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Abstract—The paper demonstrates that wearable sensor sys-
tems, coupled with real-time on-body processing and actuation,
can enhance safety for wearers of heavy protective equipment who
are subjected to harsh thermal environments by reducing risk of
Uncompensable Heat Stress (UHS). The work focuses on Explo-
sive Ordnance Disposal operatives and shows that predictions of
UHS risk can be performed in real-time with sufficient accuracy
for real-world use. Furthermore, it is shown that the required
sensory input for such algorithms can be obtained with wearable,
non-intrusive sensors. Two algorithms, one based on Bayesian nets
and another on decision trees, are presented for determining the
heat stress risk, considering the mean skin temperature prediction
as a proxy. The algorithms are trained on empirical data and have
accuracies of and , respectively when
tested using leave-one-subject-out cross-validation. In applications
such as Explosive Ordnance Disposal operative monitoring, such
prediction algorithms can enable autonomous actuation of cooling
systems and haptic alerts to minimize casualties.

Index Terms—Biomedical informatics, body sensor networks,
decision support systems, predictive models.

I. INTRODUCTION

U NCOMPENSABLE Heat Stress (UHS) is a dangerous
and potentially fatal physiological state that occurs when

the cooling required to maintain a steady thermal state is greater
than the cooling capability of the environment [1]. A concept
related to heat stress is that of heat storage. This is generally
modelled using heat balance equations [2] based on the heat pro-
duction within the body, heat loss via the skin, and heat loss via
respiration. Heat storage occurs when the heat produced by the
body is greater than the heat lost to the environment—the con-
dition of UHS implies that stored heat is increasing.
UHS is a significant risk for human subjects exposed to hot

environments while wearing protective equipment, as demon-
strated for example by Jang et al. [3], who investigated heat
stress in relation to soldiers in hot climates. Wearers of Ex-
plosive Ordnance Disposal (EOD) suits are particularly at risk
during missions or training, as confirmed by a number of studies
that investigated the onset of UHS in bomb disposal operatives
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Fig. 1. Examples of a subject performing activities while wearing an EOD suit.

[1], [4]. Gunga et al. [5] report on the frequency of heat stress
incidents in bomb disposal operatives as well as documenting
the rapid changes in the core body temperature and its potential
to reach harmful levels. EOD suits (as shown for example in
Fig. 1) are heavy (for this example, 40 kg in total), enclosed, and
thermally insulating, and are commonly used in hot climates.
Moreover, during missions, operatives tend to exert themselves
(walking, carrying equipment, or moving through and around
obstacles). Solutions for reducing the risk of UHS in EOD mis-
sions are thus required.
In response, several types of personal cooling systems (in the

form of additional garments) have been proposed by protective
equipment manufacturers.While such systems have been shown
to be somewhat effective [6], [7], none presents a full solution
for preventing the onset of UHS. One of the major UK EOD suit
manufacturers (NP Aerospace Ltd, the industrial collaborator in
the research here) proposed the use of a suit-integrated cooling
system, based on a dry ice pack and battery-powered fans which
circulate cool air into the suit. When the cooling was applied
duringmission like protocols, it effectivelymaintained themean
skin temperature levels within safe ranges, as further evidenced
in Section V. However, this cooling system requires manual op-
eration, which may be either forgotten or used sub-optimally by
operatives, and has limited battery life. Thus, it would be de-
sirable to have means of automating cooling to maximize its
beneficial effect while also ensuring availability of cooling over
lengthy missions. Considering the problem space, cooling opti-
mization and control can be realized by predicting UHS risk in
real-time. This paper demonstrates that such predictions can be
performed with sufficient accuracy for real-world use.
Empirical knowledge of the causal links between physiolog-

ical phenomena, thermal discomfort, and heat stress is required
in order to develop appropriate models and algorithms. In this
work, such knowledge was drawn from experimental data from
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a number of subjects performing mission like protocols while
their posture, heart rate, pulse, multi-point skin temperatures,
core temperature and helmet were monitored. Based on
the links found, Bayesian models appear to be capable of pre-
dicting risk. Alternatively, C4.5 decision trees can be used to
predict danger without establishing an explicit model. Several
non-intrusive sensing modalities have been identified by the au-
thors as key to UHS prediction: mean skin temperature data cal-
culated from four body locations, postural information (as can
be inferred from two accelerometers), applied cooling, and am-
bient temperature. Leave-one-subject-out-cross validation was
used to evaluate the predictor.
The central contribution of this paper is to demonstrate that

real-time machine learnt prediction of UHS risk is viable with
non-intrusive sensors. To our knowledge, this is the first work to
produce a wearable system that can predict UHS risk on-body,
in real-time.
The algorithms presented in this paper have been tuned for

the specific physiological profile exhibited by EOD operatives
during missions. However, the method is applicable to other
scenarios. For those, tuning of the models will be required on
the basis of appropriate empirical data.
The authors argue, thus, that wearable, non-intrusive sensor

systems and subsequent real-time on-body UHS risk prediction
could:
• further increase EOD operatives safety when integrated
with personal fan operated cooling systems, by enabling
optimal delivery of cooling;

• minimizemission casualties by enabling proactive changes
to the mission and haptic alerts to the wearer based on the
predicted risk.

The remainder of this paper is structured as follows: Sec-
tion II presents related work in the areas of physiological strain
estimation and wearable monitoring systems for military appli-
cations. Section III briefly describes the support system for the
sensory data acquisition, UHS risk prediction and communica-
tions. Section IV details the data gathering protocols and re-
sulting data sets used in developing the predictors. Section V
establishes appropriate parameters for use in prediction. Sec-
tion VI presents the Bayesian predictor as well as its evaluation
and comparison with a decision tree predictor also developed
by the authors. Finally, Section VII concludes the paper.

II. RELATED WORK

The goal of the work presented in this paper is to predict heat
stress risk on-body and in real-time, to alert the user or to allow a
cooling system to act pre-emptively rather than reactively. Fur-
thermore, in order to be practical in the EOD suit, this prediction
should only require input parameters that can be monitored (in
real-time) using non-invasive wearable sensors.
To the authors’ knowledge, no similar systems have been re-

ported to date. However, research efforts have been individu-
ally directed at gaining an understanding of physiological strain
and the production of offline models, and developing and de-
ploying wearable physiological monitoring systems in military

applications. The two strands of work, reviewed below, have
been supported by distinct research specialisms: physiologists
and computer scientists/engineers, respectively.
The identified research gap is thus with the integration of the

findings in the two domains and the shift from sense-and-send,
data driven monitoring systems to wearable real-time knowl-
edge generators, and from off-line modelling and estimation of
heat strain to prediction of future strain and associated risk.

A. Non-Invasive Estimation of Physiological Strain

A number of research works assess the heat stress phenomena
related to operatives working in hot, harsh environments and/or
wearing protective suits [3], [8]. Fewer works however at-
tempted the modelling of thermal physiological strain. Two
models have inspired the work in this paper and are discussed
below.
Buller et al. [9] present a method of calculating physiological

strain using skin temperature and heart rate. This method was
evaluated in conjunction with the Physiological Strain Index
(PSI). PSI uses core temperature and heart rate, and was devel-
oped previously by Moran et al. [10]. Buller’s aim was to pro-
vide a method of determining the risk of heat strain in civilian
andmilitary first responders via non-invasive sensors. PSI is cal-
culated as

with the risk threshold (for the purpose of determining accu-
racy of the new method) being a rating of 7.5. Resting core
temperature and heart rate were assumed to be and
71 beats/min based on prior work [10]. Using the skin tem-
perature based model, classification was performed with up to
87.8% accuracy when using PSI as the baseline. This prefer-
ence for non-invasive sensors (even if it causes a loss in accu-
racy) is an important element in designing a system that can be
developed into a successful product—invasive sensors, such as
for core temperature, tend to make users uncomfortable and in-
crease the time required for deployment, both of which factors
are counter-productive in emergency situations. The work here,
similarly, focuses on the use of parameters that can be moni-
tored using non-invasive sensors.
Furthermore, Buller et al. [11] present a method of estimating

core temperature based on heart rate. Their method employs a
Kalman filter, treating the heart rate data as noisy observations
of the core temperature state. The aim was to produce a model
that was simpler than the existing heat transfer models and
would thus be more suitable for field deployment. The model
was tested using data from three other studies encompassing
both laboratory and field experimentation, with temperatures
of between and , low to moderate work rates, and
durations of between 2 and 8 hours. The overall root mean
square error of the developed model was , with
over 85% of all estimated core temperature values being within

of the observed value.
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B. Wearable Monitoring Systems

Awide variety of wearable physiological monitoring systems
have been reported in the literature, targeted at first responders,
military personnel and other workers exposed to harsh environ-
ments. The Smart Vest presented by Pandian et al. [12], [13],
for example, includes wireless sensors for monitoring a variety
of physiological parameters: ECG, heart rate, blood pressure,
body temperature, galvanic skin response, blood oxygenation,
respiratory rate, EMG, and movement. Another example is the
LifeGuard system, presented by Mundt et al. [14], intended
as a general solution for monitoring of astronauts, soldiers,
firefighters and first responders. It includes sensing of: ac-
celeration; ambient, skin, and core temperature; ECG and
respiration; blood oxygenation; and systolic and diastolic blood
pressure. Heart rate is derived from the ECG output. Finally,
the LifeShirt by VivoMetrics is a commercial product designed
for the purpose of monitoring personnel carrying out missions
in dangerous environments. The LifeShirt is aimed at personnel
engaged in firefighting, hazardous materials training, emer-
gency response, industrial cleaning using protective gear, and
bio-hazard-related occupational work. The sensors, embedded
in a chest strap, monitor the subject’s breathing rate, heart rate,
activity level, posture, and single point skin temperature.
More generically, within the health care application domain,

intensive efforts are expended to produce reliable physiological
data acquisition and wireless transmission systems aiming at
low cost and increased reliability [15], [16] as well as increased
wearability for long-term monitoring [17].
The systems above share a common design feature: they

are generally implemented as data gathering and reporting
systems—that is, they gather data from the sensors and report
the values to a base station. The fundamental difference in the
work presented here is that the UHS risk prediction algorithm is
intended to be integrated with an on-body system, moving be-
yond a “sense and send” style of system to provide in-network
information extraction and thus to enable autonomous actuation
of safety systems, such as suit-integrated cooling. Furthermore,
the system aimed at in this work reports high-level information,
to a remote observer and/or the wearer, to aid their decision
making.

III. TARGET SYSTEM

The body sensor network system concept for supporting the
heat stress risk prediction algorithm presented in this paper is
shown in Fig. 2 (based on previous work [18]). Note that the
concept system is integrative of additional functions such as
real-time levels control in the helmet, and subsystems de-
livering various functions of the integrative concept have been
previously published by the authors and are referred to below.
In the main, the concept relies on: 1) sensors acquiring data;
2) nodes processing and transmitting data/information/actuation
commands within the system; and 3) models/algorithms (such
as the hear stress risk prediction which is the subject of this
paper) held on specific nodes extracting information and knowl-
edge from the data and issuing feedback (within and without the
system) and actuation to integrated fans.
Sensors integrated into the protective clothing have a wired

connection to the three wireless system nodes, with one node

Fig. 2. Overview of on-body system supporting the heat stress prediction
algorithm.

serving each “segment” of the protective suit—helmet, jacket,
and trousers. Two of the three nodes (data acquisition nodes sit-
uated in the helmet and trousers) are responsible only for gath-
ering data, performing data checks and filtering, and then wire-
lessly transmitting the data to the third node (data processing
node situated in the jacket). The data processing node, in ad-
dition to gathering data from the attached sensors, is respon-
sible for: 1) inferring postural information from acceleration
data; 2) inferring knowledge from the sensory data and pos-
tural information and relaying this knowledge to the operator
and the remote observer; and 3) issuing actuation commands
to the cooling unit. The knowledge envisaged to be delivered
by the system in the EOD scenario is as follows: predicted heat
stress risk and helmet level alerts. Differential (helmet and
jacket respectively) fan actuation is envisaged for regulating the

levels in the helmet, and alleviating the risk of heat stress.
Feedback is provided to the operative via haptic mechanisms
and additionally, to a remote observer via remote visualization
software. In both cases, the feedback provides a warning that
heat stress will begin to occur in the near future or that
levels in the helmet are exceeding safety thresholds. Gaura et
al. [18] provides further details (including pictures of sensors)
on the prototype implementation of a system such as the above,
considering a number of practical requirements imposed by the
EOD application. Details of design, implementation and perfor-
mance for the posture classification system are given in [19], and
the levels modelling and regulation are described in [20].
The modular system concept allows for functional subsets to be
implemented as required by various applications; for example
if only heat stress risk prediction is of interest, the helmet node
and associated sensing and precessing/actuation do not need to
be included.
When supported by an on-body system such as the one de-

scribed, the UHS risk prediction algorithm proposed here is real-
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Fig. 3. Prototype system being used to gather experimental data.

time in the sense that it can reliably produce a prediction and
haptic warning within less than a second thus enabling timely
response by the wearer, remote observer, and/or cooling system.
This time guarantee is partly based on the complexity of
both Bayes Net and Decision Tree predictors in terms of the
input parameters and partly on performance trials on a Gumstix
embedded processor, which executed them in 8 ms and 0.8 ms,
respectively. (Note that the set prediction period considered here
is two minutes, whilst the data acquisition rate is 1 Hz.)
Fig. 3 shows a prototype implementation based on the above

concept. The prototype was widely used to support the authors’
research on the physiological and microclimate phenomena
within an EOD suit. The data gathered using the specific proto-
type shown has been used in other work (Gaura et al. [18] and
Brusey et al. [19]).

IV. DATA GATHERING PROTOCOL

The training and testing of the algorithm implemented here
was based on experimentally gathered physiological data. The
experimental protocol imitated aspects of an EOD mission in
order to maximize validity for the case study application.
Data from a total of 52 trials was used [21], [22]. In these

trials, twelve male subjects (heights 169–176 cm, weights
67–91 kg, ages 18–40) underwent a mission-like protocol
while wearing the EOD suit at ambient temperatures of
and . Three different in-suit cooling variations were
used—no cooling (NC), chest cooling (CC), and head cooling
(HC). Each subject performed one trial with each combination
of ambient temperature and cooling type. Table I summa-
rizes the trials considered here. Each trial consisted of four
identical back-to-back cycles of: walking on a treadmill (3
mins), kneeling while moving weights (2 mins), crawling (2
mins), postural testing (2.5 mins), arm exercise while standing
(3 mins), and cognitive tests while sitting (6 mins). These
activities are shown in Fig. 4.

TABLE I
EXPERIMENTAL CONDITIONS

PSI values (as described in Section II-A) were calculated
over the course of the experimental trials performed. They were
found to approach the 7.5 threshold set by Buller et al. [9],
reaching a maximum of 7.07. By this metric, the trials can be
seen to stay within the safe range of physiological stress, though
the safety limit may be exceeded it in longer trials. For the trials
considered in this work, PSI begins to noticeably increase when
skin temperatures are above around . PSI values were ex-
trapolated to exceed the threshold of 7.5 at around ,
dependent on the subject’s heart rate. This is consistent with lit-
erature findings and confirms the elevated UHS risk in EOD
operatives. Figs. 5 and 6 show the PSI values for the trials con-
sidered in this work and the PSI trends over the course of trials,
respectively.

V. HEAT STRESS PREDICTION PARAMETER SELECTION

A variety of factors contribute to the onset and evolution
of heat stress. Building an accurate heat stress risk prediction
model that meets the requirements of a given application relies
on the selection of an appropriate set of parameters. The specific
parameters selected may vary from one application to the next.
In the EOD scenario, four parameters were selected based on
their observable effects on, or representation of, the subject’s
physiological state, and their ability to be monitored via non-
invasive sensors. These parameters were: skin temperature, ac-
tivity type, ambient temperature, and cooling type. Furthermore,
two other parameters were considered but not included: core
temperature and stored heat. This section demonstrates the rele-
vance of these parameters for the chosen application, along with
a discussion of additional parameters that may be necessary in
other applications.

A. Skin Temperature

Due to the difficulties in measuring core temperature (see the
discussion below), skin temperature is often selected as the basis
of core temperature estimation or as a direct measurement proxy
[23], [24]. There are some constraints in the use of skin temper-
ature as it depends on the ambient temperature, local air circu-
lation, and blood circulation. These factors cause skin temper-
ature to vary over a much wider range than core temperature
and, combined with the body’s regulation of core temperature,
reduce the correlation between the two.
Fig. 7 shows mean skin temperature (calculated using

) against core
(rectal) temperature for 12 subjects undergoing the mis-
sion-like protocol in a total of 26 trials. It can be seen that
for skin temperatures below around , core temperature
is regulated consistently and shows no correlation with skin
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Fig. 4. Activities performed during data gathering experimentation.

Fig. 5. PSI versus skin temperature over the course of the experimental trials
performed here.

Fig. 6. Calculated PSI values over the course of the experimental trials
performed here.

temperature. However, above core temperature corre-
lates with skin temperature with an offset of around to

. This contributes to the similar rise in PSI described
in Section IV.
As skin temperature is correlated with core temperature

above , it follows that skin temperature can be used as

Fig. 7. Subject mean skin temperature and rectal temperature. The line
indicates equal mean skin and rectal temperatures.

a proxy for core temperature at temperatures near to the range
that is considered dangerous. Furthermore, it is clear that the
variation in skin temperature below this point is a reflection
of real physiological variation that cannot be identified by
examining core temperature alone. This change in the relation-
ship between skin and core temperature above around
means that skin temperature can be used to predict that core
temperature will increase.

B. Activity Type

It can be seen from Fig. 8 that the evolution of skin tempera-
ture is dependent on activity. During the walking and crawling
activities, for example, the skin temperature of the chest and
calf dropped significantly, while the temperature of the arm and
thigh increased. Such skin temperature patterns are likely to be
the result of a combination of physiological factors (more heat
produced by the muscles during strenuous activities for exam-
ples) and the airflow paths within the suit. If kneeling, for ex-
ample, then cool air supplied by a fan to the upper body will
have very little effect on cooling the legs. The clear dependence
of skin temperature on activity type means that activity/posture
represents an important factor in predicting heat stress.

C. Ambient Temperature

Fig. 9 shows skin temperature at the start and end of the trials
in different ambient temperatures for subjects performing the
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Fig. 8. Skin temperature data for a sample subject gathered during a mission-
like protocol while wearing an EOD suit.

Fig. 9. Comparison of starting and finishing mean skin temperatures at
and ambient temperature with no cooling.

mission-like protocol with no cooling. It can be seen that am-
bient temperature has a large impact on skin temperature—the
difference between skin temperatures at compared to

increases significantly by the end of the trials compared
to the start. Furthermore, though not the topic of this section,
it can be seen that for each ambient temperature tested, the in-
terquartile range of the skin temperatures at the ends of the trials
is much smaller than at the start. The reduced range implies that
skin temperature may become more predictable when the EOD
suit has been worn for some time. This is likely to be related
to the heavy insulation provided by the suit causing the thermal
environment within to become slowly more uniform (with ap-
plied cooling or ambient airflow into the suit being the primary
cause of non-uniformity at this stage).

D. Cooling Type

Air flow around the body is an important factor in heat stress
risk, in terms of both the speed of the flow and which body
segments are experiencing it. EOD operatives are exposed to
airflow provided by the integrated cooling system when this is

Fig. 10. Comparison of starting and finishing mean skin temperatures at
with the three cooling types (NC = no cooling, HC = head cooling, CC = chest
cooling).

Fig. 11. Skin and core temperature data gathered during amission-like protocol
while wearing an EOD suit.

operating. During the trials described previously, the following
cooling variations were used: NC, HC, and CC. In each case,
cool air was blown onto the subject’s back at a rate of around

.
Fig. 10 shows the mean skin temperature at the start and end

of each trial. It can be seen that there are minimal differences
between the NC and HC conditions at the end point of the trials,
but the CC condition results in lower overall skin temperatures.
This is expected as cooling applied to the trunk will have a direct
impact on the arm and chest temperatures measured, as well as
allowing the body to dissipate more heat from the core.

E. Core Temperature

Fig. 11 shows the measured core (rectal) temperature of a
sample subject undergoing a mission-like protocol at am-
bient temperature with no cooling. It can be seen that the core
temperature was initially stable and began to rise with the skin
temperature as the experiment progressed. This demonstrates
the process described for UHS in Section I, wherein the sub-
ject’s thermoregulatory system is unable to maintain a stable
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core body temperature. As shown previously in Fig. 7, core tem-
perature appears to generally begin to rise at skin temperatures
above . Based on this, for EOD suit wearers, core tem-
perature increases (and thus early signs of heat stress) begin to
occur at a skin temperature of .
Data gathered from eight subjects performing the mission-

like protocol at with no cooling was analysed and it was
found that all subjects displayed an increase in core tempera-
ture over the course of the protocol. The trends exhibited were
similar to those seen in Fig. 11. In each case, the difference be-
tween starting and ending core temperature was between
and , with an average of . The maximum rate of
change observed was .
In many real-life applications (such as EOD missions)

it is not practical to measure core temperature using rectal
probes—Gunga et al. [5] list several reasons for this including
difficulty in sanitising sensors and problems related to making
the subject uncomfortable. Furthermore, although aural sensors
were tried, they were uncomfortable when wearing the helmet,
frequently dislodged and the resulting temperature data was not
reliable. For this reason, core temperature was not selected as a
parameter in the risk prediction model implemented here.

F. Stored Heat

The progression of heat stress will be different in the two fol-
lowing situations, despite all previously mentioned parameters
being identical:
1) Average skin temperature of , currently walking in

ambient air temperature with chest cooling applied
for the last five seconds.

2) As above but with chest cooling applied for the entire mis-
sion duration.

These cases differ as in the first subject has reached an average
skin temperature of with no cooling and thus applying
cooling at this stage is likely to provide some benefit. In the
second case, the subject has reached despite cooling al-
ready being applied. This fundamental difference despite the
same state being observed at the moment described (based on
the previously stated parameters) means that there is at least one
additional parameter inherent to the system. This parameter is
likely to be related to heat storage within the body—where heat
dissipated is less than heat generated, resulting in a cumulative
effect.
The experimental data used for demonstration of the algo-

rithm here was obtained with no cooling or ambient temperature
changes applied during the trials (in order to control the number
of factors influencing the results). This means that the effect of
changing conditions cannot be analysed rigorously. This limita-
tion is discussed further in Section VI-A with regard to its im-
plications for the algorithm implementation demonstrated here.

VI. HEAT STRESS PREDICTION ALGORITHM

The goal of the algorithm presented here is to predict the
onset of heat stress and more generically heat stress risk such
that action can be taken to avoid it. The algorithm is thus based
on the probability that skin temperature will exceed a given
“danger” threshold within a particular prediction time period.

Fig. 12. A simple DBNmodel of the effect of cooling , activity , ambient
temperature , and mean skin temperature on future mean skin tem-
perature .

As described previously, skin temperature is used as a proxy for
core temperature as it is more readily accessible with non-intru-
sive sensors, and above temperatures of around the two
parameters are well correlated. The correlation above
means that increases in skin temperature beyond this point are
reflected in a corresponding increase in core temperature, there-
fore this is the range in which we can consider the subject to be
entering a “danger” state and it makes sense for the algorithm to
be targeted at these temperatures. Below this, core temperature
appears largely unaffected by skin temperature.
The following sections describe two proposed approaches

(Bayes Net and Decision Tree) for heat stress risk prediction,
provide testing results based on experimental data, describe an
implementation within a wearable sensing system developed
previously by the authors, and present some additional results
that could form the basis of further work.

A. Bayes Net

At the core of the first predictor is a probabilistic model based
on a Dynamic Bayesian Network (DBN), as shown in Fig. 12.
As described in Section V, activity , cooling level , am-
bient temperature , and mean skin temperature are as-
sumed to be sufficient to allow prediction of future mean skin
temperature within the application case study (in the general
case, would be replaced with a more detailed set of airflow
parameters). Furthermore, for the purpose of this implementa-
tion it is assumed that the tuple has the Markov
property (that is, knowing the past history would not improve
the prediction). This is clearly a simplified model of the thermal
interactions internally and externally to the human body, but it
is proposed that such simplifications do not significantly impact
the predictive ability of the model in this case. In more complex
datasets with varying ambient temperature and applied cooling
it is likely that this simplifying assumption will result in reduced
model accuracy unless additional parameters or relationships
between parameters are considered.
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In addition to themodel state parameters, there are two further
parameters that must be determined prior to training and using
the predictor:
1) A unit of time defining how far into the future the predic-
tion is needed. In this work, two minute prediction is used
and so is taken to mean “the current time plus two
minutes.” The maximum rate of change of core tempera-
ture observed during experimentationwas ,
giving a maximum change of around over the pre-
diction period. This is lower than the maximum allowable
change of , providing a safety margin of at least 5 min-
utes (assuming the same high rate of change is maintained)
within which any corrective action can take effect.

2) The mean skin temperature to be used as a “danger”
threshold. Here, a threshold value of is used
for two reasons: 1) due to the safety limits of the trials
used to form the model, data at very high temperatures is
unavailable, and 2) as described previously, the tempera-
ture range at which core temperature is affected by skin
temperature starts at around . Choosing a threshold
of means that the algorithm will warn of possible
changes in core temperature prior to them occurring.

The combination of prediction time period and danger threshold
are dependent on the requirements of the application and any ap-
propriate safety regulations. It is likely that the danger threshold
will generally be set to between and for the
reasons given previously. Nonetheless, very low thresholds are
inappropriate since skin temperature and core are uncorrelated
at lower skin temperatures. Significantly higher thresholds may
be precluded by the difficulty in safely obtaining experimental
training data. High thresholds will also mean that risk alerts are
only issued for extreme heat-related health conditions.
The model allows us to predict the probability of heat stress

by finding the probability of the threshold temperature being
reached or exceeded within the prediction period. For brevity,
(for “danger”) is defined to be the event ( is

its negation) and is shorthand for the state elements exclusive
of skin temperature ( , , and ). Therefore, the goal is to
determine . Training data gathered from experi-
mental trials using the suit is used to find Probability Density
Functions (PDFs) and and then
Bayes’ rule is applied to find via

where is a normalising constant such that the conditional
probability of and sum to 1. Specifically

To form a good fit for the available data, each PDF is approx-
imated using a Gaussian Kernel Density Estimator. In the im-
plementation here, the Gaussian KDE estimator from Python’s
SciPy library was used with bandwidth estimation via Scott’s
Rule [25].

In the case study application, autonomous actuation of the
in-suit cooling system would be based on the danger proba-
bility . In the case that it is greater than a de-
fined threshold then the cooling system would be actuated
to prevent the operative’s skin temperature from reaching the
threshold temperature . A reasonable probability threshold
is 0.5 meaning that, when exceeded, danger is more likely than
not.

B. Decision Tree

As an alternative approach, C4.5 Decision Trees were trained
to predict danger or no danger (rather than estimating danger
probability) based on the same physiological parameters. The
same input parameters were used—mean skin temperature, ac-
tivity type, cooling actuation, and ambient temperature, while a
class label of “danger” or “no danger” was derived fromwhether
the core temperature exceeded the danger threshold at any time
in the following 2 minutes.

C. Results

The data sets used for selecting key predictor parameters were
described in Section IV. For the purpose of training and testing
the predictor however, only data from trials performed at
ambient temperature was used since skin temperature in the
trials at rarely exceeded the safety threshold chosen.
To determine the ability of both approaches to generalize

to unseen subjects, leave-one-subject-out cross-validation
(LOSOXV) was used, with the trials for one subject removed in
each iteration for testing purposes and the remainder of the trials
used for training. This test approach, combined with the use
of multiple subjects with varied anthropometric features (such
as differing heights, weights, etc), gives realistic performance
estimates in the face of subject to subject variability since
all tests involve unseen subjects. The accuracy of the Bayes
Net classifier was determined based on the criteria that the
probability output should be at least 0.5 when the future mean
skin temperature is or higher. Given this criteria, the
overall accuracy of the predictor was (at the 95%
confidence interval) averaged across the 12 cross-validation
iterations (minimum 83.2%, maximum 97.0%). The variation
in performance shows that the approach is somewhat subject
dependent, while the narrow band for the 95% confidence
interval indicates that it is not overly so. While the model is not
perfect, it is a usable predictor of whether the danger threshold
will be exceeded.
The overall accuracy obtained with the decision tree-based

predictor was (at the 95% confidence interval).
Based on the data available, it cannot be decided that the deci-
sion tree approach is necessarily better since the confidence in-
tervals overlap. This shows that the assumption that the Markov
property holds was reasonable for the data used, as the decision
tree considers each data sample in isolation with no additional
knowledge of the modelled system.

D. Further Evaluation

Although the model is not intended to predict thermal sensa-
tion, it is interesting to compare the danger probability obtained
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Fig. 13. Comparison of predicted danger probability with thermal sensation
(with horizontal and vertical jitter applied to more clearly show clusters of
results).

from the Bayes Net predictor with the subjective sensation re-
ported by participants during trials (sensation was recorded on a
scale from 0 to 8 with 0 being “unbearably cold”, 4 being “neu-
tral”, and 8 being “unbearably hot”). This is shown in Fig. 13. It
is interesting to note the strong correlation—no situations where
neutral sensation (4) was reported were considered dangerous
by the Bayesian model while only two reports of being very hot
(7) were considered “safe”. The relationship is less clear for re-
ported sensations of 5 and 6 (warm and hot respectively), with
both reported values being associated with probabilities over the
full output range. However, for a sensation of 5, the majority of
the results still lay near to a probability of zero (34 points for

and 11 points for ). The Spearman rank cor-
relation coefficient for the results in Fig. 13 is 0.71.
Given the complexity of the system concept to support the

risk prediction algorithm, one area that required additional in-
vestigation was that of the effect of measurement uncertainty
within the input data on the result. For example, the postural
activity of the subject was manually annotated in the trials but
in deployment, this would be provided by a machine-learning
based classification algorithm (as described in Section III) that
has known measurement uncertainty and which is described
elsewhere [19]. The sensitivity of the DBN model presented
here to this uncertainty was estimated by a) randomly selecting
activity and cooling type; b) randomly sampling skin tempera-
ture based on experimental trial distributions according to ac-
tivity and cooling type; c) randomly sampling the postural clas-
sifier output based on its confusion matrix. The resulting per-
formance of the DBN prediction algorithm, over 600,000 sam-
ples, was reduced by 0.05% (compared with manual posture an-
notation). This demonstrates that the method is likely to per-
form well in deployment using posture as classified by a ma-
chine-learning based algorithm such as the one described in
[19].

VII. CONCLUSIONS

A DBN-based model and C4.5 decision tree have been de-
veloped to allow heat stress risk prediction, using only parame-

ters that may be monitored via non-invasive sensors. The poten-
tial for UHS to occur in wearers of protective clothing creates a
need for a predictive on-body monitoring and actuation system
to increase wearer safety. Specifically, the case study of EOD
operatives during missions was considered here and the key pa-
rameters for a predictive model of heat stress were described.
Refinement of the model parameters may allow the same pre-
diction mechanism to be employed in a variety of other appli-
cations.
For the EOD application, based on experimentally gathered

data, the DBN predictor was shown through cross-validation to
be accurate in predicting the rise of skin tempera-
ture beyond a defined safety threshold. The decision tree-based
predictor (implemented for comparison) produced a similar ac-
curacy of . The Bayes Net approach may be pre-
ferred in some cases as it provides probability of risk rather
than a danger or no danger binary output. It should be noted
that these prediction accuracies can be expected across a range
of environmental conditions in temperate and hot climates. Fur-
thermore, the system is designed for 2 minute prediction and a
danger threshold of . Should a different prediction pe-
riod or threshold be required, either predictor would need to be
retrained.
While not the original intention behind the predictors, it was

also shown that the DBN output correlated well with reported
thermal sensation. This relationship could be explored in fur-
ther work aimed at establishing the nature of the link between
thermal sensation/comfort and the risk of UHS calculated by
the predictors proposed in this paper. Furthermore, inclusion of
historical data, for example through a “stored heat” parameter
to the model, is an avenue for investigation towards more accu-
rate risk assessment, backed up by experimental data gathered
in more varied conditions (with varying cooling and ambient
temperature during individual trials for example). Field valida-
tion of the proposed work will also need to be carried out for a
large variety of ambient temperatures to allow for further tuning
of the methods.
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