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Abstract—In spike sorting systems, front-end electronics is a cru-
cial pre-processing step that not only has a direct impact on detec-
tion and sorting accuracy, but also on power and silicon area. In
this work, a behavioural front-end model is proposed to assess the
impact of the design parameters (including signal-to-noise ratio,
filter type/order, bandwidth, converter resolution/rate) on subse-
quent spike processing. Initial validation of the model is provided
by applying a test stimulus to a hardware platform and comparing
themeasured circuit response to the expected from the behavioural
model. Ourmodel is then used to demonstrate the effect of the Ana-
logue Front-End (AFE) on subsequent spike processing by testing
established spike detection and sorting methods on a selection of
systems reported in the literature. It is revealed that although these
designs have a wide variation in design parameters (and thus also
circuit complexity), the ultimate impact on spike processing per-
formance is relatively low (10–15%). This can be used to inform
the design of future systems to have an efficient AFE whilst also
maintaining good processing performance.

Index Terms—Analogue Front-End (AFE), Brain-Machine In-
terfaces (BMI), neural interface, spike detection, spike sorting.

I. INTRODUCTION

U NDERSTANDING how the action potentials propa-
gating through billions of neurons in the brain produce

our thoughts, perceptions, and actions is one of the greatest
challenges of 21st century science. The ability to interface to
these neurons using electronics is presenting new opportunities
for neural rehabilitation with prosthetic devices. For example,
sensory cochlear implants, are already impacting the quality
of life of around 300,000 individuals with profound deafness
[1]. More recently, owing to the developments in robotics,
neuroscience and microelectronics, emerging motor prosthetics
have already demonstrated that mobility, lost due to spinal cord
injury or neural diseases, could be restored [2].
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Experimental recording of large numbers of neurons is thus
an extremely important task, but one that requires overcoming
several technical challenges. Recent years have seen the devel-
opment of micro-fabricated neural probes such as the Utah and
Michigan arrays, now commonplace in experimental labs, and
likely soon in clinical applications such as brain-machine in-
terfaces for paralysis [3], [4]. For any portable or implantable
device, such probes require miniature electronics locally to am-
plify the weak neural signals, filter out noise and out-of-band in-
terference, and digitise for transmission. With recent advances
in modern semiconductor technology, this is now possible and
has sparked significant research activity in the community, par-
ticularly in this last decade [5]–[19].
The specifics of the electrode material, the electrode/tissue

interface as well as the nature of the bio-potential signal itself
pose challenges on the front-end microelectronics [20]. The
signals observed contain an electrode offset potential (due
to the electrode-electrolyte interface) as well as both the ex-
tracellular action potentials (EAPs) and local field potentials
(LFPs). The EAPs typically have amplitudes of 25 -1 mV
and are recorded with a signal band of 300 Hz-5 kHz, whereas
the LFPs have amplitudes up to 10 mV recorded with a signal
band of 1–300 Hz [21]. Additionally, the electrode-electrolyte
interface introduces an offset that can be several hundreds of
millivolts, with the micro-electrodes themselves contributing
thermal noise due to their relatively high impedance. All these
factors dictate the minimum requirements for the front-end
electronics, that are additionally limited by resource constraints
(power, size and bandwidth). In particular, the desire to make
such systems implantable poses limits on size and thermal
dissipation (i.e., to prevent tissue damage) [22], as well as
requiring wireless transmission (i.e., thus limiting communica-
tion channel capacity) [23], [24].
Following the front-end processing, spike sorting is a tech-

nique commonly used on EAP recordings to separate the signal
into spike patterns of individual units (i.e., neurons) [25]. This
is based on the fact that the dynamics of each neuron varies, in
addition to the topological placement of the micro-electrodes
(i.e., in orientation and proximity) [26]. This results in each
neuron having a slightly different spike profile when observed
at the electrode that can be identified by means of feature ex-
traction followed by clustering. There exists numerous methods
for achieving feature extraction (e.g. templates, peaks, deriva-
tives, wavelets, principle component analysis) [25], [27], and
clustering (e.g. valley detection, k-means, expectation maximi-
sation, super-paramagnetic clustering) [25].
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Fig. 1. General architecture of a neural interface. (a) Analogue Front-End (AFE), consisting of a low noise amplifier (LNA), filter and analog-to-digital converter
(ADC). (b) Back-end spike processing.

Fig. 2. Basic system behavioural macromodel, including input parameters for each functional block. This include the electrode (equivalent resistance and
bandwidth), pre-amplifier (gain, IRN and frequency cut-offs), filter (type and cut-off frequencies) and ADC (sampling frequency, resolution and references).

Regardless of the choice of sorting method, sorting accuracy
directly correlates with the performance of front-end electronics
[28]. While the demand for sorting performance enforces min-
imum requirements on the front-end, the resource constraints
(power and area) limit the scalability but also strike a trade-off
with the front-end specifications. In order to ensure a good bal-
ance between accuracy and hardware requirements, one must
identify all parameters associated with each stage of front-end,
and analyse their effect on accuracy and hardware resources.
Our early work, [28], investigated the effect of varying the

front-end design parameters in order to maximise spike sorting
performance. Although this does give single dimensional
trends, since there are several parameters, this is essentially
a high dimensional problem. It is therefore challenging to
converge on any single “ideal solution”. The work in this paper
therefore tackles this issue by taking a holistic approach, con-
sidering the system as a whole. By developing a behavioural
model, the impact of front-end circuitry on back-end processing
can be easily established. With the proposed tool, the designer
can investigate the effect of different parameters in a fast way,
and before committing to a specific circuit implementation. A
good balance between design complexity and outright system
performance can therefore be struck at design time.
This paper is organised as follows: Section II describes the

methodology (front-end modelling, test data, spike detection/
sorting and evaluation), Section III briefly outlines the Matlab-
based tool developed, Section IV validates the proposed model
by comparing its response to an integrated circuit implemen-
tation, and finally, Section V applies the behavioural model to
relevant systems reported in the literature and discusses hard-
ware impact on system performance.

II. METHODOLOGY

A. Front-End Neural Interface Architectures

The typical architecture of any front-end neural interface
(for applications of EAPs) contains three fundamental blocks:
(1) a low noise bio-potential amplifier, (2) bandpass filter, and
(3) data converter (Fig. 1). The signal analysis chain that fol-
lows typically includes spike detection, feature extraction and
clustering methods to achieve some level of inference about
the spike data (e.g. extracting spike intervals, features, identity,
etc.). When an element of the signal analysis chain is imple-
mented online (i.e., in a chip implementation), one can achieve
significant levels of data compression, and subsequently reduce
bandwidth requirements [24].
In this section we will describe, model and identify the key

parameters associated with the fundamental building blocks of a
neural interface front-end. Spike detection and sorting methods
and metrics, as well as test data, will also be described.

B. Front-End Behavioural Model

To accurately characterise front-end architectures and cir-
cuits, we must consider not only ideal behaviour, but also the
non-idealities that a realistic circuit implementation introduces
[29]. This can significantly affect the signal fidelity and as such
may impact downstream spike processing.
1) Electrode Model: The electrode is the conduit between

acquisition electronics and neural tissue. Over the last several
years, with the drive of microtechnology and fabrication tech-
niques the number of simultaneously recorded single neurons
has greatly increased and projected to double every seven years
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[30]. Commercially available multi-electrode arrays today can
interface with 10 s to 100 s of electrodes [31].
Each electrode is typically characterised by its charge density

(for stimulation) and impedance characteristics [32], the latter a
vital parameter for recording. In-depth characterisation of some
of the state-of-the-art in electrodes can be found in [31]. The
impedance characteristics of the electrode play a vital role in de-
riving the noise added to the signal prior to amplification [32],
[33]. This non-ideality is attributed to electrochemical effects
at the tissue-electrode interface, scar tissue formation, and in-
herent electrical properties of the electrode (i.e., material, area)
[32]. When in contact with tissue, the electrode forms an elec-
trical double layer capacitance.
This capacitance depends on the electrode surface texture and

area [21], [32], and it is calculated as a series combination of
double layer and diffusion layer capacitance. It is typically mod-
elled as as constant phase element (CPE) [34], which is highly
dependant on electrode area.
We can also consider impedance changes due to injury related

mechanisms, possibly as a result of electrode insertion into the
tissue. For simplicity, the electrode can simply be modelled as a
frequency independent model [32], [35], where the dominating
restive contribution includes spreading or seal resistance (resis-
tance between electrode and medium, i.e., neural tissue). The
noise is then defined as

(1)

where is Boltzmann’s contestant, is temperature in Kelvin,
is the electrode resistance and the signal bandwidth. In a

number of studies is measured at a specific frequency [30],
[31].
2) Pre and Post Amplifier Model: After the electrode a low

noise pre-amplifier is required to increase the signal level from
sub-mVs to 10 s of mVs with minimal additional noise. These
are typically designed to be AC-coupled to remove DC elec-
trode offset which can be in the order of 100 s of mV depending
on electrode material. Gains of 50–200, bandwidths of 3–10
kHz, and input-referred noise (IRN) of 2–10 are typical
specifications for these amplifiers [6], [15].
Since both the pre- and post-amplifiers are the same in terms

of functionality, the model described below applies to both. Due
to the pole introduced by the device parasitic capacitances, the
gain of the amplifier starts to roll-off (20 dB/dec) at high fre-
quencies, which can be characterised by a low-pass response. In
addition, since the DC offset introduced by the electrodes need
to be removed [8], often front-end amplifiers are built with a
high-pass response introduced via a feedback loop [36]. There-
fore, we used a 2nd order Butterworth filter with a mid-band
gain to model the amplifier. Although amplifiers may contain a
second pole, this is typically placed at frequencies higher than
the ones of interest for phase stability.
The IRN of the amplifier is a combination of thermal and

flicker noise and is normally measured in . In a
model, this is a key target specification, and it can be combined
with the amplifier bandwidth to give an indication of the added

noise. In our implementation we use Matlab’s randn func-
tion to generate this noise.

The non-idealities of the system are therefore: input/output
offsets, non-linearities, among other noise sources. However,
it is typically the gain, bandwidth and noise that are the target
specifications in the design of these amplifiers.
3) Bandpass Filter Model: Following pre-amplification, a

bandpass filter is required to: (1) reject out-of-band LFPs (high
pass), and (2) prevent aliasing (low pass). The high-pass cut-off
frequency is typically set between 100–300 Hz, and low-pass
between 3–10 kHz. Due to the close proximity between the
high- and low-pass cut-off frequencies, a sharp response is re-
quired to avoid in-band attenuation and it is thus desirable to use
high order filters. A key challenge is however, to minimise the
effect of phase distortion as this will impact subsequent signal
processing.
The most important parameters associated with filtering are

filter type, order, cut-off frequencies, passband and stopband
ripple. The filter stage is thus modelled based on these parame-
ters, where a bandpass filter transfer function is utilised in con-
junction with the built-in Matlab function filter.
Our filter model preserves the phase information of the filter,

as opposed to other filtering methods such as filtfilt (a Matlab
built-in function). Preserving this attribute of analogue filters is
of utmost importance, since it has been shown that non-linear
phase dependence with frequency, may cause significant distor-
tions in the shape of the observed spikes, thus affecting the spike
detection and sorting performance [28].
In the developed model, the user can input any filter order

and cut-off frequencies, and is given the choice of four dif-
ferent filter implementations: Butterworth, elliptic and Cheby-
shev Type I & II.
4) Analogue-to-Digital Converter Model: The main design

specifications for the analog-to-digital converter (ADC) are the
resolution and sampling rate (typically 8–12 bit, and 16–32
kS/s). Although these set the numerical accuracy in subsequent
spike computation (detection and sorting), this is fundamentally
limited by the signal-to-noise ratio (SNR), dynamic range and
bandwidth of the signal.
In our model, the primary parameters for ADC are sampling

rate, resolution (ENOB) and reference voltages for the ADC.
Based on these parameters, first the signal is resampled (using
the built-in Matlab function resample) and then the resampled
signal is quantised using (2) and (3).

(2)

(3)

where Least Significant Bit (LSB) is the ADC step size,
and , are the positive and negative voltage references, N is
the number of bits (resolution), is the sample to be quantised,
and the quantised signal.
It should be noted that the behaviour modelled is of an

ideal ADC, and there are numerous non-idealities that impacts
ADC output. These include offset and gain errors, integral and
differential non-linearities, aliasing and quantisation effects.
These non-linear effects and non-idealities will be minimised
according to the performance of the prior analogue stages, and
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Fig. 3. Illustration of 5 neurons being detected with (a) a single positive
threshold, (b) an absolute value threshold, and (c) a single threshold after NEO
processing. Note the shaded regions indicate successfully detected spikes.

resolution requirements for the spike detection and sorting, so
that the equivalent non-ideal effects of the ADC referred to
the input will be smaller than the input referred noise of the
analogue circut and electrodes.
On the other hand, quantisation effects are quantified in the

definition of resolution and reference levels. In fact, instead of
using the ADC resolution, our model uses the effective number
of bits (ENOB) that is typically effective in encompassing ADC
non-idealities, especially for the following detection and sorting
stages.

C. Testing and Evaluation

As mentioned, we aim to: (1) establish a behavioural
front-end model translated into a software tool (2) validate
the model using an application specific integrated circuit
implementation, and finally (3) demonstrate the tool’s useful-
ness in establishing a good balance between spike processing
performance and hardware efficiency during design time. In
the following sections we define the test methodologies and
accuracy quantifiers associated with detection and sorting.
1) Spike Detection: Spike detection is the process of iden-

tifying that an EAP has occurred and has been recorded by
the system. We utilise three common spike detection methods:
single positive thresholding, absolute value thresholding, and
single positive thresholding with the Non-linear Energy Oper-
ator (NEO) (Fig. 3).

a) Single Threshold: Single positive thresholding applies
an amplitude threshold to the signal, whereby a spike is detected
upon crossing it. The threshold level is set as described in [25]

(4)

where is the estimation of the background noise standard
deviation [37].

b) Absolute Value: This method applies the amplitude
threshold of (4) to the absolute value of the signal, i.e., .

c) NEO: In this detection method, the amplitude threshold
is applied after processing the neural signal with a Non-linear
Energy Operator (NEO) given by (5). The NEO, also known
as the Teager Energy Operator [38], estimates energy by taking
the square of the product of amplitude [39], and is defined as
[40]

(5)

As described similarly in [41] and [42], threshold is
the mean of the NEO scaled by a constant, , which is defined
empirically to be 7.5.

(6)

2) Spike Sorting: Once a spike is detected, the process of
identifying to which of the detectable neurons in the vicinity
of the electrode it belongs to, is referred to as spike sorting. For
the results reported herein, spike sorting is carried out with three
different methods.

a) Template Matching (TM): This method involves
aligning the maximum peak of the signal with a spike template
and using the Squared Euclidean Distance (7) as a simi-
larity/distance measure.

(7)

where is the number of data points in the spike template, is
the detected spike and the template. The templates are created
by taking the mean of the spikes (within each cluster), aligned to
their individual maximum peaks. To create templates, we used
a training dataset, and TM performance was assessed using a
separate training set.

b) Principle Component Analysis (PCA): PCA is a well
established method for extracting orthogonal components of a
signal and is typically used as a benchmark for spike sorting
systems. Here, we take the first two principle components (for
each spike) and use -means for clustering (50 iterations). We
use the Matlab’s in-built function princomp.

c) First and Second Derivative Features (FSDE): This
method is based on taking theminimum andmaximum values of
the 2nd derivative and the maximum value of the 1st derivative
(within each spike) which has been shown to provide good per-
formance in resource constrained hardware [27]. Matlab func-
tion gradient is used to calculate the derivatives.
For both methods we use Matlab’s in-built clustering func-

tion, K-means.
3) Evaluation: Here we define the quantifiers for accuracy

in both spike detection and sorting. These will be used as the
metric for evaluating the effect of different neural interface ar-
chitectures on detection and sorting.

a) Spike detection accuracy: is given by

(8a)

and

(8b)

where is the total number of missed spikes and false pos-
itives, and is the number of spikes. is the unit step
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Fig. 4. Mean spike profiles for the 5 datasets with corresponding Bray-Curtis
similarity measures applied between each neuron cluster within each dataset.

function which ensures that detection performance is zero when
the number of errors are higher or equal to number of spikes.

for
for

(9)

b) Spike sorting accuracy: is defined as

(10)

where is the number of correctly identified spikes,
is the number of detected spikes, and is the number of de-
tection errors as described above. Eq. (10) only reflects the ac-
curacy of spike sorting algorithm and does not include errors
associated with detection. Furthermore, a combined accuracy
figure-of-merit (FOM) for spike detection and sorting accuracy

is defined as

(11)

D. Test Data

Test data has been generated using the process described
in [43]. The methods were tested using a total of 30 synthetic
datasets that were created using a database of 594 different
average spike shapes (obtained from real recordings of monkey
neocortex and basal ganglia) [25]. These contain five different
groups of 6 datasets (each using 3 single units), Fig. 4. Each
group further comprised both training and test datasets at
varying SNR levels. In addition to single-unit activity (SUA),
the simulated datasets also contain LFPs, background and
multi-unit activity [43].
In order to simulate LFPs and background activity, surro-

gates of a real extracellular recording from the human medial
temporal lobe were used. The subject, a patient with pharma-
cologically intractable epilepsy, was implanted with intracra-
nial electrodes for clinical reasons. The intracranial probe had
9 micro-wires at its end (8 active recording channels and 1 refer-
ence) to record single-neuron activity, and the differential signal
from the microwires was amplified and sampled at 28 kHz and

Fig. 5. Behavioural model system architecture showing different I/O nodes.

Fig. 6. Graphical user interface for the front-end behavioural model. Annotated
are the four main panels. (a) Node Select. (b) Function Select. (c) Stage Select.
(d) Node Display.

16-bit resolution (signal input range 1 mV) [44]. The channel
used contained neither single-unit nor multi-unit activity, but
had the same power spectrum and amplitude characteristics of
neighbouring channels that had both types of activity.
Spike shapes of varying amplitudes were superimposed on

the background noise and LFP to generate the SUA. Single-unit
spike amplitudes were set to 50 (low SNR), 75 (medium
SNR), and 100 (high SNR), in order to create datasets with
different SNRs. Each spike train followed a Poisson process,
with a mean firing rate of 5 Hz. Spikes that fell within a 2 ms
window of each other were removed so as to introduce a refrac-
tory period and delete overlapping spikes.
By mixing the activity of the whole database of 594 spike

shapes, multi-unit activity with uniformly distributed ampli-
tudes (between 20 and 40 ) and a firing rate of 20 Hz was
created. Both the synthetic MUA and SUA were added to the
LFP and background noise.

III. BEHAVIOURAL MODEL REALISATION

Based on the behavioural model established in Section II-B,
a graphical user interface (GUI) was developed in MATLAB,
and is available on our website.1 The tool provides a front-end
modelled as a single recording channel (Fig. 5),in which the sig-
nals can be analysed at each node (1–6) to study the behaviour
of each front-end block. Through the GUI, the user can input all
the critical front-end design parameters, and observe the input
and output signals in a simple and user-friendly graphical user
interface.
The GUI has been designed to operate within a single window

in four main panels, as presented in Fig. 6.

1www.imperial.ac.uk/bioinspiredtechnology/research/neuralinterfaces/tools
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Fig. 7. Channel architecture of the front-end neural interface IC.

• The Node Select panel shows a graphical representation of
the model with check boxes for the user to define the de-
sired input and output nodes. Based on the node selection,
the corresponding blocks are activated to facilitate param-
eter input. No more than two nodes can be selected at the
same time.

• TheFunction Select panel provides the user with the option
to run the simulations, reset the system, input the data to be
processed and save the signals at every (activated) node in
the defined signal processing chain.

• The Stage Select panel allows the user to configure each
activated front-end stage. Furthermore, amplifier and filter
tabs have additional response plots, so that user can visu-
ally see the magnitude and frequency response of the cor-
responding blocks. In addition to the front-end parameters,
the user is also prompted to enter the original sampling fre-
quency of the input signal.

• The Node Display panel displays time and frequency re-
sponses of both the input and output nodes, after each sim-
ulation.

IV. BEHAVIOURAL MODEL VALIDATION

To demonstrate the validity the behavioural model proposed
herein, a neural recording integrated circuit (IC) is used. The
neural recording IC and the behavioural model are configured
with the same parameters, and their frequency responses (as
well as responses to different test stimulus) are compared. These
comparisons are done for several different configurations and
are further discussed in Section IV-B.
The implemented channel architecture is shown in Fig. 7 in-

cluding the front-end amplifier (FEA), the analogue signal pro-
cessing, (i.e., filters), and the data converter. The total gain of
the system is set to 65.8 dB for EAPs and 46 dB for LFPs, such
that the input signal was amplified/mapped onto the input range
of the data converter. To compare the real system with the pro-
posed model, the low and high pass filters have been imple-
mented separately with individually tunable corner frequencies.

A. Circuit Implementation

The FEA is based on the established Harrison topology with a
symmetric operational transconductance amplifier (OTA) [21],
shown in Fig. 8(a). A gain of 50 (33 dB) is set by the capacitance
ratio to avoid saturation and reduce the distortion by further fil-
tering. The capacitors are implemented by an array of Metal-In-
sulator-Metal (MIM) capacitors with unit capacitance of 150 fF
selected for good noise and matching performance [21]. The
current consumption of the OTA is 3 with a 600/1.5
input differential pair to minimise flicker noise.

This is then followed by a second order high pass filter (HPF)
based on a Bessel function for removing the LFP before further
amplification (if only action potentials are required). This filter
is realised using a gm-c topology arranged as 2nd order ladder
configuration, shown in Fig. 8(b). To increase the dynamic
range, bump linearisation was applied to the gm cell [45]. A
second order low pass filter (LPF) is implemented in a similar
manner with a cross coupled input differential pair to further
increase the linearity, also shown in Fig. 8(b). The cut-off
frequency of both the HPF and LPF is tunable by switching
in capacitance, providing corner frequency settings at 120 Hz,
240 Hz, 300 Hz for HPF, and 3 kHz, 4 kHz, 6 kHz for LPF.
Bypass switches are applied to both filters, to allow the inputs
and outputs to be shorted thus bypassing the filtering. This is
followed by a programmable gain amplifier based on capacitive
feedback to further boost the gain, shown in Fig. 8(d). This
uses a flyback capacitor configuration [11] to provide either a
gain of 4 for LFPs, or 39 for EAPs. A 2-stage miller amplifier
with open loop gain of 72 dB, and gain-bandwidth (GBW) of
1 MHz is used to drive the ADC capacitive input. A standard
charge redistribution Successive Approximation (SAR) ana-
logue digital converter (ADC) with a 16 kHz sampling rate
and 10-bit resolution is used (not detailed herein). The capac-
itor array is implemented by MIM capacitors with 33 fF unit
capacitance and 9:1 split configuration [16] to reduce the total
active area while maintaining good linearity. The specifications
of the circuit used for comparison with the proposed model is
summarised in Table II.
The chip microphotograph together with overlaid floorplan is

shown in Fig. 9. This includes 16 recording channels with each
channel occupying a footprint of including
all components. For test purposes, a single channel has been
implemented separately and connected to a buffer to allow for
direct analogue signal recording.

B. Comparison Between Integrated Circuit Measurements
and Behavioural Results

As previously mentioned, in order to confirm the validity of
the proposed model, the neural recording IC described in Sec-
tion IV-A and the behavioural model are configured with the
same parameters, and their frequency responses are compared
for various configurations.
Frequency responses of the behavioural model, as well

as the simulated and measured frequency responses of the
corresponding implemented system are presented in Fig. 10.
It should be noted that the implemented design uses capacitor
and transconductance values derived directly from the model
without accurate modification regarding to the parasitics and
non-linearity. In other words, a model oriented design approach
rather than a circuit oriented approach has been followed. This
helps the realistic validation and comparison of the behavioural
model results.
As shown in Fig. 10, the frequency responses of the be-

havioural model and the hardware system closely match, with
small distortion around 3 dB due to device mismatch and
parasitic capacitances in cascading stages. These non-ideal
influences depend on device sizes and circuit topologies, and
are beyond the main scope of this paper.
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Fig. 8. Circuit implementation of the front-end neural interface. Schematics shown for (a) low noise pre-amplifier, (b) high-pass filter, (c) low-pass filter, and
(d) programmable gain amplifier that directly drives the SAR ADC (schematic not shown).

TABLE I
BEHAVIOURAL MODEL INPUT DESIGN PARAMETERS

TABLE II
TECHNICAL SPECIFICATIONS OF THE FRONT-END NEURAL INTERFACE IC

Fig. 11 shows the time domain input and output from the
neural IC and the front-end model for comparison, which reveal
a close match between the two outputs. It should be noted that
the measured data exhibits higher noise levels than modelled.
Although the measured IRN level is 5 (hence within ex-
pectations), an estimated 18 is additionally introduced
by test setup. More specifically, this noise is due to external
signal generator circuits, which output attenuated datasets of
different noise levels, and also include line frequency harmonics
and environmental noise. Moreover, the neural recording IC im-
plements a Bessel filter, while behavioural model uses a Butter-
worth filter configuration (since Bessel option is not available),
thus additional mismatch between the results are introduced.

Fig. 9. Microphotograph of the circuit implemented in a 0.18 CMOS
technology showing (a) the entire 16-channel system, and (b) floorplan of a
single recording channel (AFE).

Fig. 10. Comparison of neural front-end IC and the behavioural model
frequency responses at various configurations. (a) Measured (dashed lines) and
simulated in a EDA tool (marks) frequency response of neural IC. (b) Simulated
frequency response of the behavioural model.

For further validation of the behavioural model, all neural test
data (with different noise levels) are used as the input to both
the integrated circuit and the proposed model. The system (as
described previously) is configured as follows: ,
high-pass , low-pass . Spike detection
and sorting performances of modelled and measured outputs are
compared in Table III and Table IV, respectively. It should be
noted that data presented in these tables represent the difference
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Fig. 11. Comparison of simulated (behavioural) and measured (chip) response to a test stimulus (spike waveform). Shown are (a) raw neural input, (b) behavioural
model output, (c) measured output, and (d) magnified sample spikes (with normalised amplitude and added time increment). Please note that for , smaller
spike on the left have been scaled-up for illustrative purposes (relative scale is shown above the spikes).

TABLE III
SPIKE DETECTION PERFORMANCE DIFFERENCE BETWEEN THE MODELLED AND

MEASURED OUTPUT

between the modelled and measured spike processing perfor-
mance.
It can be seen from Table III and Table IV that spike detec-

tion and sorting performances of the model andmeasured output
closely match. Across all detection methods, datasets and dif-
ferent noise levels, the mean difference in spike detection is
1.34% with standard deviation of 4.97%. On the other hand,
average sorting performance difference (Table IV) between the
model and the measurement is 0.27% with standard deviation
of 7.67%. However, it should be noted that there are a few ex-

TABLE IV
SPIKE SORTING PERFORMANCE DIFFERENCE BETWEEN THE MODELLED AND

MEASURED OUTPUT

ceptions in which larger differences compared to the majority
of results are observed. These are due to additional noise intro-
duced in the experimental setup as discussed above. These rel-
atively larger differences are especially observed across several
datasets for FSDE which has a higher sensitivity to white noise.

V. BEHAVIOURAL MODEL DEMONSTRATION

Here, the AFE parameters are investigated (through the pro-
posed behavioural model) in terms of their impact on subse-
quent spike processing (detection and sorting), as well as their
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TABLE V
REVIEW OF STATE-OF-THE-ART NEURAL INTERFACES SHOWING KEY DESIGN PARAMETERS

, uses an off-the-shelf ADC, only considered for accuracy comparisons (discrete implementation), area/power per channel only
taken for systems quoting these for AFE.

impact on hardware. This is achieved by configuring the pro-
posed behavioural model with the design parameters of relevant
state-of-the art front-end architectures reported in literature.

A. State-of-the-Art Front-Ends

We consider state-of-the-art front ends [6]–[8], [10], [12],
[13], [15]–[18] by applying their design parameters to our
model. Whenever possible, the measured system specifications
such as gain, bandwidth, and effective number of bits were
chosen as input parameters (instead of design targets). For any
missing information regarding each stage, reasonable approxi-
mations were made. For example, for any system with missing
electrode information, a typical impedance value of 100
was assigned, with the electrode bandwidth assumed to cover
the entire signal band.
For the behavioural model to accurately represent the front-

ends being investigated, adjustments were required in order to
ensure that the overall transfer function of the model matches
that of the front-end architectures. Considering the fact that the
presented model is a fixed five stage system and that the front-
ends investigated have varying stages of amplification and fil-
tering, not all of the parameters for each stage required by our
model were available. Therefore, whenever the architecture dif-
fered from the expected (in our model), the parameters of in-
terest had to be adjusted to have minimal impact on the overall
transfer function. This typically only affected a number of the
amplification and filtering stages, and involved adjusting gain,
bandwidth, filter order and type, and input referred noise pa-
rameters. For any architecture with a “missing” stage, gain and
IRN were always set to 0 dB and 0 , and filter was con-
figured as a second order Butterworth filter. Most crucially, the
bandwidth was set at the entire frequency band (i.e., half the
sampling rate of the original input signal to the system) in order
to ensure that the configuration of these missing stages had min-
imal impact, if any, on the input signal.
On the other hand, whenever the number of stages exceeded

those specified in our model, parameters were re-distributed to
ensure that the overall transfer function of the original circuit
was accurately represented. For example, [17] consists of four
bandpass amplifier/filter stages, which cannot be represented
with the proposed model. However, this can be easily resolved
by combining the two middle stages together as a 4th order filter
stage with (unity gain), and with the gain of the middle stages
being transferred to the pre and post amplifiers such that the

Fig. 12. Effect of analogue front-end on spike waveform. Shown is a test signal
passed through all front-end configurations reviewed using the behavioural
model developed. Spike outputs have been peak aligned and normalised for
different gain and quantisation levels.

overall gain of the model is equivalent to that of the real cir-
cuit. The complete list of specifications (modified/redistributed
where necessary to fit our model) is presented in Table V.

B. Spike Processing Accuracy and Hardware Requirements

Having extracted all relevant parameters and applied them
to our proposed model, all datasets were processed with each
front-end configuration. Fig. 12 illustrates the output of each
front-end and its effect on spike shapes. All outputs have been
re-scaled for illustration purposes, i.e., to account for different
gains and ADC resolutions.
As stated earlier, front-end performances were quantified in

terms of the spike detection and sorting methods, and the overall
accuracy was compared to the power and silicon area utilisa-
tion of each design. Tables VI and VII present the detection and
sorting accuracies across all state-of-the-art front-end designs.
1) Spike Detection: We observed that the relative accuracy

of the front-ends were constant (across all methods), although
the detection performance varied depending on the threshold
method. Although the variation in spike detection performance
is around 18% to 20% on average (depending on the detection
method), it should also be noted that 88% of the AFEs had vari-
ations of 10% to 13% on average. Both simple and absolute
threshold methods performed with 80% and above accuracy in
general.
2) Spike Sorting: Spike sorting performance of front-ends

showed significantly less variation when compared with spike
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TABLE VI
SPIKE DETECTION PERFORMANCE OF STATE-OF-THE-ART FRONT-END

CIRCUITS

TABLE VII
SPIKE SORTING PERFORMANCE OF STATE-OF-THE-ART FRONT-END CIRCUITS

detection performance. It can be observed that variations in per-
formance for TM, PCA and FSDE were within 1.28%, 2.17%
and 11.5% on average. More specifically, for TM and PCA the
worst case variation amongst the front-end performances were
5.45% and 9.43%. We note again that these spike sorting results
do not include the spike detection and since the “ground truth”
to our datasets are known the spike detection accuracy is essen-
tially 100%.
3) Power and Silicon Area Requirements: When consid-

ering the spike processing performance, i.e., both detection and
sorting, the variation in accuracy between different front-end
interfaces was relatively low. However, these minor differences
were accompanied by much larger differences in power and
silicon area specifications. Although some designs achieve
higher specifications (in terms of individual component per-
formance), their overall spike processing performances barely
exceed others. It is therefore common that individual com-

Fig. 13. Spike sorting performance plotted against hardware resource require-
ments for all front-ends. Shown are (a) power consumption per channel, and
(b) silicon area per channel, for a single spike sorting method (across all test
datasets at all noise levels).

Fig. 14. Spike detection performance plotted against hardware resource
requirements for all front-end configurations. Shown are (a) power consumption
per channel, and (b) silicon area per channel, for a single spike sorting method
(across all test datasets at all noise levels).

ponent specifications are over-engineered due to the fact that
impact on system performance is unknown. The choice of the
FE parameters is thus a critical element of the design that can
be informed using a behavioural model.
More specifically, when sorting performances are compared

(Fig. 13) the spread of the majority of works fall within 5% of
each other while there exists orders of magnitude difference in
power and silicon area per channel. On the other hand, when
detection results (Fig. 14) are compared, one can observe again
that among the works with similar performances, there exists
large differences in silicon area and power. Note these illustrate
the absolute power and silicon requirements and does not take
the effect of technology scaling into account. For example, tran-
sistor area generally scales with feature size and dynamic power
consumption scales proportionally to . However, as the ra-
tios of static to dynamic power and passive to active device area
are generally not reported, a more general technology-indepen-
dent FOM cannot be established.
The results, however, clearly demonstrates that it is possible

to achieve good detection/accuracy while making further sav-
ings by not over-designing some aspects of the front-end. The
proposed tool presented herein therefore has more impact in
minimising resource requirements rather than maximising per-
formance. This essentially helps designers to make hardware
efficient design choices that do not significantly degrade spike
processing.

VI. CONCLUSION

With next generation neural interfaces targeting hundreds to
thousands of channels, the power and silicon area budgets on
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the front-end electronics are becoming increasingly stringent.
While the demand for spike detection and sorting performance
enforces minimum front-end requirements, the limited power
and silicon area resources, in addition to fundamental limita-
tions posed (such as maximum power dissipation not to damage
neural tissue), necessitate careful design of front-end specifica-
tions. To address this problem a front-end behavioural tool, with
which the designer can investigate front-end parameters at de-
sign time, is proposed.
The validity of the model is verified through a real front-end

implementation by comparing their frequency responses at var-
ious configurations, and comparing the spike processing perfor-
mance of the modelled and measured results. Following verifi-
cation of the model, its use have been demonstrated through var-
ious state-of-the art front-end parameter configurations reported
in literature. The impact of FE parameters have been discussed
in terms of spike processing performance and hardware require-
ments.
The reported results show that while the variation in the ob-

served spike processing accuracy between different front-end
interfaces is relatively low and comparable, the designs show
significant spread in specifications for individual components
which translate into the large deviations in power and silicon
area requirements (up to orders of magnitude).
In other words, despite some designs achieving higher speci-

fications, their overall spike processing performance barely ex-
ceed each other. Hence, by not over-engineering some aspects
of the front-end, power and silicon area can be minimised while
maintaining the spike processing performance. The proposed
behavioural model provides the designer a platform to inves-
tigate the effects of different parameters in a fast way. Thus, a
good balance between resource efficiency and performance can
be achieved during design time.
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