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Real-Time Simulation of Passage-of-Time Encoding
in Cerebellum Using a Scalable FPGA-Based System

Junwen Luo, Graeme Coapes, Terrence Mak, Tadashi Yamazaki, Chung Tin, and Patrick Degenaar

Abstract—The cerebellum plays a critical role for sensorimotor
control and learning. However, dysmetria or delays in movements’
onsets consequent to damages in cerebellum cannot be cured
completely at the moment. Neuroprosthesis is an emerging tech-
nology that can potentially substitute such motor control module
in the brain. A pre-requisite for this to become practical is the
capability to simulate the cerebellum model in real-time, with low
timing distortion for proper interfacing with the biological system.
In this paper, we present a frame-based network-on-chip (NoC)
hardware architecture for implementing a bio-realistic cerebellum
model with neurons, which has been used for studying
timing control or passage-of-time (POT) encoding mediated by the
cerebellum. The simulation results verify that our implementation
reproduces the POT representation by the cerebellum properly.
Furthermore, our field-programmable gate array (FPGA)-based
system demonstrates excellent computational speed that it can
complete 1sec real world activities within 25.6 ms. It is also
highly scalable such that it can maintain approximately the same
computational speed even if the neuron number increases by one
order of magnitude. Our design is shown to outperform three
alternative approaches previously used for implementing spiking
neural network model. Finally, we show a hardware electronic
setup and illustrate how the silicon cerebellum can be adapted as a
potential neuroprosthetic platform for future biological or clinical
application.

Index Terms—Cerebellum, field-programmable gate array
(FPGA), network on chip (NoC), neural-rehabilitation, pas-
sage-of-time (POT).
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I. INTRODUCTION

S MOOTH and robust motor control requires precisely timed
muscle activations at specific strengths. This is critically

mediated by the cerebellum which functions to represent the
passage-of-time (POT) over a range of tens to hundreds of mil-
liseconds, and is essential for organizingmovements of different
body parts into a coordinated action [1]. Errors in POT encoding
consequent to cerebellar damages can lead to dysmetria or de-
lays in movements onsets in these patients [2]. Such condition,
usually described as ataxia, cannot be cured completely at the
moment, and is impacting millions of patients worldwide. To
foster a potential cure based on neuroprosthetic technology, an
efficient computational platform that can favorably mimic the
complex function of the cerebellar neural network will be im-
portant. Fig. 1 shows a conceptual closed-loop system for a cere-
bellar prosthesis.
POT representation in the cerebellum is clearly evident in the

classical Pavlovian delayed eyeblink conditioning [3], [4] where
animals learn the inter stimulus interval (ISI), or POT, between
the conditioned (CS) and the unconditioned stimulus (US) on-
sets upon repetitive training. It has been suggested that this in-
formation of POT is encoded in the extensive cerebellar gran-
ular layer. When excited by CS through mossy fibers (MFs),
population of granule cells exhibit different bursting dynamics
such that the sequence of active cells does not recur for a suffi-
ciently long time. This forms a one-to-one correspondence be-
tween the active cell population and a time interval. Various
computational models have been proposed to investigate the
possible mechanism in the granular layer for POT representa-
tion. Four classes of such models have been reviewed in [5],
which includes the delay line model [6], [7], spectral timing
model [8], oscillator model [9] and random projection model
[10], [11]. Among these computational models, the random pro-
jection model is suggested to be both a robust and biologically
plausible framework in the representation of POT, which can
also be used to reproduce the classical Pavlovian delay eye-
blink conditioning. This spiking network model makes use of
two critical properties of the cerebellar granular-Golgi layers:
1) extensive random recurrent connections between granule and
Golgi cells; and 2) long temporal integration of input signals by
the NMDA receptors, which are both evident in the biological
systems.
Thus far, this large-scale ( cells) spiking network model

of cerebellum has been investigated by software simulation
using PC and GPU implementation [11], [12]. However, in
order to use the model in real-time biological experiments,
particularly in vivo, some form of compact digital real-time
implementation with versatile I/O’s would prove valuable with
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noise free, scalable communication bandwidth and precise
timing management features. A scalable hardware platform
that can be tailored designed and takes advantage of highly
parallel computing capability would be greatly preferred. Such
a system would be a powerful tool to help explore the POT
mechanism and related disease mechanisms in the cerebellum.
Future neuroprosthetic developments could also benefit from
an efficient hardware platform for implementing a large-scale
spiking network model for real-time computation.
In general, CPU based process platforms are limited by their

sequential computing architecture. The large latency makes
them difficult to be used in real-time brain-machine interfaces
(BMI). GPUs, on the other hand, are capable of parallel com-
puting but are constrained by memory and communication
bandwidth issues [13]. Models can be implemented directly
onto CMOS, [14], [15] but a single implementation can be time
consuming. Field-programmable gate arrays (FPGAs) are a
versatile reconfigurable digital computational platform which
can be used for both direct computational implementation and
as a stepping stone to compact low power CMOS chip imple-
mentation. It contains massive flexible programmable logic
with concurrent operation allowing direct use in bench-top
in vitro and constrained in vivo systems. If designs are then
translated to CMOS, the subsequent chips can be applied to
implantable neuro-prosthetic devices. In recent years, FPGAs
are extensively used in neural system modeling and simulation
of large scale biologically realistic neural systems [16]–[19].
Hardware implementations of cerebellar neural networks for

neuroprosthesis have already attracted the interest of neurosci-
entists and engineers. Bamford et al. [15] has designed a VLSI
field-programmable mixed-signal array to produce the eyeblink
conditioning performances by modeling the cerebellum system.
This has been fabricated as a core on a chip prototype intended
for use in an implantable closed-loop prosthetic system aimed at
rehabilitation of associated behavior. While they have demon-
strated a proof-of-concept of success in their implementation, a
highly simplified neural model with abstract modeling of cere-
bellar information processing is used in the work. Such simplifi-
cation is convenient for hardware implementation, but lacks di-
rect physiological correspondence for quantitative comparison
with the biological system. In contrast, Yamazaki and Tanaka’s
model [11] is more biologically realistic and pays specific at-
tention to the role of the granular-Golgi layer in timing and gain
control by the cerebellar cortex to reproduce experimental re-
sults. However, this comes with the cost of a significant increase
in the size and complexity of the computational model in order
to produce a robust system behavior. As such, an efficient im-
plementation is required to overcome these computational chal-
lenges, especially when real-time application is required.
Previously we presented the concept of an FPGA-based net-

work-on-chip (NoC) hardware architecture for implementing
the granular layer of random projection cerebellum model [20],
[21]. It produced a network behavior of POT representation
consistent with the simulation results presented in the original
paper by Yamazaki and Tanaka [11]. In this work we have
made a more in-depth investigation on the details of imple-
mentation and analysis of system performance. The system
contains granule cells and Golgi cells, using

Fig. 1. The conceptual closed-loop system for cerebellum passage-of-time
(POT) prosthetic. Damaged biological granular layer is replaced by
FPGA-based granular layer system. CS is a conditioned stimulus while the US
is an unconditioned stimulus. MF is the mossy fiber and CF is the climbing
fiber, PKJ is the Purkinje cell. PN is the precerebellar nucleus, CN is the
cerebellar nucleus, and CR is the conditioned response.

a conductance-based, leaky integrate-and-fire neuron model.
The parameter values all have experimental basis, such that the
network model produce realistic firing behavior. In particular,
three accomplishments are highlighted in this paper: 1) we have
reproduced the granular layer firing patterns for representation
of POT in real-time under normal as well as pharmacologically
perturbed conditions; 2) our architecture allows for efficient
scalability to 100 000 neurons and beyond and can be used
for more complex biological neural network applications; and
3) we have eliminated multiplexing timing errors and allows
for network profiling at key time points.

II. THE PASSAGE-OF-TIME COMPUTATIONAL MODEL

The cerebellar granular layer consists of two main cell types,
namely the granule cells and Golgi cells. Input signal from
the pre-cerebellar nucleus to the granule cells is conveyed
by MFs (Fig. 1). The spiking network of cerebellar granular
layer proposed in [11] is modelled as a 1 mm virtual sheet
composed of a square lattice arrangement of 32 32 Golgi cells
and glomeruli, and 320 320 granule cells. The same network
with minor changes is used in this paper. Fig. 2 describes the
topology between Golgi and granule cells.
Fig. 2(a) illustrates the topology of our granular layer model

which contains 1024 granule-cell clusters and Golgi cell, the
different colors represents communities of closely connected
cells within the network. Each granule-cell cluster contains
100 granule cells. The size of the circles is proportional to
the number of other clusters that it is connected to. Each dot
represents one granule-cell cluster and one Golgi cell, as is
shown in Fig. 2(b). Every Golgi cell receives excitatory input
from its nearest granule-cell cluster, while Golgi cells project
randomly to the nearby granule-cell clusters such that each
granule-cell cluster receives inhibitory inputs from Golgi
cells on average. The probability distribution of number of
synaptic connection from Golgi cell to granule-cell cluster is
shown in Fig. 2(c).
The equations for modeling the neurons and analysis have

been detailed in [11] andwe briefly repeat the key ones here. The
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Fig. 2. The topology of granular layer model. (a) Contains 1024 granule-cell
clusters and Golgi cell, the different colours represents communities of closely
connected cells within the network. The size of the circles is proportional to
the number of other clusters that it is connected to. (b) Each dot represents
one granule-cell cluster and one Golgi cell. (c) The synaptic input number
distribution.

granule and Golgi cells were modelled as conductance-based,
leaky integrate-and-fire units, as described in (1)

(1)

where and are the membrane potential at time and
the capacitance, respectively, ’s are the reversal potential and
denotes the last firing time of the neuron. The membrane

potential depends on five types of currents: -amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic (AMPA) receptor-medi-
ated, N-methyl-D-aspartate (NMDA) receptor-mediated, leak
current, inhibition current and the after-hyperpolarization cur-
rent. The conductance, , are calculated by convolving the
alpha function with the spike event of presynaptic
neuron at time as follows:

(2)

where is the maximum conductance and is the synaptic
weight from presynaptic neuron . A neuron fires a spike at
time when its membrane potential exceeded a
threshold , and the after-hyperpolarization would follow. The
conductance for the after-hyperpolarization was given by

(3)

We followed the same analysis procedures as in [11] for eval-
uating the POT behavior produced by the simulation model. We
first computed which represents the average activity of a
granule-cell cluster .

(4)

where is the spike event in the granule cell in the cluster
at time is the number of granule cells in a cluster (100
in this case) and is the decay time constant, which was set at
8.3 ms.
How the activity patterns of granule cell clusters evolved over

time is evaluated based on the similarity index, . We first
computed the autocorrelation of the activity pattern between
time and as follows:

(5)

takes the value between 0 and 1 since is
always non-negative. It would be 1 if the activity pattern vec-
tors and are identical, and it would be 0 when
they are orthogonal, indicating that the activity patterns have no
overlap. Then the similarity index is computed as the timed av-
erage of (5) over the CS duration, , shown as follows:

(6)

represents how two activity patterns separated by are
correlated, on average. If the similarity index decreased as
increased, it indicates that an activity patterns evolved with time
into uncorrelated patterns.
We further computed the reproducibility index as

follows:

(7)

where and are the activity patterns of granule-
cell cluster at time for two different input signals. The re-
producibility index quantifies how activity patterns elicited by
two different input signals differ from each other over time and
serves as a measure for the robustness of the POT representa-
tion by the network model.

III. HARDWARE ARCHITECTURE DESIGN

To implement the POTmodel, we propose a frame-based net-
work on chip (NoC) hardware architecture on FPGA. The con-
ceptual structure is shown in Fig. 3.
In Fig. 3, the left side shows the by frame based NoC

system, where the size can be adjusted as needed. The architec-
ture consists of threemain components: the neural processor, the
router, and the global controller. In this work, we implemented
a NoC system containing 48 processors, which calculates the
neural activates. Each processor implements 2000 granule cells
and 20 Golgi cells with connection ratio of 100:1. The router
is used for implementing the inhibitory connections from Golgi
cells to granule-cell clusters. The interface modules packetize
spike events received from the processor ready for transmis-
sion through the network. When the interface modules receive
packets the message is decoded and transmitted to the required
cells within the neural processor. Finally, a frame master is im-
plemented to coordinate neural and communication processing
periods.
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Fig. 3. A conceptual FPGA-based network on chip hardware architecture. The figure on the left is the scalable by structure of frame based network on chip
system. It contains neural processors, routers and one global controller. This architecture can be scaled up depending upon on the required model. In
this paper, we implemented a network on chip system which contains 48 processors. On the right, there is a detailed structure of a module. The neural processor
calculates the neural activity, with each processor implementing 2000 granule cells and 20 Golgi cells with connection ratio 100:1. The router is for implementing
the connections from Golgi to granule-cell clusters. The interface modules packetize spike events received from the processor ready for transmission through the
network. When the interface modules receive packets the message is decoded and transmitted to the required cells within the neural processor. Finally, a frame
master is proposed to coordinate neural and communication processing periods.

A. Neural Computing
The neural processor data path is shown in Fig. 4. Two types

of neurons are implemented in the processor, the granule cell
(GR) and the Golgi cell (GO). Both models use the same hard-
ware architecture but with different parameters. Each granule-
cell cluster, containing 100 granule cells, connects to one Golgi
cell. The activities (1 or 0) of all the 100 granule cells will be
first calculated; whilst an accumulator will add all of them to-
gether and at the 100th clock cycle send the summated value to
the Golgi cell model as an excitatory input [Fig. 4(a)].
Fig. 4(b) details the data path inside the neural model, which

takes two computing stages: ion channel computing and inte-
gration. Each stage takes 4 clock cycles. Because computation
is performed in parallel, the latency in each individual path has
to be consistent; therefore appropriate delay blocks (the rectan-
gular blocks) are added as necessary.
Fig. 4(c) and (d) show the sub-component circuits, including

the inhibition and excitation circuits and FIFO-based delay
circuits. Since each neural processor implements 2000 granule
cells and 20 Golgi cells, a pipelining technique is applied for
reducing hardware resources. A long pipelining stage is re-
quired for storing granule cells calculation intermediate values.
A First-In First-Out (FIFO) based delay circuit is designed for
achieving long computational stages.

B. Network-on-Chip
To manage the transmission of action potentials from Golgi

cells to granule-cell clusters we have developed a NoC infra-
structure. This system allows for arbitrary connectivity between
Golgi cells and granule-cell clusters. Each processing element
is connected to a router through which the action potentials are
communicated. The routers are connected together in a mesh
topology [22] as shown in Fig. 5(b).

Fig. 4. The neural processor structure and the data path of neural model.
(a) shows the conceptual structure of the processor. (b) shows the data path of
the neural model. Both GR and GO models use the same hardware architecture
but with different parameters. The rectangular block is the delay function and
triangle block (gain) is the different ion channel conductance’s which refer
to (2). (c) and (d) show the sub-component circuits: excitation (inhibition)
circuits and FIFO based delay circuits. The triangle blocks denote the NMDA
and AMPA receptor conductance.

When a Golgi cell produces an action potential the interface
fetches a list of destination granule-cell clusters from memory,
an individual packet is generated to be sent to each of these
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Fig. 5. Example of mapping of neural network to a network-on-chip. (a) Neural
Network. A sample Golgi neural network with a single Golgi cell connected to
three out of four granule-cell clusters. (b) Network-on-Chip. Four processing
cores are shown. Each core may model multiple Golgi cells. When the Golgi
cell X produces an action potential, individual packets are transmitted to each
connected granule-cell cluster. The targeted granule-cell clusters are distributed
throughout the mesh NoC.

TABLE I
STANDARD SPIKE PACKAGE FORMAT

destinations within the network accordingly. The connectivity
of the neural network can be updated by adjusting the contents
of the memory. A user may alter the contents of the memory to
adjust the connectivity by injecting configuration packets into
the network. This can be done at start-up or part way through
simulation if required by halting the system using the global
frame master.
The packet format is shown in Table I. Packets are classi-

fied by the setting of a 2-bit type identifier. The generated spike
packet contains the address of the targeted granular cell (Core
and Cluster ID), allowing for the routers to direct the packet to
the correct processing elements. Each granule-cell cluster sum-
mates the packets received. This summed value is used as an
inhibitory input into the granule-cell clusters. Packets are trans-
mitted between routers using a 4-phase asynchronous protocol
[23] and a parallel data bus. The routers are output buffered
using a 2-deep FIFO memory element. To inspect the state of
the model the network-on-chip is also responsible for transmit-
ting information externally. When a Golgi cell produces an ac-
tion potential, a ‘Golgi Message’ packet is also transmitted to a
specialist processing element. This processing element buffers
all received packets and transmits these packets to a PC. This
allows for a user to review the state of each Golgi cell at any
time.

Fig. 6. The frame master performances. In the frame 1, the router processing
time is longer than the processor’s, so the frame master temporally disabled
the neural processor at – periods until the router finished its current traffic
loads. While in the frame 2 and 3, because of the routing time is shorter than the
processor time, the processor clock was continuously running.

C. Frame Master

In order to maintain synchronicity within the system a frame
master is used. The master is responsible for ensuring that all
packets are transmitted to their destination before the processing
elements start to process the next time step. This ensures that the
granule-cell clusters receive all their updates within the correct
time period.
For example, as shown in Fig. 6, the time required for network

communication depends on the load of the network, which is
determined by the frequency of Golgi cells spiking and the net-
work topologies. This varies for each frame. In each frame, once
the first Golgi cell spike event is released (at time ), the router
starts to process the corresponding synaptic packages. After all
20 Golgi cell spike events are computed (at time ), the pro-
cessor’s duty in frame 1 is finished. Then the neural processor
needs to start computing the next 20 Golgi cell activities for
frame 2. However, at the end of frame 1 (time ), the network
has not completed its communication for the current 20 Golgi
cells. Therefore extra time is allocated for the network to finish
this task before frame 2 begins. As results of this, the frame
master generates a low level signal that disables the processor
clock for time until the network has completed its routing
task. The frame master then enables the processor to allow it to
start computing again (time ).

IV. RESULTS

A. Hardware Simulation Results for Passage-of-Time (POT)

Fig. 7 shows a comparison of the membrane potential of a
single granule (1) neuron model simulated by the FPGA neural
processor and by software (implemented in C with floating-
point data type). A fixed point system with 40-bit and 22-frac-
tional bit is employed in this FPGA system, and this length of
bits has been selected to guarantee each operation to have suf-
ficient precision to avoid data overflows and mismatch. The
same inputs (30 Hz Poisson spike train) were given to both
simulations.
The two simulations produce essentially identical results with

very minor differences due to hardware truncation errors. This
validated the hardware implementation of the neural model. In-
creasing the length of bits can eliminate truncation errors but
introduce resources utilizations waste.
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Fig. 7. The comparison results of a fundamental granule (1) neuron model
simulated by the FPGA neural processor and CPU. The CPU implementation
is the original software described in [11], running with an Intel Quad Core™ i7
CPU with 8 GB of RAM under the Ubuntu operating system.

Then we investigated the simulation results of the complete
network model. The hardware POT simulation results are sum-
marized in Fig. 8. Poisson spikes were fed into the simulated
network to represent CS inputs through MFs. The simulated
network was first fed at each MF with 5-Hz Poisson spikes for
300 ms to set the network to steady-state then 30-Hz Poisson
spikes, preceded by 5 ms 200-Hz spikes, are given to excite the
network.
Fig. 8(a) shows the spike patterns of 40 granule cells

randomly chosen from different granule-cell clusters. These
granule cells show different temporal activity patterns. Specif-
ically, they show a random repetition of transitions between
bursting and silent states. These bursts are sustained for tens to
hundreds of milliseconds. In contrast, the Golgi cells fire rather
regularly as shown in Fig. 8(a) bottom panel. Fig. 8(b) shows
the similarity index of the activity pattern against the time shift

(6). The gradual decrease of the similarity index with
demonstrates a smooth encoding of POT from the onset of CS,
indicating that the populations of active granule cells change
gradually over time such that no active granule-cell clusters
appear more than once throughout the stimulation. Both of our
software and hardware simulation results are consistent with
results shown in [11], which confirms a proper POT behavior
in our simulation, in that the sequence of active granule cell
population maintains a one-to-one correspondence with the
POT from the CS onset. The hardware simulation result is
well comparable with software simulation with mean error
being less than 5% [Fig. 8(b)]. The error is mainly caused by
hardware truncation errors. Fig. 8(c) shows the reproducibility
index (7) from the hardware simulation, which compares the
activity pattern generated by two different Poisson spike inputs.
The reproducibility index remains high , indicating that
the POT encoding will remain robust despite of variability of
signals in the two stimulating inputs through MFs. This shows
that the neuron population can maintain consistent POT repre-
sentation across trials when, for instance, learning of delayed
eyeblink conditioning over multiple training sessions is to be
incorporated in the model [11].

B. Effects of Blocking NMDA Channel on POT Representation

To further verify our hardware simulation results, we also in-
vestigated the effect of blocking NMDA channels, which play a

critical role in delayed eyeblink conditioning [24], in our simu-
lations. The hardware and software simulation results are sum-
marized in Fig. 8(d)–(f). When NMDA channels are blocked in
either granule cells or Golgi cells, granule cells lose the tem-
poral structure in their firing, instead, they fire spikes at a rather
regular manner [Fig. 8(d)]. The similarity index becomes flat
except for smaller than ms. Within the time scale of
30 ms, there are very limited number of spikes to encode ro-
bust temporal structure for POT. On the other hand, 30 ms is
too short for physiologically relevant POT in a classic delayed
eyeblink conditioning experiment. Hence, the GR firing pattern
after NMDA-R blockade cannot capture a temporal structure at
a time scale of physiologically relevance. The disruption of POT
encoding consequent to NMDA channels blockade is reflected
by both software [Fig. 8(e)] and hardware simulation [Fig. 8(f)]
The results (both software and hardware) are consistent with
those presented in [11].

C. Network on Chip Performance
To investigate the performance of the NoC infrastructure,

we replaced the processing elements with configurable random
packet generators. Packets were then injected into the network
at a defined rate and the latency and throughput of these packets
analyzed. The results for a 48-core system involving 960 Golgi
cells, identical to the networks described in the sections above,
are highlighted in Fig. 10. As the mean firing rate of the Golgi
cells increases the median and range of latencies increases
slightly. However, all packets are transmitted in under 100
processor clock cycles, which is the time it takes to update the
state of a single Golgi cell. No packets are lost at any of the
measured input frequencies, indicating that the frame master
should not be required apart from when the Golgi firing rate ex-
ceeds expectations or when the user intervenes. Within typical
cerebellar systems, the Golgi cells fire at a rate of between 40
and 60 Hz, which is within the defined network performance
characteristics.

D. FPGA-Based Granular Layer for Neural-Rehabilitation
We illustrated a hypothetical in vivo experimental setup for

closed-loop prosthetic application using our FPGA granular
layer system in Fig. 9(a). Biological neuronal spike signals
would be recorded by using a multichannel neural recording
system from the pontine nucleus or from the mossy fibers,
which would then be used as inputs to the silicon granule
layer model. These neuronal spikes will be processed by the
silicon-granular layer, which then generate the appropriately
timed output discrete spikes to trigger the stimulation to be
injected into the animal. Fig. 9(b) shows an electronic system
setup to demonstrate such experiment. A Virtex-5 board is em-
ployed to simulate the neural spikes inputs conveyed by MFs,
which are delivered to the FPGA cerebellum model via four bit
wires. The input discrete spikes are modeled as two 5 Hz and
two 30 Hz Poisson spike trains in 4-bits signals. The proposed
silicon granular layer is implemented on the Virtex-7 board
with the I/O interface for displaying the system output on the
oscilloscope in real-time [Fig. 9(c)]. The displayed GR spikes
were taken from three neural processors. The frame-based
signal is also shown which is used to monitor and verify system
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Fig. 8. (a) Spike patterns of 40 granule cells and Golgi cells chosen randomly in an implemented granular layer. (b) Comparison of similarity index between
software and FPGA simulations. The grey areas are the standard deviations of the hardware results. The errors between the two results are shown at the bottom.
The maximum error is less than 5%. (c) The reproducibility index is calculated by (5). It maintains a high value which suggested a robust POT representation
despite the input variability. (d) Spike patterns of 40 granule cells when NMDA channels of granule cells (upper panel) and Golgi cells (lower panel) were blocked.
Each neuron was chosen randomly from 40 different granule-cell clusters. The firing of the cells become rather regular and hence lost the capability of encoding
temporal information of POT. (e), (f) Comparison of similarity index between software and FPGA simulations when NMDA channels of granule cells (dotted line)
or those of Golgi cells (dashed line) were blocked. The similarity indices become flat indicating a loss of temporal structure in the granule cells’ activity pattern.

processing behaviors. When the task of each frame is finished,
the frame-based signal is changed to a high level value, and
each frame uses 25.6 us (the time between X1 and X2) to mimic
1 ms real-world activities. Hence, this setup can complete 1
sec real-world activities in 25.6 ms at full speed as shown at
Fig. 11. The system specifications are summarized in Table II.

V. DISCUSSION

A. Scalability of Different Platforms

In Fig. 12 we compare the performance of our design with
three alternative approaches previously proposed for imple-
menting spiking neural network (CPU, GPU and multi-core
bus). In addition to its higher computational speed, our
FPGA-based NoC approach clearly demonstrates scalability
compared with the other approaches. The computation time
remains almost constant even if the network size increases by
an order of magnitude.
An alternative is to use GPU processors which can supple-

ment or even replace CPU’s for parallelizable code. The rise

of GPU languages such as CUDA and Open CL have simpli-
fied their use enormously. Modern GPU’s exceed 5000 cores
and can increase processing speed by orders of magnitude for
parallelizable tasks [25], [26], [12]. Additionally, GPU’s offer
extremely high raw memory bandwidth, though this is difficult
to achieve in practice and requires adhering to strict memory
access patterns [25]. Nevertheless, with sufficient power, it is
possible to implement spiking neural networks for high speed
computation on a massively multi-core GPU. However desktop
systems require relatively large power consumption and are not
scalable to prosthetic devices. Mobile GPU systems found on
typical mobile phones are significantly more power efficient,
but have fewer cores, and the shifting incoming/outgoing data
via the CPU would significantly reduce their effectiveness. We
therefore chose an FPGA platform with large numbers of I/O’s
for potential in vitro and in vivo operation.
One key difference between our FPGA platform and pro-

cessor based implementations is that we utilize distributed, lo-
calized memory banks that avoid sharing of global memory re-
sources. This avoids delays associated with accessing global
memory and reduces power consumption by minimizing the
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Fig. 9. The overall system experimental setup. (a) The closed-loop prosthetic system. The hypothetical in vivo closed-loop experimental setup for cerebellum
rehabilitation. (b) The electronic experimental setup. An electronic setup to demonstrate the feasibility of the in vivo experiment. A Virtex-5 board (brain simulator)
is employed to simulate the biological spikes conveyed by MFs, which are delivered to the FPGA cerebellum model via four bit wires. The input discrete spikes
are modeled as two 5 Hz and two 30 Hz Poisson spike trains in 4-bits signals. The proposed silicon granular layer is implemented on the Virtex-7 board with the
I/O interface for displaying the system output on the oscilloscope in real-time. (c) The real-time Input/Output discrete spikes. Shows the real-time input/output
discrete spikes and the frame-based signal. When interfaced with an animal in a behavioral experiment, the output of the FPGA could be linked to the stimulators
for delivering timed electrical pulse stimulation to the brain. The outputs can alternatively be linked to model Purkinje cells which then be linked to the stimulators.

size and operating frequency of channels between processors
and memory.
The memory usage grows linearly with an increasing number

of cells. The major memory consumption is within the storage
of connectivity information between Golgi and granule cells.
On average, each Golgi cell is connected to 8 granule cells, so
the memory requires only 8 words per Golgi cell to store this
connectivity information. For each additional Golgi cell another
8 words is required.
A further variance on previous work is the use of frame based

encoding. One issue with real-time NoC systems is that spiking
information encoded in latency or frequency can be prone to
distortion due to congestion [27]–[29]. In contrast, we utilize
a stop-start approach whereby all the neural spikes processed
and then stopped to allow full transmission around the network
whenever necessary. This is actually akin to biology, whereby
synaptic transmission, dendritic signal integration and action

potential initialization can take time, but transmission speed is
actually very fast [30]. In addition to low distortion, this ap-
proach also allows us to easily compare among computational
models. We can simply extract a specific frame of the simu-
lations in all cases for detail comparison.
An alternative digital implementation to a NoC is perhaps a

bus between processing cores. However, increases in firing fre-
quency will lead to distortion of the information, which will
limit the system performance. Alternatively some of these ef-
fects can be alleviated using traffic management via hierarchical
AER architectures [31].
Using a NoC infrastructure as opposed to a bus also reduces

power consumption within the design as it allows for much
reduced clock frequency. Using Xilinx XPower Analyzer
we estimate that when implemented upon a Virtex-7 VC707
XC7VX485T-2FFG1761C Evaluation Kit each module, con-
taining a processor, router and interface, consumes 60 mW
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Fig. 10. The network on chip performance. It is the latency of packet
transmission against the rate of packet injection into the network. Packet
injection rate has only a minor impact upon latency within the expected range
of operation (40–60 Hz). The data plotted in red shows box plots of the latency
of packets through the network for varying degrees of background traffic.

Fig. 11. The real-time computational condition among CPU, GPU and FPGA
for simulating 1 s activities. The CPU and GPU results are cited from previous
work [12].

TABLE II
FPGA-BASED GRANULAR LAYER SPECIFICATIONS

Fig. 12. Scalability of four different approaches. The dotted lines represent
our estimation of system performances, whereas solid lines represent our
measurements. The FPGA-based NoC computation time remains constant due
to its parallel nature and the efficient communication system.

of dynamic power, equating to a total dynamic power con-
sumption of 2.88 W when running at full-speed, or 60 mW per
processing module.

B. Compare to Other Hardware Implementation Techniques
There are several possible alternative techniques to our frame

based network-on-chip architecture. To date, SpiNNaker [32],
Neurogrid [33], IBM SyNAPSE [34] are projects that build
custom chips or systems for efficient large-scale simulation of
general neural network models. These systems are powerful and
innovative; however, they may not be optimal for the system
that we are implementing in this paper. Based on the NoC
analysis, it was found that with the unique network connectivity
of the granular layer model that unicasting was more efficient
in terms of memory resources by a factor of approximately

. The bandwidth for both approaches remained approxi-
mately equal. The results of this investigation alongside the
reduced complexity of configuration within unicasting made it
the preferred choice. Neurogrid employs a smart approach to
combine analogue circuits for mimicking neural process and
digital circuits for implementing routing components. It can
potentially save significant amount of energy consumptions.
But, analogue circuits based dimensionless models are not ideal
to map conductance-based leaky integration-and-fire neuron
in POT model. IFAT [35] is also a well-established platform
for brain network real-time operation, but the analogue based
integrated and fire array may not provide good scalability.
We are seeking to further optimize our system and to use

it for other application. Cassidy et al. [36], [37] proposed a
neuro-array architecture for general large-scale neuromorphic
system with corresponding analysis. Their design principles, in-
clude external SRAM technique, can provide new insight for op-
timizing our system. Also, applying our proposed silicon gran-
ular layer to perform pattern recognition would be another ap-
plication which is similar to new IBM chip TrueNorth [34].
In fact, our proposed frame based network on chip architec-

ture is general for spiking neural networks, although in order
to implement other models, we need to modify the components
appropriately for the target model. For instance, in this work
the routing components (transmitter, router and receiver) are
customer designed for implementing POT recurrent random
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network connections; and neural processor architecture is also
specifically designed for mapping the connections from granule
cells to Golgi cells. Further system tweaking will be required
to optimize the performance for a different target model.

C. Neuro-Prosthesis Applications
For translation into neuroprosthesis, our architecture lends it-

self easily to electrical [38] or optical stimulationmethodologies
[39], [40]. The FPGA-based granular model can robustly predict
responses of POT behavior and thus be used to interface with in
vivo and in vitro experiment. Furthermore it is straight-forward
to translate generated spikes directly to tissue as each will be
encoded with a destination address.
For long-term neuro-prosthesis experiments this design can

be translated directly to an ASIC platform in order to increase
portability and to reduce power consumption. We estimate that
by translating our design into CMOS, each module will con-
sume 1.3 mW in high-speed operation and only 0.6 mW in real-
time operation, giving a total power consumption of 28.8 mW to
implement a neural network containing 100 000 elements. This
compares favorably to power requirements in the brain whereby
exceeding 100 mW can cause thermal damage [41].

VI. CONCLUSION
The goal of the work has been to implement a real-time cere-

bellar granular layer model onto a FPGA hardware platform
utilizing a NoC hardware architecture. Our design can achieve
(more than) real time operation for a system of 1000 Golgi
cells and 100 000 granule cells on a single FPGA board. This
is achieved via an efficient implementation of the mathematical
models of the neuron cells; and the use of a frame based archi-
tecture which eliminates congestion distortion of spike timing
in multiplexed networks. Our design is also highly scalable that
computation time remains almost unchanged for a much larger
network model.
The major contributions of this paper are summarized as

follows: 1) an efficient FPGA-based NoC hardware archi-
tecture is proposed for implementing a large-scale cerebellar
granular-Golgi layer model for POT encoding; 2) our imple-
mentation is computationally efficient that it can complete 1 sec
simulation in 25.6 ms and that FPGA provides precise timing
control. Together they allow our design to be readily adapted
for real-time closed-loop in vitro or in vivo experiment; 3) our
NoC architecture is highly scalable and hence it is now possible
to simulate the full-scale granular layer with cell density of 1
million cells/mm as in the real brain, which is 10 times the size
of the current model. Such simulation power can open up new
possibility for understanding the dynamics of the cerebellar
network; and 4) our design can be potential neuro-prosthetics
tool for future experimental and clinical applications owing to
its high computational power, flexibility, high scalability and
power efficiency.
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