IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 8, NO. 4, AUGUST 2014 453

Asynchronous Binaural Spatial Audition Sensor
With 2 x 64 x 4 Channel Output
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Abstract—This paper proposes an integrated event-based bin-
aural silicon cochlea system aimed at efficient spatial audition and
auditory scene analysis. The cochlea chip has a matched pair of
digitally-calibrated 64-stage cascaded analog second-order filter
banks with 512 pulse-frequency modulated (PFM) address-event
representation (AER) outputs. The quality factors (Qs) of chan-
nels are individually adjusted by local DACs. The 2P4M 0.35 um
CMOS chip consumes an average power of 14 mW including its
integrated microphone preamplifiers and biasing circuits. Typical
speech data rates are 10 k to 100 k events per second (eps) with
peak output rates of 10 Meps. The event timing jitter is 2 us
for a 250 mVpp input. It is shown that the computational cost
of an event-driven source localization application can be up to
40 times lower when compared to a conventional cross-correlation
approach.

Index Terms—Address-event representation (AER), audition,
cochleas, localization, neuromorphic, spike-based.

I. INTRODUCTION

N the field of auditory scene analysis, it is desirable to clas-

sify acoustic environments such as speech in soft or loud
surroundings; and to classify and localize auditory sources such
as human speakers, vehicles, cries of distress, dogs barking, or
gunshots. These tasks are conventionally achieved by digital
signal processing based on the regular sampling of the auditory
input signals at the necessary Nyquist frequency. Sampling fre-
quencies of microphone inputs typically range from 16 kHz to
192 kHz. Although parts of this digital processing have been
optimized in specific applications (e.g., 64-point FFT in hearing
aids), the resolution and sampling rate dictated by a given appli-
cation place a lower bound on continuous power consumption.
For example, the auditory timing resolution necessary for spatial
audition, where a 1 degree change of angle changes interaural
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delay by at most 6 us with microphones spaced by 10 cm, re-
quires a sample rate in excess of 100 kHz. Although it is possible
to reduce power by varying the sample rate dynamically ac-
cording to set criteria, it is fundamentally interesting to explore
an alternate approach inspired by biological audition, which has
been optimized by millions of years of evolution. By using bi-
ology’s event-driven computational architecture, it may be pos-
sible to build embedded auditory scene analysis sensors that
function for extended periods on battery or scavenged power.
Here we report progress in this direction in the form of a highly
integrated binaural silicon cochlea.

Biological cochleas use a space-to-rate encoding in which
the input sound is encoded as trains of pulses created from the
outputs of a set of broadly frequency-selective channels [1].
The pulses are phase-locked for low frequencies and this phase
locking disappears for frequencies above around 3 kHz [2]. En-
coding the information this way allows sparser sampling of fre-
quency information according to the active frequency channels
rather than the maximal sampling rate required to capture all in-
formation from a single audio source.

Event-based silicon cochleas such as the one proposed here
model the basilar membrane (BM) biophysics of biological
cochleas as a large number of coupled filter stages, followed by
half-wave rectification and asynchronous output quantization
in the time domain with transmitted data encoded using the
address-event representation (AER) protocol [3]-[11].

A binaural event-based silicon cochlea which efficiently
extracts events with spectrally-selective phase timing is desir-
able for spatial audition tasks [10]-[14]. These events preserve
timing of signals arriving to the two ears and post-processing
is cheaper because only a sparse stream of events needs to be
processed.

The proposed sensor builds on a long history of development
[15]-[17] by addressing a number of shortcomings of previous
work. Previous AER silicon cochlea designs offer either only
monaural operation [5]-[7], [35], poor channel matching [5],
[10], [18], do not integrate biasing circuits for process, voltage,
and temperature tolerant biasing [5], [15], [18], do not integrate
microphone preamplifiers [5], [7], [8], [10], [18], or do not in-
clude any per-channel calibration capability [5], [8], [10], [18].
None of the prior work has open-sourced host software APIs
and algorithms which enable rapid development of application
scenarios [19]. The binaural cochlear system described here is
the first fully integrated system that combines features of pre-
vious silicon cochlea designs that are robust to mismatch, along
with novel features for easier programmability of the architec-
ture and operating parameters. The chip includes integrated mi-
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crophone preamplifiers [20], [21], local gain adjustment, and
on-chip digitally controlled biases [22]. The scanned individual
basilar membrane and pulse-frequency modulated (PFM) cir-
cuit signals can also be digitized and read into the computer
through the USB port. A bus-powered USB board enables easy
interfacing to standard PCs for control and processing. The pro-
posed sensor corrects design errors in [23], includes off-chip
ADCs for recording audio input, and extends on [23] to re-
port measurements and analysis of the system performance, in-
cluding local gain control and matching.

The remainder of this paper is organized as follows. Section I1
describes the circuit architecture of the binaural chip. Section III
describes the implementation of the system and its characteri-
zation. Section IV reports measurement results from the chip;
in particular, Section IV.D compares the computational cost of
an auditory localization application using an event-driven algo-
rithm versus a sampled cross-correlation approach. Section V
concludes the paper.

II. CIRCUIT ARCHITECTURE

The binaural chip has two separate 64-stage filter banks
allowing direct connection to two electret microphones. Each
cochlea is implemented by a cascaded second-order filter bank
architecture [15], [17], [24] as shown in Fig. 1. In contrast
to the cochleas described in [5], [7], [16], [18], which model
the fluid coupling with a resistively-coupled bank of bandpass
filters, this cochlea does not explicitly implement the fluid cou-
pling because we believe the cascaded architecture [15]-[17]
is preferred over the coupled bandpass architecture [5], [7],
[9], [18] to achieve better matching and sharp high frequency
roll-off. The coupled architecture is particularly susceptible
to destructive interference at mismatched stages [5], [7]. By
using a defined number of sections per octave and a small input
amplitude in the cascaded architecture, the quality factors (Qs)
of the filters can be increased (up to a stability limit) without
introducing nonlinearities due to the restricted linear input
range of the amplifiers in a filter section [16].

iy
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Fig. 1. Cascaded architecture of 64-stage filter bank cochlea for one ear with four PFMs per channel.

A voltage-mode G,,, — C circuit is chosen for the initial part of
each filter on this chip [15]-[17], [24] instead of a current-mode
circuit [1], [3], [4], [6] because of the former approach’s better
robustness to transistor mismatch. Current-mode (e.g., log-do-
main) implementations are very susceptible to current copying
mismatch, especially in a cascaded architecture [1], [3]. The im-
pact of the smaller input linear range of the transconductors is
reduced by including gain control in the front of the filter cas-
cade, through the microphone preamplifiers.

The accumulation of noise and time delay along the cascade
favor a small number of sections per octave, making it harder to
maintain sufficiently high gain. However, maintaining accept-
ably high local gain is important for producing sufficient event
rates for processing, which is why this chip incorporates local
gain adjustment circuits as we will explain in Section IV.B.

Although the proposed system includes off-chip microphone
preamplifiers (MAX9814) with a 20 dB range of automatic
gain control, on-chip preamplifiers with an 18 dB range of
digitally controllable gain allow direct connections to electret
microphones with integrated JFETs and avoid the need for any
off-chip components other than the microphones [20], [21]. The
gain of the integrated preamplifiers is controlled by integrated
resistive feedback, where the feedback resistance is selected by
the digital gain control bits. This circuit is further discussed in
Section IV.

A. Filter Channel Circuits

Each stage of the filter cascade (Fig. 2) consists of a second
order section (SOS) filter made up of two forward amplifiers, A
and A,, and one feedback amplifier, As. The SOS is shown in
more detail in Fig. 3. The forward amplifiers have a wider input
linear range to reduce saturation which can lead to large-signal
instabilities [16]. The extended input range is achieved through
additional diode-connected transistors in the input branches of
the amplifier. The bias currents I and Iy to the amplifiers come
from compatible lateral bipolar transistors to improve matching
[24] and the Q of the filter is set by the ratio of Iy to I,. The
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Fig. 2. Single channel circuit details including Q adjustment by local DAC and HWR circuit. Cascodes in mirrors and differential pairs are omitted. req, and reqx
are the request signals to the AER communication circuit from each PFM. ack, and ack, are the acknowledge signals. The integration node, V.., of the PFM is

reset by Vg, the AND of the acknowledge signals from the AER circuits.
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Fig. 3. Second-order section filter. Transistor W/L are 3.2 um/1.8 um.

I currents vary exponentially along the filter cascade by taking
Vg, from a resistive ladder biased at both ends such that the
higher bias current (corresponding to higher cutoff frequency)
is at the input end. The exponential variation of I along the

filter cascade implements the approximate logarithmic depen-
dence of the preferred frequency selectivity with position along
the basilar membrane of the biological cochlea. Through a dif-
ferential pair, a fraction of the I, current {«l,) can be diverted
so that it is the bias current of the feedback amplifier. A local
digital-to-analog converter (DAC) adjusts the Vps ¢ value, and
hence the bias current to As.

A difference readout, V2-V1, of each SOS output drives
a half-wave rectifier (HWR) circuit, and the HWR output,
ITHC1:4, drives 4 PFMs with individual global thresholds (VT1
to VT4), allowing volume encoding by selective activation
of PFMs. Each PFM has its own AER address. Compared
with regularly-sampled audio systems, the PFM outputs are
transmitted asynchronously, which reduces latency down to the
delay along the filter bank and increases temporal resolution to
microseconds. The group delay is approximately 30 ms from
the starting filter (CF around 20 kHz) in the cascade to the last
filter (CF around 100 Hz). The maximum PFM event rate is set
by a bias that determines the refractory period of the PFMs.
During the refractory period following a pulse the PFM discards
input current. This bias is set so that approximately 1 spike
per cycle is generated by the highest frequency channel. Each
stage includes a kill-bit latch which stores a bit that suppresses
its PFM output. This feature allows for the suppression of
channels with high background PFM rates or for reducing the
number of channels that transmit output events. The application
of the latter helps to limit the post processing to the channels
of interest. In the measurements presented in this paper, the kill
bits are not used to suppress any channels.
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The difference output of a single SOS (which is also the input
to its HWR circuit) is the difference of the outputs of the forward
transconductance amplifiers A; and Ao

TS

Vour(s) = Va(s) = Va(s) = 1+ 75/Q+(15)

ZMH(S) (1)

where s is the complex frequency, @ = 1/(2 — gq/gr). 7 =
C/g,, and g, and gq are the transconductances of amplifiers
Aj 2 and Aj respectively. This difference readout adds a de-
sirable zero to the transfer function without introducing unde-
sirable gain proportional to frequency, as would occur with a
temporal high pass filter [24]. It sharpens the filter response to
approximate closer a band-pass response and reduces the phase
accumulation across the cascade.

The half-wave rectifier circuit is a simplified model of the
response of the inner hair cells (IHCs) of the biological cochlea.
The output of this circuit to first approximation is given by

IHVVR - max(()., ngout + Ioﬁ') (2)

where gy, is controlled by Vga.in, and Lg is a DC current that
can be set to bias a steady PFM output frequency. The linear
range of the HWR is increased by using diode-degenerated tran-
sistors and mismatch was reduced by using CLBTs as in the
SOS stage shown in Fig. 3. This HWR circuit was chosen be-
cause of its simplicity and the constraint of the HWR layout area
to fit the number of channels for each cochlea within a desired
chip area. Although this rectifier is functional, it does not rectify
small signals very well and introduces a considerable amount
of current-mirror mismatch when generating Vi to the PFM
circuit. Future versions of the cochlea will use a rectifier with
higher-performance rectification of small signals [6].

The mirrored Igwg, current drives 4 PFM circuits, each im-
plemented as an integrate-and-fire neuron model but with their
own individual threshold (VT) [25]. The number of events cre-
ated in a cycle is set by the amplitude and frequency of the input,
and the amount of charge needed to generate an event. The latter
is set by the capacitor Cy, in the neuron circuit and the threshold
voltage, VT. The charge input onto C,;, within a single halfcycle
of a sinusoidal input with amplitude A and period 7" is approx-
imately given by

T/2 T/2
2t A
CnV = / Iigc dt = / gm A cos (%) dt = g_

0 0

)

Thus the number of events generated per second, r, is given
by r = fV/VT = (gmd)/(xCVT), so r is proportional to
the amplitude of BM activity but does not depend on frequency.
The 4 PFM circuits can be set with different VT’s so that the
PFM circuit with the higher VT will produce an output only for
higher Igwr values compared to the one with the lowest VT.
The output rate of the PFM can also be limited by a refractory

bias. This feature is useful when the output rate of the cochlea
is high due to multiple channels firing at the same time. The
multiple PFM circuits emulate the multiple spiral ganglion cells
with different firing thresholds driven by a single IHC in the
biological cochlea.

B. QO Adjustment Circuits

To control the Q of each filter individually and to provide
top-down control of the Qs of specific filter channels, a local
Q-adjustment digital-to-analog converter (QDAC) is incorpo-
rated within each stage. The ratio of the bias currents of the
forward and feedback amplifiers, I and Ig, in the SOS stage
of each filter sets the Q of the filter. The effective gain of the
output of each section, when embedded in the cascade, is larger
than the maximum gain of a single section, because the reso-
nances of neighboring sections, where their gain is larger than
one, overlap. The gain will increase for the first few sections in
the cochlea, after which it settles to a constant maximum value,
which is a function of the Q of the individual sections and the
number of sections per octave of preferred frequency.

The local bias current I is derived from a current splitter
controlled by 5 bits. The current splitter comes from the bias
generator circuits used on many neuromorphic chips [26]. A
voltage Vpac is generated from the output DAC current using
a diode-connected transistor. The Vpac value determines the
I bias current of the feedback amplifier.

C. N'th Transfer Function

The output V,ut_n of the n’th stage in the cascaded architec-
ture is described by

Ths

‘/out_n(s) = n
[I[1+7is/Q+ (75)?]

=1

V:ﬁud (5) (4)

where 7; is the time constant of the i’th stage and is dependent
on the bias Vp,, from the resistive ladder in Fig. 3; and V4 is
the input to the first SOS of the cascade. The assumption in (4)
is that all stages have identical Q.

III. IMPLEMENTATION

The AEREAR?2 chip (Fig. 4) was fabricated in a 0.35 um
2P4M CMOS process. The PFM output addresses are trans-
mitted asynchronously off-chip using the AER protocol [27].
A bus-powered USB board based on [23], [28] with integrated
microphones (Fig. 4) interfaces to a PC running jAER, an open-
source software project for the real-time processing of AER
sensor output [19]. The USB interface time-stamps the events
with a 1 us resolution. The time-stamped events are sent to a PC
where they are processed for applications. For natural sounds,
the on-chip microphone preamplifiers were used. Additionally
for analysis of channel responses, input was applied from a
PC sound card directly to the filter cascade (i.e., bypassing the
preamplifiers). Off-chip ADCs (Analog Devices AD7933) dig-
itize various signals for characterization: the microphone inputs
to the chip, the scanned outputs of the basilar membrane and the
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Fig. 4. Die photograph and prototype USB board.

neuron potentials of the PFM circuits, which are accessed by the
shift register labeled Scanner in the die photograph.

IV. MEASUREMENT RESULTS

In contrast to most prior work, the results in this paper pri-
marily report measurements from the final digital PFM outputs
of the chip rather than from intermediate signals.

Fig. 5 shows event rasters and the analog input sound wave-
form in response to a spoken sentence at a distance of 1 m from
the PCB at normal speech volume (65 dB LAF SPL as mea-
sured with a Bruel & Kjaer 2250). The background noise level
consisting of a nearby computer with a noisy fan was at 45 dB
LAF SPL. The on-chip preamplifiers were used for this mea-
surement at the gain = 2 setting (Fig. 6). In Fig. 5(a), each
dot represents one event; here the events from the two cochleas
are shown in different colors. The sentence was intentionally
spoken as isolated words to make it easier to see the structure.
Vowel phonemes such as “ah” and “ee” and “00” are distin-
guishable and repeatable by inspection as well as fricatives such
as “ch” and “t”. Certain channels are more excitable than others
and have background activity leading to a sustained background
event rate of about 4 keps. The mean event rate is 80 keps with
a peak event rate of about 325 keps. The sampled microphone
output as recorded through the on-board ADC is displayed in
Fig. 5(b).

The on-chip microphone preamplifier based on [20] includes
4 levels of gain setting, implemented by digital selection of the
feedback resistance R¢ as shown in the preamplifier circuit in
Fig. 6(a). The preamplifier input V . is connected to a standard
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Fig. 5. Response to spoken sentence “Which tea party did Baker go to?”
(a) Events from right (red) and left (green) PFM outputs. (b) Sampled audio
from right microphone preamplifier output.
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Fig. 6. (a)Integrated microphone preamplifier. (b) Relative acoustic frequency
responses. Each curve shows gain of preamplifier relative to lowest gain setting.

electret microphone capsule, which includes an integrated JFET
J1, as illustrated. The DC microphone current is supplied by the
large on-chip transistor M2. The small-signal variations in JFET
current |y ac flow across the feedback resistance R¢, which can
be varied from 80 k{2 to 8 x 80 kf2. The preamplifier holds its
input Vi, at the virtual ground Vyicref. The transconductance
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Fig. 7. Chirp response. Event rasters recorded from the 64 channels of both
cochleas as the frequency of the input is logarithmically swept from 15 Hz to
10 kHz with an amplitude of 600 mVy,,.

amplifier nOTA servos V,q so that M2 supplies |mic.pc and the
nOTA transconductance g, determines the corner frequency.

To measure the microphone preamplifier V,,4 response
characteristics, we use an SR780 spectrum analyzer to record
swept-sine frequency responses at the preamplifier output in
response to sinusoidal sound played from a JBL Professional
speaker at a distance of 1 m from the cochlea PCB. We also
measured the response using the Bruel & Kjaer reference
microphone at a point which is a few cm from the AEREAR2
microphone. At a driving amplitude of 100 mVpp, the resulting
sound volume at the cochlea PCB is 60 dB LAF SPL which
produces a preamplifier output amplitude of 50 mVpp at 1 kHz
with the gain = 1 setting. An anechoic chamber was not avail-
able for measuring the preamplifier auditory transfer functions;
as a result, there were a number of peaks and dips of up to
30 dB in the recorded frequency responses due to reflections
from the lab bench and the AEREAR2 PCB. We first computed
the ratio of the AEREAR2 preamplifier response to the Bruel
& Kjaer microphone response. The frequency response curves
in Fig. 6(b) show the ratio of this relative response to the
relative response at the lowest gain setting. Gain settings of
2, 4 and 8 result in expected 6 dB differences in gain. The
corner frequency is controlled by the preamplifier feedback
OTA transconductance (g.,) bias current and was set to about
300 Hz. The high-frequency cutoff is set by the forward ampli-
fier bias currents to be at about 20 kHz, but the sharper cutoff
as illustrated in Fig. 6(b) comes from the additional speaker
cutoff. The peaking in the response that increases at higher gain
settings is probably a measurement artifact caused by increased
SNR in the measurement of the acoustic response at higher
amplitude output.

Characteristics of the final AEREAR2 PFM outputs are
revealed by using a chirp frequency sweep as an input.
Fig. 7 shows the raw PFM outputs of the 64 channels of the
two cochleas in response to a chirp frequency-sweep with
600 mVpp amplitude at the filter cascade input. All channels
respond to only a limited frequency range of the chirp. At
any one frequency, about 15 channels respond to this large
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Fig. 8. PFM frequency and amplitude responses of three channels. Each curve
represents the event-rate response versus sinusoidal input frequency for dif-
ferent input amplitudes of 200 mV,,;, to 1200 mV,;, in steps of 200 mV.

amplitude input. At 15 Hz, for example, there is a burst of five
events during each rising edge of the input. The peak event rate
is similar over all channels because as explained in Section II.A
the PFM circuit requires a fixed amount of charge to generate
each event and at higher frequencies each event requires more
cycles.

The amplitude and frequency response characteristics are
also revealed by varying sound volume. Fig. 8 shows mea-
surements of frequency responses of three widely-separated
channels for six different sound volumes. Frequency responses
broaden with volume as more PFMs go above threshold, but
the upper cut-off frequencies and roll-off slopes do not change.
This effect also causes a small change in the characteristic
frequency (CF) as a function of input amplitude.

For spatial audition, it is important that corresponding chan-
nels from the two cochleas are matched. Fig. 9 shows the CF,
the number of events per second, and the measured Q values
extracted from one of the four PFM outputs of each channel
of both cochleas. The CFs (Fig. 9(a)) are logarithmically dis-
tributed over the 64 channels and for the 60 of 64 channels
where both cochleas respond to the 340 mV,,, input the CFs
are matched to ¢ = £6% between the two cochleas at corre-
sponding channels. The event rate (Fig. 9(b)) varies substan-
tially due to mismatch in both the PFM and half-wave rectifier
circuits but because of the constant Q across the filters and the
difference readout scheme of the SOS, the mean of the event
rate is approximately constant along the filter cascade. The Qs
(Fig. 9(c)) are computed as (CF/width at 0.7 of response at the
CF) and are matched between cochleas to o = +27%. The event
rate and Q matching are poorer than the CF matching because
they are more sensitive to the “iceberg” effect of HWR output
variation or PFM neuron threshold. A channel with a smaller
HWR output or a higher neuron threshold will produce an arti-
ficially high Q value because it will respond only over a small
range of frequencies. We discuss how these non-idealities can
be improved in the conclusion.
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Fig. 9. Measured characteristics from PFM output #1 at input amplitude of
270 mVpp. (a) Extracted binaural CFs for left and right cochleas. (b) Event rate
at each channel. (c¢) Extracted Q values at each channel.

A. Frequency Extraction

Although the tuning of the filters is relatively broad as is ob-
served in biological cochleas, the frequency of the input signal
can be extracted with very high precision from the PFM out-
puts of the channels. Fig. 10(a) shows the PFM outputs for an
input of a particular frequency. The recorded inter-pulse PFM
intervals are first pre-processed by imposing a refractory period
in software so that multiple events within a single half-cycle
which lead to small PFM intervals are removed. By histogram-
ming the time intervals between the processed events and lo-
cating the peak value of the histogram, we can measure the
input frequency. Fig. 10(b) shows the extracted input frequency
using this method from a range of input frequencies. Using this
method, the input frequency can be extracted to the precision
of the event timing jitter. The measured jitter using a sinusoidal
input of 250 mVpp is less than 2 us at 1 kHz, therefore the input
frequency can be measured to a precision of better than 0.2%
error at 1 kHz from single event intervals, and the error is re-
duced as additional events are accumulated. In the biological
cochlea, the extraction of the frequency is not possible at high
frequencies because phase locking breaks down above approxi-
mately 3 kHz [2]. In the AEREARZ2, the highest input frequency
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Fig. 10. Extracting input frequency from event timing. (a) Example of PFM
ouputs for a single input frequency of 1.7 kHz. Each channel is phase locked to
the input but with different phase. (b) Measured period from PFM outputs versus
period of input frequency. Input frequencies played from 100 Hz to 5.88 kHz
with input amplitude of 250 mVpp. The measured period is extracted from the
peak location of histogram of the processed event intervals.

which can be extracted is dependent on the setting of the refrac-
tory period of the neuron.

B. Digital Q Adjustment

As described in Section I1.B, the Qs of the PFM outputs can
be adjusted through the local QDAC. Fig. 11(a) shows the effect
of the QDAC code on the analog SOS output V,; (described in
Section I1.C) of a single channel. Decreasing the QDAC code
increases the channel gain of the analog SOS output. The Q dif-
ference between QDAC = 7 and 23 is about 6.7% with Q = 1.2
for QDAC = 23. The Q increase is small because of the lim-
ited linear input range of the amplifiers. Fig. 11(b) shows that
a local reduction of gain can be produced by only changing the
QDAC value in a part of the filter cascade. The plot shows the
ratio (after/before) of the maximum PFM output rate from each
channel. Here the QDAC code is changed in sections 35 to 40
to reduce the gain, resulting in fewer events from these stages.
The event rate of stages downstream (41-45) are also affected
because of the cascaded architecture. This influence is limited
by the rising part of the filter response of a channel, its partic-
ular best frequency, and the minimum response needed to gen-
erate a PFM output. Fig. 11(c) shows the opposite, that the gain
of stages 50 to 60 is increased by decreasing the QDAC code
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Fig. 11. Effect of QDAC. (a) The effect of QDAC on the analog output of a
single SOS within the cascade. Decreasing QDAC code value mainly increases
the channel gain (by 7 dB) and slightly increases Q. (b) Locally decreasing gain
in channels by changing QDAC. Decrease in gain of channels 35 to 40 when the
code is changed from QDAC = 13 to QDAC = 15. The plot shows the ratio
of event rate (after/before) by this local change. Measurements are done with a
swept sine input at an amplitude of 600 mV .. (c) Same as in (b) but here the
gain for the low frequency channels from 50 to 60 is increased.

in these channels. Because the responses after the change of
QDAC are larger, channel mismatch causes the change in the
responses to be more variable. Because of the cascade structure,
the cochlea response is affected for stages within and down-
stream from the modified channels. Thus the QDAC can be used
to locally control cochlea frequency response, mainly by con-
trolling the gain.

Measured ITD (us)

100
-100

-50 0 50
Played ITD (us)

100

Fig. 12. Event-based correlation algorithm histogram results for interaural time
delay (ITD) for recorded speech. Response is based on a sound mixture of two
frequencies. Each column represents one histogram and dark values represent
a large correlation. (Reanalyzed for finer ITD resolution from data in Fig. 4 in

[14])

C. Localization Application

The event-based AEREAR?2 system is presently being used
in a variety of applications [29]-[32]. In this section, we de-
scribe one of these (i.e., sound localization) as an example. In
the method used here, sound localization is based on interaural
time difference (ITD) and is conventionally done by applying
generalized cross-correlation methods on the sampled outputs
of binaural microphones [33]. These methods use various pre-
whitening filters on the input signals before estimating the delay
between the two signals [34].

From the binaural PFM outputs of the AEREAR2, an event-
based localization algorithm was proposed in [14]. In this work,
the authors show that the spatial resolution based on the ITD in-
formation in the PFM AEREAR?2 events can be inferred with a
mean error of less than 1 degree (corresponding to a temporal
resolution of 6 us). This resolution is comparable to that ob-
tained using generalized cross-correlation methods based on the
raw microphone outputs sampled at a rate of 100 kHz.

In the case of the event-based algorithm, correlations are per-
formed on each event, by matching it to the past few events in a
time window of 1 ms (corresponding to the maximum possible
delay) from the corresponding channel in the other ear. These
possible matches are accumulated in time-decaying histograms,
and the possible ITDs of sources are inferred from the peaks of
the ITD histogram. The ITD extracted from a single pairing of
events from the left and right ears can be weighted depending
on the silent period prior to the paired events and this weighting
suppresses false ITDs caused by reflected sound, because the
direct sound is weighted more heavily.

Fig. 12 shows these weighted ITD histograms as a function
of the played ITD for speech input. For each played ITD, the
peak of the ITD histogram follows the played ITD. The event-
based approach is advantageous over the conventional methods
for several reasons. First, it requires few computational opera-
tions because of the event-driven form of the input events (i.e.,
correlations are not performed unless there is an input sound).



LIU et al.: ASYNCHRONOUS BINAURAL SPATIAL AUDITION SENSOR WITH 2 x 64 x 4 CHANNEL OUTPUT 461

0.18
Histogram decay time constant: 128ms
0.17}

0.16¢

0.15¢

Latency to correct ITD (s)

107 10° 10' 107 10
Onset detection parameter (ms of silence to maximum weight)

Fig. 13. Mean latencies in the estimated ITD after the speaker location changes.
The latency depends mainly on the histogram decay time constant (128 ms) but
is reduced slightly by a higher weighting of sound onsets. (Adapted from Fig. 6
in [14].)

Second, sounds onsets are most important to consider in local-
ization because they represent direct rather than reflected paths
and with event-driven processing sound onsets can be easily
weighed more strongly, simply by weighting an ITD by the
length of silence before the event. Third, the estimate of the lo-
cation is fast; usually with 100 events a good estimate is already
obtained. Fig. 13 shows that new speaker locations are detected
with latencies of about 170 ms even with histogram decay time
constant 7 = 128 ms. As onsets are weighted more strongly,
latency is still further decreased.

D. Comparison Between Event-Based and Conventional
Sound Localization Algorithms

Although digital solutions are typically favored in audio
applications, the proper combination of analog and digital
processing following the microphone front end can offer ad-
vantages in both power dissipation and computational cost
[35]-[38]. Digital solutions usually comprise a front-end ADC
that samples the audio signal at tens or hundreds of kHz with 16
(or more) bits of precision. The samples are then processed by
a digital signal processor (DSP). However, not all applications
require the information carried by the high amplitude precision
of the sampled values. For example, only precise phase timing
in the input frequencies is needed for music appreciation in
cochlear implant patients [35]. The cochlear implant processor
by Sit and Sarpeshkar, for example, produces asynchronous
outputs which encode the zero-crossings of the outputs for each
of the 16 channels, thus preserving phase timing of the signals.
In this design, the authors argued that they were able to design
a much lower power dissipation processor (357 uW) than the
5 mW dissipation power of a digital system which includes
both ADC and DSP.

The main computational advantage of the AEREAR? is that
the sensor only outputs data in response to sound energy at its
input. But event-based algorithms like the event-based local-
ization algorithm described in Section V can also be computa-
tionally cheaper than conventional algorithms that use sampled
inputs because computation is driven by signal activity. To see
this, we will assume that the AEREAR?2 produces data at a fixed

rate in response to speech and compute the number of operations
needed for localization using the cross-correlation of the sam-
pled outputs of two microphones and compare this number to
that used by the event-based localization algorithm. For regular
sampling, cross correlation is performed by fast Fourier trans-
form (FFT) on each microphone input, followed by FFT mul-
tiplication across inputs, followed by inverse FFT (IFFT). To
determine the number of operations, we assume a desired reso-
lution of 10 us, and we assume an FFT operation of 128 sam-
ples of an audio signal sampled at 44.1 kHz. Then we will need
an FFT every 2.9 ms or 344 FFTs per second for each input of
the 2 ears. Each FFT has a cost of about 3 k arithmetic opera-
tions (op). We can neglect the small operational cost of the cross
multiplication of FFTs. We then compute the number of oper-
ations needed for the IFFT. We perform the IFFT at 200 kHz,
to provide 10 us resolution on the cross correlation. Thus each
IFFT has a cost of approximately 12 kop. The total cost is thus
344 (3k*2+412k) = 6 Mops operations per second (ops). The
AEREAR?2 system produces an average PFM rate of 20 keps
under normal speech conditions at a distance of several me-
ters. For each PFM event from one ear, there is an average of
three pairings of ITD events with the opposite ear, leading to
60 kops. We have to consider in addition, the number of oper-
ations to decay the histogram. There are 140 bins for a 10 us
resolution over 2700 us. Decaying the histogram every 2.9 ms
requires 100 kops, although in practice this decay can be done
at a much lower rate defined by the desired latency. The total
cost is about 150 kops. Thus the event-driven method is about
6M/150k = 40 times computationally cheaper than the sam-
pled method. We have left out for the sampled approach the cost
of pre-whitening the input signals. The event-based approach is
easily computed in fixed point arithmetic while FFTs are sensi-
tive to round off errors.

V. CONCLUSION

Table I compares design features and specifications to prior
work. Compared with prior work, results from this work are pre-
sented based on measurements from final PFM digital output.
This cochlea provides binaural operation, integrated biasing, in-
tegrated microphone preamplifiers, USB2.0 high-speed inter-
face, and open-source host side software. It achieves usable dy-
namic range of 52 dB when combined with a preamplifier with
adjustable gain, and a power consumption of 14 mW. Dynamic
range is currently limited by the amount of basilar membrane
voltage signal required to generate PFM events and could be
improved by increasing preamplifier gain or decreasing neuron
threshold. Across-ear matching of CF (o = 6%) and Q (¢ =
27%) is satisfactory for spatial audition tasks as demonstrated
by application studies but cannot be compared with other de-
signs which do not report these values.

The AEREAR?2 includes on-chip channel adjustment for
controlling spectral selectivity in cascaded filter bank designs,
where they are particularly valuable. It also achieves usable
matching between corresponding channels from the left and
right ears, which is important for spatial audition. The inte-
gration of on-chip per-channel Q adjustment and user-friendly
USB implementation is useful in future work on application
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TABLE 1
SPECIFICATION COMPARISON OF AER COCHLEAS
This work Passive coupling  |Parallel [6] Cascade [10] Active coupling [5]
[7]
Technology 0.35um 2P4M 0.35um CMOS 1.5um BICMOS  [1.5um 2P-3M 0.25um 1P-5M
CMOS CMOS CMOS
Design size 2.29mm x 6mm 6.2mmx2.8mm 9.58mmx9.23mm (2.3mmx1.5mm 3.76mmx2.91mm
(13.74mm?) (17.36mm?) (88.42mm?) (3.45 mm?) (10.9 mm?)
Channel count 64x2 100 16 32x2 360
PFM outputs 512 100 16 64 2160
Supply voltage 3.3V 3.3V 2.8V 5V 2.5V
Features
Integrated microphone preamplifiers Yes Yes
Integrated digitally controlled biases Yes Yes Yes
Binaural operation Yes
USB implementation Yes Yes
Open source code base Yes
Characterization (at final PFM output)
Power consumption 12-22mW 4.3mW 251uW NA 52mW
Dynamic range 52dB (note 1) NA 77dB (zero NA 52dB
to produce PFM output Crossings)
Frequency range (nominal) 50Hz to 50kHz 120 Hz to 50 kHz 200 Hz to 20 kHz |200 Hz to 10 kHz |210 Hz to 14 kHz
PFM Best characteristic frequency (CF) [£6% between ears |8-14% (note 2) No PFM output  |[NA NA
matching (o) at 340mVpp
PFM Q and Q matching 1.5+0.4 (£27%) |Q=3 Q=4 (Q;=042) [NA Qi=1.16£0.92
(CF/width at 0.7 of CF) @ 450mVpp
Event timing jitter, 1kHz , +2us at 250mVpp [Z2C 10us at 10kHz NA NA
PFM peak bandwidth 10M events/sec Sampled Sampled 0.5-2kHz |[NA NA
PFM speech event rate 10-100k events/sec [NA NA NA NA
NA=not available
Note 1: 52dB (25uVpp to 10mVpp) when combined with preamp gain control. 36dB (25mVpp to 1500mVpp) at microphone preamp output
Note 2: Not Applicable for Binaural (INL of log(CF) distribution is within —14% to 8% of CF,
DNL peaks at 18% of CF.)

scenarios. Using the local QDAC, the implementation of a
real-time feedback loop which adjusts the local Q based on the
local signal levels can be developed in the future.

The application of the AEREAR?2 in a localization task was
also described. Processing is done on the asynchronous PFM
events rather than on spectrograms generated from sampled
raw audio inputs. In a scenario where the AEREAR2 generates
output continuously at a rate of 20 keps, the computational cost
associated with the event-driven form of the cochlear outputs
suggest a 40x lower computational cost for post-processing
algorithms compared with conventional cross correlation
methods, as outlined in Section IV.D.

The sensor design can be further improved. At present, be-
cause the implemented QDAC circuit uses the large master cur-
rent at each stage it consumes at least 30% of the analog power.
Simple redesign of this circuit will reduce the power consump-
tion significantly. Although the present design is suitable for
normal speech volume at distances of 5 m, increasing the range
of on-chip preamplifer gain values and improved HWR and
PFM circuits will lead to direct improvements of dynamic range
for softer environmental sounds. The large-signal transfer func-
tion of the microphone pre-amplifier is not ideal. We have iden-

tified it is due to the non-ideality of the feedback nOTA, and we
are working on an improved version for the future. Inclusion of a
low-resolution DAC for calibrating the output of the half-wave
rectifier circuit which drives the PFM circuit will improve sensi-
tivity and uniformity. The addition of local gain control circuits
will implement closer the functionality of the biological cochlea
as explored in [39], [40].

Because of the novel asynchronous output representation and
the user-friendly implementation of this cochlea, we can begin
exploring event-based digital signal processing algorithms for
application in auditory tasks such as spatial audition [10], [13],
[14], speaker identification [29], [30], [32], [33], isolated digit
recognition [31], and in multi-sensor fusion.
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