
the synapse and measuring the resulting current using a readout
pin and an external current measurement device.3

The fit yields an offset of 22.79 nA and a value of
11.52 nA for one least significant bit (LSB). With these values

3Keithley SourceMeter 2635

Fig. 14. Output current from the DAC within the synapse. The measurement
includes 96 synapses (three columns) from one chip. Blue crosses mark the
mean values. The best fit to all data points is shown as cyan colored line.

Fig. 15. Accumulation values a± after stimulation with N = 32 spike-pairs
as two-dimensional histogram. Color indicates the relative frequency. The mean
values are plotted as blue lines. The black bars on the axes indicate width and
amplitude of the STDP interaction box (see Section III-A), which is also shown
in blue in the last picture. Data points are shifted to an offset without stimulation
of 1.00 V to correct for different offsets on different chips. (a) Post-before-pre
measurement a− for 672 synapses on three different chips. (b) Pre-before-post
measurement a+ for 800 synapses on three different chips. (c) and (d) Data
from 32 synapses on the same ADC channel on one chip.

the maximal integral nonlinearity (INL) is 4.83 LSB, while the
mean INL is 1.06 LSB. The systematic shift at the transition
from code 31 to 32 is caused by well-proximity effects. Two
fingers of the MSB transistor of the DAC are too closed to an
adjacent well. This was only discovered after tape-out.

B. Variability

Fig. 15 shows the measured dependency a±(Δt) using the
experimental protocol illustrated in Fig. 12. The curves were
measured using N = 32 spike pairs and analog parameters
Vramp = 250 mV and Vstore = 350 mV. For all following
experiments shown in this study ambient temperature was kept
at 25 ◦C. The data shown in Fig. 15 is corrected for different
offsets of the readout on different chips. All curves are shifted
vertically, so that without stimulation the average 〈a±〉 lies at
1.00 V. This way the curves can be shown and compared in
one plot. For learning applications the offset is determined on
program startup by the PPU.
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Fig. 16. Width and amplitude of the STDP interaction box in dependence of
parameters Vstore (left column) and Vramp (right column). The blue crosses
show data for one single synapse. White bars mark the useful range for the
corresponding parameter (see text). Colors indicate the relative frequency for a
total of 192 synapses on three different chips.

The results show biologically realistic time-constants of
approximately 20 μs to be achievable. Here, we use a speed-
up factor of 103 to convert from biological time-constants of
approximately 20 ms given in [39]–[41]. The average time-
constants in Fig. 15 are 〈τ̂±〉 = 30 μs with a standard deviation
of 10 μs for Fig. 15(a) and (b) and 8 μs for Fig. 15(c) and (d).
The achievable ranges are discussed later (see Fig. 16).

Trial-to-trial variability for individual synapses is generally
small. The mean trial-to-trial standard deviation for all four
plots is equal within errors at 8 ± 5 mV. Therefore, the variation
between synapses that can be seen in the plots is due to device
mismatch within the synapse circuit itself and mismatch within
the readout channels of the ADC. Plots C and D of Fig. 15 show
only data for a single channel each. Concerning amplitude,
standard deviations for the multi- and single-channel cases
are comparable: 〈â±〉 = 400± 140 mV for A and C, 〈â±〉 =
600± 180 mV for B and D. For the time-constants single-
channel data exhibit slighlty less variability [see Fig. 15(c) and
(d)]. However, differences are small and overall variability can
be assumed to be dominated by mismatch between the synapse
circuits themselves.

C. Achievable Ranges

To configure the shape of the STDP curve the circuit provides
two primary configuration parameters: Vstore and Vramp (see
Section II-A). Vstore controls the storage gain and Vramp the
time constant (see Fig. 5). We measured 192 synapses on three
different chips sweeping both parameters to find the achievable
amplitudes â± and widths τ̂±. Fig. 16 shows the results while
using N = 32 spike pairs (see Section III-A for the definiton of
the plotted quantities “width” and “amplitude”).

The usable range is the parameter range, for which Vstore

controls amplitude and Vramp controls the width. The respective
other property, i.e., width for Vstore and amplitude for Vramp, re-
mains flat. Therefore, the shape of the STDP curve can be tuned
with the given parameters. For the presented measurements the
usable ranges were selected as Vstore ∈ [0.31 . . . 0.40 V] and
Vramp ∈ [0.16 . . .0.27 V]. This range lies between the white

TABLE IV
ACHIEVABLE RANGES

vertical markers in Fig. 16. Table IV gives mean and standard
deviation at start and stop of this range for â and τ̂ . The
amplitude covers nearly the 1 V of full dynamic range of the
ADC input. Time-constants show a large configurable range
from tens to hundreds of micro-seconds. Even lower values
down to 2 μs are configurable, but the error will stay at 4 μs
so that we have excluded these values from the usable range.
The amplitude can maximally be as large as the available input
range of the ADC, which is evident in the measured data.

D. Full-System Experiments

With the individual channels characterized, the next step
is to look at the full signal processing chain. We use the
experimental protocol described in Section III and illustrated
in Fig. 12. The PPU performs weight updates according to
(18). To eliminate trial-to-trial noise on the analog readout and
to remove systematic offset between the two channels of one
synapse, we modify (17) to

Ā = (A+ −A−)−Aoff (20)

A =

{
Ā if |Ā| > θ

0 else.
(21)

Here, Aoff is determined at program startup after reset of the
accumulation storage as difference A+ −A−. (21) implements
thresholding using the user selected parameter θ. The PPU
performs updates at regular intervals of 10 μs during stimula-
tion. The source code for the actually used update program is
available from [42].

Fig. 17 shows results when using 8 bit resolution for arith-
metics. For analysis, two functions f+ and f− are individ-
ually fitted to pre-before-post (Δt > 0) and post-before-pre
(Δt < 0) data

f+(Δt) =w + b+(wmax − w) exp

(
−Δt

c+

)
(22)

f−(Δt) =w − wb− exp

(
Δt

c−

)
. (23)

Here, b± and c± are the fit parameters, while initial weight
w and maximum weight wmax are the same as those used by
the update program. In all experiments we set wmax, λ, and
α to 1.0. The threshold θ was set to 10. Since discretization
of the weight removes the long tail of the exponential, the fit
is restricted to points where the weight was actually changed
(w′ �= w).

Fig. 17(a)–(c) demonstrate different combinations of N and
w. Especially for small updates, the discretization of the weight
to 6 bit is apparent. Results exhibit the expected dependency
on w for a multiplicative rule. Fig. 17(d) and (e) plot the fitted
parameters for amplitude (b±) and time-constant (c±) over the
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Fig. 17. Results from experiments using the full signal chain including PPU, ADC, and correlation sensor in the synapse. Synapses are stimulated according to
the protocol outlined in Fig. 12. The PPU computes a multiplicative update rule according to (21) and (18). (a)–(c) Weight after stimulation for five repetitions as
green points. Fit to data as blue curve. (d) and (e) Resulting fit parameters for amplitude b+ (red), b− (blue) and time-constant c+ (red), c− (blue) for multiple
number of spike-pairs N . (f)-(i) Examples of other updating rules that can be implemented.

number of spike pairs N . As expected, amplitude increases
linearly with the number of pairs and for the chosen initial
weight w = 0.25 positive changes are larger than negative
ones. The process that measures the timing of spike pairs
in the synapse operates on individual pairs and is therefore
independent of N . Also, the circuit for time measurement is
shared for pre-before-post and post-before-pre pairs within one
synapse. Therefore, time-constants should be identical on both
sides and independent of N . Experimental data is compatible
with these expectations as Fig. 17(e) shows. For small N the fit
is not reliable due to discretization [see Fig. 17(b)].

The plots in Fig. 17(f)–(i) give a hint of the achievable flexibil-
ity. They were producedwith the same stimulation protocol only
by changes in software running on the PPU. Fig. 17(f)
and (g) show symmetrical Hebbian and anti-Hebbian rules.
Fig. 17(h) is only sensitive to pre-before-post pairings.
Fig. 17(i) realizes bi-stable learning.

E. Power Consumption

During execution of the experiment described in the previous
section, digital logic consumes below 32 mW of power as
measured on the power supply pins of the chip. With the clock
disabled for the PPU, power consumption drops below 10 mW,
so that 22 mW can be attributed to the PPU. In reset, power
consumption drops by 2 mW for the PPU. Therefore, power
consumption is largely due to clock distribution.

VI. DISCUSSION OF RESULTS

The two overarching goals in the development of neuro-
morphic hardware are to provide a platform for neuroscientific
experiments and to find new ways of computation for technical

applications. For both these goals we believe reliability, scala-
bility, and flexibility to be enabling factors besides efficiency in
terms of power, area, and speed. Therefore, the presented results
focus on these aspects.

A. Reliability

To assess reliability we characterized the synapse behavior
across three different chips (see Figs. 15 and 16). Results
show substantial variation due to device mismatch within the
analog circuits. Please note, that for these measurements the
configuration bits of the synapse circuit were not even used
(see Section II-A). So there is room for improvements through
calibration. On the other hand, trial-to-trial variability of in-
dividual components is small. This is for example illustrated
in Fig. 16 that shows multiple trials from a single synapse
on the background of the overall distribution of synapses. A
small trial-to-trial variability was also measured for individual
channels in Section V-B. This allows on the one hand to use
off-line calibration, but on the other hand it is also conceivable,
that an emulated network calibrates itself through the use
of plasticity. Indeed, the robustness of reward-based learning
to device mismatch on the correlation detection within the
processor-based approach presented here has been shown in
previous work [23]. Self-tuning has also been shown to be
feasible through the use of short-term plasticity [43].

In general, a plasticity mechanism can compensate inhomo-
geneities if there is a feedback loop for the parameter subject
to variation. This is typically the case for outputs, e.g., synaptic
weights. An STDP rule will modify the weight according to the
timing behavior it observes, which is an effect of the weight
including variation. Variation on the input however—in this
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case the signal a± from the correlation sensor—is invisible
from the rule. It can however be compensated by introducing
additional information about the behavior of the system, for ex-
ample through a reward signal. This addition of complementary
information is why reward-based learning rules are well suited
for analog neuromorphic hardware systems. The alternative is
to use redundancy of analog components so that the average
behavior is reliable.

B. Scalability

Scalability can of course only be shown by actually scaling
the system, which we plan to do in the future. Nonetheless,
the plasticity system is designed to scale well: the only part
for which area scales linearly with the number of synapses is
the correlation sensor that resides within the synapse circuit.
Therefore, we have chosen to use an area-optimized circuit
realized as analog full-custom design. The ADC scales with the
number of columns in the synapse array, which have typically
a square root dependency on the number of synapses. Most
parts of the PPU are required only once per array and only the
number of vector slices scales with the number of columns.
To keep these slices as lightweight as possible, all control
logic is shared and a single-port vector register file is used. A
scaled system will feature arrays of 256 × 256 synapses with a
dedicated PPU using 8 vector slices.

C. Flexibility

The whole approach presented here has a strong empha-
sis on flexibility, compared to our previous implementation
[14] and considering the constraints of an analog, accelerated
neuromorphic system. By this we mean, that a large number
of plasticity rules should be implementable in the hardware
system. Introducing the PPU sacrifices area and power in order
to have as much freedom as possible while not sacrificing
speed. To achieve this latter point in the 65 nm technology, we
consider a combination of analog and software-based process-
ing, as shown in this study, to be necessary. At a speed-up
factor of 103 and array sizes of 65 k synapses it is not feasible
to process individual spike events in software. This of course
limits flexibility as the functionality of the correlation sensor is
fixed in hardware. Therefore, this functionality should at least
operate over a wide range of parameters, demonstrated by the
results shown in Fig. 16 and Table IV In the biological time
domain, the design covers ranges from tens to hundreds of
milliseconds, fitting typical ranges found in biology [39]–[41].
Also the amplitude is tunable over a large range, so that the
sensitivity of the correlation sensor can be matched to the
network activity.

In general, every plasticity model is implementable in this
system that depends only on observables visible to the PPU and
affects only parameters accessible by the PPU. Observables are
the weight w, the correlation signals a±, a firing rate sensor not
discussed in this study, and signals from outside the chip such
as reward. All parameters of the chip that can be modified at
all, can also be modified by the PPU. This includes the synaptic
weight w, neuron parameters, and the topology of the network.

The latter is limited to the addresses stored in the synapses for
this prototype chip.

In future realizations it is feasible to increase the number of
observables of the PPU. It is planned to include a fast ADC in a
forthcoming chip which will give the PPU access to membrane
voltages. It is also feasible to add synapse correlation mea-
surement circuits with novel properties, if there are plasticity
models demanding them.

Here we only show the simple STDP rule given in (14)
as proof of concept. Fig. 17(f)–(i) show simple examples of
modifications of the plasticity model purely realized in software
running on the PPU. Beyond that, the reward-based learning
rule R-STDP and a learning rule for spike-based expectation
maximization has been ported to the system, but not yet tested
in hardware [23], [44].

VII. CONCLUSION

In this study we have presented a new approach to plasticity
in neuromorphic hardware: the combination of dedicated ana-
log circuits in every synapse with a shared digital processor.
It represents a trade-off between flexibility of implementable
plasticity models and efficiency of the implementation in terms
of area, speed, and energy. The presented results demonstrate
the viability of this approach for plasticity.

The more classical approach taken for neuromorphic hard-
ware, for example by [10] or [45], is to implement a single
plasticity mechanism that can be used to solve a range of
network learning tasks. Analog continuous-time implementa-
tions of neuromorphic circuits can be combined with floating-
gate technology to achieve persistence of the learned synaptic
weights. By modifing the control signals the precise learning
rules can also be tuned [46]. Our approach not only aims for
flexibility in the learning task, but also in the mechanism itself.
Together with the speed-up factor this enables experimental
analysis of long-term effects of such mechanisms. In the classi-
cal approach it is essential to have a detailed understanding of
the mechanism prior to production of hardware. In our approach
the hardware system can help to gain this understanding. This
is an important aspect when designing a system intended as a
neuroscientific platform.

In [47] this approach is taken even further: neuronal dy-
namics as well as detection of correlations and weight update
are performed by general-purpose processors in software. Spe-
cialized hardware is only used for event communication. This
maximizes flexibility but further sacrifices efficiency, so that
operation is only possible without speed-up. Another mixed-
mode approach is reported in [48]. Here, the authors also
perform the full plasticity operation in software, achieving
maximum flexibility, while the synapses and neurons are full-
custom analog implemetations.

Our approach to use dedicated hardware for the most expen-
sive part—the processing of spikes—enables faster operation.
Using an on-die PPU local to the synapse circuits also facilitates
scaling of the system, since no communication to off-chip
components is necessary. Since learning and development in
biology are processes spanning many time-scales, platforms
for accelerated simulation or emulation are important. In the
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domain of general-purpose computers using software simula-
tions even for medium-sized networks accelerated operation
with plasticity is currently not possible [21].

VIII. OUTLOOK

The chip presented here is still an early prototype that for
example lacks on-chip networking capabilities. However, using
the experimental setup described here a wide range of plastic-
ity mechanisms can already be implemented and analyzed in
hardware. Obvious candidates are the models already prepared
for implementation [23], [44]. Future prototypes will add the
ability to include neuronal and structural plasticity opening the
door for a large set of learning mechanisms. It will then also
be possible to execute learning tasks involving networks of
neurons with the system.

In the long run, the focus will be on scaling the system in size.
As an intermediate step we plan to build chip-scale variants
with two 256 × 256 synapse arrays and two PPUs. Eventually,
the goal is to go to wafer-scale [7]. It will then replace the
first generation of the neuromorphic platform (NM-PM-1) of
the Human Brain Project [49].

We also hope that the release of the PPU design—the Nux
processor [28]—as open source will turn out to be a valuable
contribution to open source hardware.
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