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Reservoir Computing With Dynamic Reservoir using
Cascaded DNA Memristors

Xingyi Liu

Abstract—This article proposes molecular and DNA memristors
where the state is defined by a single output variable. In past
molecular and DNA memristors, the state of the memristor was
defined based on two output variables. These memristors cannot
be cascaded because their input and output sizes are different.
We introduce a different definition of state for the molecular and
DNA memristors. This change allows cascading of memristors. The
proposed memristors are used to build reservoir computing (RC)
models that can process temporal inputs. An RC system consists of
two parts: reservoir and readout layer. The first part projects the
information from the input space into a high-dimensional feature
space. We also study the input-state characteristics of the cascaded
memristors and show that the cascaded memristors retain the
memristive behavior. The cascade connections in a reservoir can
change dynamically; this allows the synthesis of a dynamic reservoir
as opposed to a static one in the prior work. This reduces the
number of memristors significantly compared to a static reservoir.
The inputs to the readout layer correspond to one molecule per state
instead of twoj; this significantly reduces the number of molecular
and DSD reactions for the readout layer. A DNA RC system consist-
ing of DNA memristors and a DNA readout layer is used to detect
seizures from intra-cranial electroencephalogram (iEEG). We also
demonstrate that a DNA RC system consisting of three cascaded
DNA memristors and a DNA readout layer can be used to solve the
time-series prediction task. The proposed approach can reduce the
number of DNA strand displacement (DSD) reactions by three to
five times compared to prior approaches.

Index Terms—Cascaded memristors, DNA memristors, DNA
reservoir computing, DNA readout layer, dynamic reservoir,
seizure detection, time-series prediction.

1. INTRODUCTION

EASONED from symmetry arguments, the original con-
Rcept of memristors was described by Chua in 1971 [1],
[2]. In 2008, a simple analytical example of a memristor was
first introduced [3]. Memristors were defined by the non-linear
functional relationship between the magnetic flux linkage and
the amount of electric charge that has flowed [1], [2]. They
are frequently utilized to build numerous machine learning
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Fig. 1. Typical RC architecture [34]. The dynamic reservoir is made up of
neurons that are randomly connected. During the training process, only the
weights between the dynamic reservoir and the output layer need to be updated
based on the difference (e) between the current output (y) and the desired output

(d.

systems, including in-memory computing systems [4], [5], [6]
and reservoir computing (RC) system [7].

Since the original work by Adleman [8], DNA computing
has advanced significantly. Multiple artificial intelligence and
machine learning functions can be achieved using DNA [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. In 1982,
DNA Hopfield neural network was presented [9]. Feed-forward
network and winner-take-all network can be constructed by uti-
lizing a DNA transcriptional switch [15]. A framework that can
systematically map arbitrary linear threshold circuits into DNA
strand displacement (DSD) cascades was presented in [19], [20].
In our prior work, we have shown that digital filters, support vec-
tor machines, and artificial neural networks can be synthesized
using DNA strand displacement (DSD) reactions [21], [22], [23],
[24]. Other emerging applications based on DNA include: DNA
storage [25], [26], and gene editing [27].

Reservoir computing (RC) is a method of computing that
evolved from the idea of recurrent neural network (RNN) the-
ory [28], [29], [30]. It maps input signals into higher dimensional
computational spaces by using the dynamics of a stationary,
nonlinear system (reservoir) [29], [30], [31]. After feeding the
input into the reservoir, a simple readout layer is trained to map
the state of the reservoir to the desired output. Fig. 1 shows a
typical RC system. Since training RC systems only involves
training the weights between the dynamic reservoir and the
output layer while the other weights remain fixed, the training
process of RC is much faster than that of the conventional RNNs
which requires computing backpropagation through time [32],
[33]. This characteristic enables RC to be employed in edge
devices with constrained computational resources.
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Physical RC systems have been implemented by using a
diffusive memristor-based reservoir or a dynamic memristor
array [7], [35]. In [36], it has been shown that the perovskite
halide-based memristor can be directly driven by emulated
neural spikes. There is a growing interest in showcasing the
viability of synthesizing DNA memristor-based RC systems.
Implementation of molecular and DNA memristors was pre-
sented in our previous work [34]. However, the memristors
presented in [34] operated in a standalone manner, i.e., the
output of a memristor was not input to another memristor. These
memristors are suitable for RC with a static reservoir. In this
article, we further develop the theory of DNA memristors and
DNA RC systems. In particular, we study the characteristics of
cascaded memristors. We demonstrate the design of DNA RC
systems using a dynamic reservoir consisting of cascaded mem-
ristors. These proposed cascaded molecular and DNA memris-
tors retain the hysteresis behavior. The amount of memory of
the memristor is affected by the number of memristors in the
cascade.

It is important to point out that the molecular memristors are
not intended to replace or compete with electronic memristors.
These are intended to perform machine learning functions in
synthetic biology applications. In general, the DSD reactions
can sense and monitor proteins, perform machine learning oper-
ations, and trigger drug delivery, without requiring conversion
to electronic format [37]. In this article, we apply memristors
to detect seizures from electroencephalogram (EEG) signals
using a dynamic DNA reservoir. Although the raw EEG signal
is an electrical signal, in an actual synthetic biology application,
the DNA reservoir may process the concentration of a certain
protein or enzyme. DNA memristors may find applications in
drug delivery, protein therapy, DNA storage, and gene editing.

This article makes four major contributions. First, we intro-
duce a different definition of state for the molecular and DNA
memristors. In this article, the state varies from O to 1 while in the
prior article, it varied from —1 to 1. This change corresponds to
encoding using unipolar fractional coding as opposed to bipolar.
Second, we study the input-state characteristics of the cascaded
memristors. Input-state characteristics of cascaded memristors
have not been analyzed before. The cascade connections in a
reservoir of an RC system can change dynamically; this allows
the synthesis of a dynamic reservoir as opposed to a static one
in the prior work. The synthesis of RC systems with dynamic
reservoir based on memristors have not been presented before.
This reduces the number of memristors significantly compared
to a static reservoir. Third, the inputs to the readout layer are now
one molecule per state instead of two; this significantly reduces
the number of molecular and DSD reactions for the readout layer
of the RC system. Fourth, via simulation using Mathematica, we
demonstrate the use of a DNA RC system to detect seizures from
intra-cranial EEG (IEEG) [38] using cascaded DNA memristors
and a DNA readout layer. The connections between DNA mem-
ristors are randomly generated. We also demonstrate that a DNA
RC system consisting of three cascaded DNA memristors and a
DNA readout layer can be used to solve the time-series predic-
tion task [7]. In the Supplementary Information, we demonstrate
that the number of DSD reactions can be reduced by a factor of 3
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Fig. 2. Molecular memristor. The analog input of the memristor is encoded
in the input molecule’s (I) concentration. The analog state of the memristor is
determined by the concentration of the output molecule (S ). The parameters k1
and ko represent the rate constants for the two molecular reactions, respectively.

to 4 for the digit recognition task from the MNIST dataset [39],
compared to our prior approaches [34] and [40], respectively.

This article is organized as follows. Section II describes the
new implementation of molecular and DNA memristors where
the state is described by a single molecule. We also study
input-state characteristics of cascaded memristors. Section II
also describes the implementation of molecular readout layers
by combining multiple analog multiplications [37], [40], [41].
Transforming the molecular reactions to DNA is described in
Section III. Section IV discusses the molecular and DNA im-
plementations of RC systems and presents experimental results
of the proposed architectures for the seizure detection task.
Section V shows that the DNA memristor-based RC system
can be used to solve a second-order nonlinear dynamical task.
Finally, some conclusions and comparisons with previous work
are given in Section VI.

II. MOLECULAR MEMRISTOR AND RESERVOIR COMPUTING

Several studies have demonstrated the implementation of
dynamic reservoir-based RC systems using dynamic memristor
devices that exploit short-term memory effects [7], [40], [42],
[43], [44]. The reservoir of an RC system should have the ability
to project temporal input signals into different reservoir states
which can then be further processed by a simple readout layer.
Inspired by our previous work [40], we introduce a modified
molecular implementation of a memristor and analyze its hys-
teresis property in this section. Then the dynamic reservoir of the
RC system can be constructed by using the proposed molecular
memristor [7], [40], [45], [46].

A. Molecular Memristors

A molecular memristor using fractional coding has been
introduced in our previous work [40]. In that work, the molecular
memristor is implemented using the same two reactions as
shown in Fig. 2. The analog input of the memristor is encoded in
the input molecule’s (/) concentration. The bipolar state of the
memristor is given by S = ([S1] — [So])/([S1] + [So]) where
[S1] and [Sp] are the concentrations of S7 and Sp, respectively.
Notice the proposed two molecular reactions always convert
Sp and S to the same amount of S; and .Sy, respectively.
The sum of the concentrations of S; and S, remains con-
stant during the reactions. Assuming C' is the sum of S; and
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Fig. 3. Behavior of a molecular memristor. a The same quantity of the input
molecule is added into the system with different time intervals in between. b
Corresponding memristor state. If multiple short-interval pulses are applied, the
memristor state will increase. And the memristor state will return to its initial
resting state (0) if there is a long enough time without any input.

So’s initial concentrations, then the bipolar state can be repre-
sented by S = ([S1] — [So])/(1S1] + [So]) = (2[S1] - C)/C.
This implies that the concentration of .Sy ([S1]) can replace the
bipolar state () as the molecular memristors’ state since S is
just a linear transformation of [S1]. In this article, we introduce
a different definition of state for the molecular memristor with
an analog state as shown in Fig. 2 where the concentration of
the output molecule [S;] determines the state of the memristor.
Then S = [S1] where [S1] is the concentration of S;. Notice that
the state cannot be negative. When the system has some input
molecules (1), Sy will be converted to the state molecule S;.
Without input, the state molecule S; will be converted to Sy.
The behavior of the molecular reservoir is determined by the
two molecular reactions’ rate constants (k1 and k»).

To show the response of the proposed molecular memristor to
apulse stream input signal, we add the same quantity of the input
molecule into the system with different time intervals in between
as shown in Fig. 3(a) and monitor the corresponding memristor
state which is the concentration of the state molecule S; as shown
in Fig. 3(b). The initial concentrations of S7 and Sy are both set
to 0.5 nM and the two molecular reaction rates (kq : ko) are
set at a ratio of 10:1. Two properties can be observed: (1) if
multiple short-interval pulses are applied, the memristor state
will increase, (2) the memristor state will return to its initial
resting state (0) if there is a long enough time without any input.
These properties demonstrate the molecular memristors’ short-
term memory effects, where the state is dependent on both the

history of external input and an internal state variable [1], [3],
[47], [48].

In Fig. 4, we illustrate the responses of the memristor to two
different inputs: a sinusoidal input and a triangular input. The
initial concentrations of S; and Sy are set to 0 and 1, respectively.
The two molecular reaction rates (k1 : ko) are setataratioof 1: 1.
The sinusoidal input is given by:

I(t) = %sin (7157rt> + % (1)

In Fig. 4(a), the blue and red lines represent the sinusoidal
input and the corresponding state, respectively. Witha 0.8 h time
step between successive samples, we sampled 300 points from
two phases of the sine wave and input them to the memristor.
The input-state curves of the molecular memristor with the
sinusoidal pulse stream input form a hysteresis loop as shown in
Fig. 4(b). Fig. 4(c) shows the hysteresis loops of the molecular
memristors with the same sinusoidal inputs for various rate ratios
ranging from 20:1 to 1:20 in addition to the original rate ratio
1:1 between the two molecular reactions in Fig. 2.

Figs. 4(d)—(f) show the responses of the memristor to the
triangular input. In Fig. 4(d), the blue and red lines represent the
triangular input and the corresponding state, respectively. The
input-state curves of the molecular memristor with the triangular
pulse stream input form a hysteresis loop as shown in Fig. 4(e).
Fig. 4(f) shows the hysteresis loops of the molecular memristors
with the same triangular inputs for various rate ratios ranging
from 20:1 to 1:20.

Theoretically, we can prove a memristor is realized by the
continuous molecular concentration kinetics of reactions listed
in Fig. 2. For these reactions the ordinary differential equations
(ODEs) are given by:

d[io] = ko[S1] — k1[1][So]
d[jtﬂ = k1 [1][So] — ka[S1] = _d[io]
% = —ka[I][So] @

where [Sp], [S1] and [I] represent the time-varying concentra-
tions of molecules Sy, S1 and I, respectively. Parameters k; and
ko represent the rate constant of the two molecular reactions.
Notice that since dﬁ"} + 51 _ ) at any time, then the sum
of the concentrations of Sy and Sy ([So] + [S1]) is constant.
Assume C' is the sum of S7 and Sy’s initial concentrations.

Then the memristor state (.5) can be expressed as:

S(t) = [S1] = € =[],

where S(t) represents the time-varying value of the state. Then

we can compute % by substituting the last equation of (2)
as follows:
S C—1[5]
dlI]/dt — —k:[I][So]
1 C

BEREIED
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Behavior of a molecular memristor and its input-output curves. (a) The blue and red lines represent the sinusoidal input and the corresponding state,

respectively. (b) The input-state curves of the molecular memristor with the sinusoidal pulse stream input form a hysteresis loop. (¢) The hysteresis loops of the
molecular memristors with the same sinusoidal inputs for various rate ratios ranging from 20:1 to 1:20. (d) The blue and red lines represent the triangular input
and the corresponding state, respectively. (e) The input-state curves of the molecular memristor with the triangular pulse stream input form a hysteresis loop.
(f) The hysteresis loops of the molecular memristors with the same triangular inputs for various rate ratios ranging from 20:1 to 1:20.
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By definition, the voltage across the charge-controlled mem-
ristor can be computed as [1]:

where

dv/dt ()

M) = T =

where v and ¢ represent voltage and current, respectively. The
magnetic flux linkage, ®, can be regarded as the integral of
voltage over time. The amount of electric charge that has flowed
is represented by ¢. Let ¢ be the derivative of q. The memristance
of a memristor is characterized by the term M.

The state with an offset (S — () and the number of input
molecules (/) of the proposed molecular memristor are analo-
gous to the voltage (v) and the amount of electric charge (g) of
the standard memristor, respectively. Then the memristance of
the proposed molecular memristor can be rewritten as:

v St)—-C

~dq(t)/dt  d[I]/dt
1

O M([I]).

Notice that the proposed molecular memristor’s memristance
is a single-valued function of the input which meets Chua’s
definition of a memristor [1].

The implementation of molecular memristors in cascade has
not been described before. Consider the implementation of two
molecular memristors in cascade as shown in Fig. 5(a). The
states of the two molecular memristors are represented by the
concentrations of the two state molecules (517 and So1), respec-
tively. Notice that the input molecule of the second molecular
memristor (I2) can also be internally generated by the first
molecular reaction of the first molecular memristor as shown
in Fig. 5(a). To demonstrate the behavior of the two molecular
memristors in cascade, we applied the same sinusoidal pulse
stream input as shown in (1) to the first molecular memristor.
A specified amount of the input molecule (/1) that is propor-
tional to the external input will be added to the system at each
time step. In Fig. 5(b), the blue line represents the sinusoidal
pulse stream input. The states of the two molecular memristors
are represented by the red solid line and the red dashed line,
respectively.

Then we can analyze the mass-action kinetics model of the
molecular reactions shown in Fig. 5(a). For the four molecular
reactions, the ODEs are given by:

d[gtlo] = k12[S11] = F11[11][S10]
d[Si1] s
n k11[11][S10] — k12[S11] = — =
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Fig. 5. Implementation of two molecular memristors in cascade with their
responses. (a) Two molecular memristors in cascade can be achieved by four
molecular reactions. The states of the two molecular memristors are represented
by the concentrations of the two state molecules (S11 and S21), respectively.
(b) Corresponding states of the two molecular memristors with the sinusoidal
pulse stream input. A specified amount of the input molecule (/1) that is
proportional to the external input will be added to the system at each time step.
The states of the two molecular memristors are represented by the red solid line
and the red dashed line, respectively.

A — ke nlisul
d[deO] = ka2[921] = ka1 [I2][ 0]
d[dsjl] — ko1 [I2][S20] — kaa[Sa1] = _d[jtzo]
d[j;] = k1 [11][Sho] — ka1 [F2][Sao]
- _% = ka1 [12][S20] 3)

where [S1o], [S11], [11], [S20], [S21] and [I3] represent the
time-varying concentrations of molecules S1¢, S11, I1, S20, S21
and I, respectively. The rate constants of the four molecular
reactions are k11, k12, k21 and kag, respectively. As described in
the first three equations of (3), the ODEs of the first molecular
memristor are identical to those of a single molecular memristor
as shown in (2). Thus, the first molecular memristor meets the
definition of a memristor theoretically.

Assume (' is the sum of Sog and S51’s initial concentrations.
Then the time-varying state value of the second molecular
memristor (S5 (t)) is defined as:

Sa(t) = [S21] = Ca — [S2].

From the last equation of (3), we can compute W&W as
follows:
Sa(t) _ Cy — [S20]
d([1] + [L2])/dt - —k21[12][S20]

1 Cs

" Tnll]  A(L] + ()t

So(t) — Co 1
d([I1] + [I2])/dt  kai[l2]

The state (So — () of the second molecular memristor with
an offset is equivalent to the voltage (v) of the standard memris-
tor; the sum of the concentrations of the two input molecules (/;
and I») can be considered as the amount of electric charge (q)
of the standard memristor. Then the memristance of the second
molecular memristor can be rewritten as:

O

) S0
dq(t)/dt — d([I1] + [I2])/dt
1
T k] M)

The memristance of the second molecular memristor is also a
single-valued function of the input. Thus, the second molecular
memristor meets the definition of a memristor theoretically.
This analysis can be extended to the molecular memristor with
multiple internal inputs from different molecular memristors by
considering that the sum of their input molecules is equivalent
to the amount of electric charge (¢) that has flowed.

B. Molecular Readout Layer

The reservoir state is mapped to the desired output via a
readout layer. Inspired by some previous papers [37], [40], [41],
multiple analog multiplications can be combined to create a
molecular readout layer. The reservoir state (s) and the readout
layer (W,,+) can be expressed as:

S Wi Wi Win
S W. W. W,
s — .2 W = 21 22 2N
S Wit Wara Wun
Then the output vector is defined as:
Y
Y,
Yy = = out * S-
Y

where N represents the dimension of the reservoir state and M
represents the number of output classes. All the elements in the
reservoir state (s) are nonnegative since they are all determined
by the concentration of the corresponding output molecule.
However, all the elements in the trained readout layer (Wo,+)
cannot be guaranteed to be non-negative. So each element of the
readout layer, W;;, can be represented by the difference between
two molecules’ concentrations, Wij+ and W;;~, where I/Vij"r
and W;; ™~ are defined as:

Wt = [ij if [1]20
ij = .
0 1fWij<0
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——— if W;; >0
‘ Wi, if Wi <0

Then the readout layer can be implemented by 2M (N + 1)
molecular reactions as follows:

Sj4+ Wit — S+ Wit + Y

+ + +

Sj+ Wa; H'%+W2j + 12 forj=1,2,...,N
s - S Y©
i+ W™ — Sj+ W™ +Yu

“4)

and

Vit — o
_ forir=1,2,...,. M 5
Y; v ) ’ ( )
Each reaction in reactions (4) is a concise representation of
two reactions:

Sj + Wij+ — Sj + I/Vij+ + Yi+
Sj + Wij7 — Sj + Wij7 + Y—i7

Reactions (4) and (5) should all have the same reaction rate.
All positive rates are accepted. From reactions (4), it may seem
that molecules Y;* are produced out of nothing since the two
reactants are also the products. In fact, the fuel molecules that
drive the reactions are ignored. It allows us to focus on the
computationally relevant molecules [49]. Similar to the repre-
sentation of the readout layer, each element in the output vector,
Y, is also represented by the difference between two molecules’
concentrations, Y; " andY; ,Y; = V;T — Y, . By analyzing the
mass-action kinetics model, the ODEs are given by:

vt U
A - tq. vyt
ar ZW’LJ S; - Y,
j=1
N
ay;” _ _
dt - ZWU S =Y,
j=1
dyY; - in“' 7 ay;”
dt — dt dt
N N
= ZW%7+SJ - ZWU_S7 - (Y+ - Yz_)
j=1 j=1
= WL‘S— }/z

where W; = [Wl W;

have Y; = Y270 W;;S; = Wis by setting dY;/dt to 0. The
output vector is then formed by all the Y; fori =1,2,..., M.
Therefore, 2M (N + 1) molecular reactions are required to gen-
erate the readout layer that transfers the /N-dimensional reservoir
state to the M -dimensional output vector. The position of the
maximum element in the output vector dictates the final decision
in classification problems.

W; N] In the steady-state, we

III. MAPPING MOLECULAR COMPUTING SYSTEM TO DNA

Formal CRNs can be mapped on to DNA strand displacement
reactions [23], [24], [34], [50]. The toehold-mediated strand
displacement reaction (SDR) was introduced by Yurke et al. in
2000 [51]. It is a powerful enzyme-free tool for DNA computing.
A framework that can simulate molecular reactions with one or
two reactants by using double-stranded DNA complexes was
proposed by Chen et al. [52]. In this article, all the proposed
molecular reactions have one or two reactants. We used the
CRNSimulator Mathematica package [50] to simulate the DNA
RC systems.

A. DNA Memristor

The molecular memristor shown in Fig. 2 can be further
mapped into 5 DSD reactions:

I+1, = H,+B,
Gmax
(a) . I+ SO g Sl (a) SO + Hl :X\/qma Ol
k O,+T, 259
(b) : 51 é? SO ! ! q !
() S1+ Gy = 0y
Os+ T, 2225,

(6)
where L;, B;, G; and T} represent different auxiliary complexes.
Here ¢p,.x stands for the maximum strand displacement rate
constant. Rate constants &y and ke of the two corresponding
molecular reactions can be obtained by choosing proper rate
constants ¢; and go, respectively. Rate constants ¢; and g are
less than gy,.x. The details of mapping molecular reactions into
DSD reactions are presented in [50].

Since the initial concentrations of L;, B;, GG; and T} are setto a
large enough value, C,.x, these concentrations can be assumed
to be effectively unchanged. Then the 5 DSD reactions can be
rewritten as follows [50]:

1 H,

(@)

GmaxCmax

So + Hy 22 5,

2 C

SE——Y0
(b){ 1 2

gmaxCma (7)
02 :X} SO

For the 4 simplified DSD reactions, the corresponding ODEs
can be written as [34]:

d[S
[dtO] = qmaxcmax[02] - qmax[S()] [Hl]
d[S
[d 1] = Qmax[SO] [Hl] - QQCmax[Sl]
t
1} _
ﬁ - Qmaxcmax[Hl] - QICmax [I}
d|H
[dtl] = qlcmax [I] - Qmaxcmax [Hl} — Qmax [SO] [Hl}

= —% - Qmax[SO] [Hl]
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d|O
[dtQ] = QQOmax[Sl] - Qmaxcmax [02] (8)
Since d[SO] + d[sl] + [ 2l — 0 at any time, ([So] + [S1] +

[02]) should always be constant. From the last two reactions of
(7), the rate at which O is consumed (¢uax Crnax ) 1s much higher
than the rate at which itis generated (¢2 Chyax)- The concentration
of O5 can be assumed to be close to zero throughout the duration
of the experiment. Then we can conclude that ([Sy] + [S1])
remains effectively constant at any time. Further, we can assume
that I and H; achieve instant equilibrium via the first reaction
of (7) with [I]/[H,] = qmax /q1 [50]. By taking the derivative of

both sides, we can get t d[ﬁl] = Qmax/q1- Then the fourth
equation of (8) can be rewritten as [34]:
dlH,] | d[I]
dt at = —Qmax|So|[H1]

q dlI] T B
- (qmax * 1) ar _qmax[so]qmi[f] = —q1[1][So]

1]

g1 <<Qma§ 7 =—q [I] [SO]
Given that [S1] 4 [So] = C. Then we can rewrite the state
as S(t) = [S1] = C — [So]. As shown before, the state with an

offset value (S — () is analogous to the voltage (v). Similarly,
the amount of input molecules (/) is analogous to the amount of
electric charge (g). Therefore, the memristance of the proposed
DNA memristor can be computed as:

_ov() s -C
dq(t)/dt — d[I]/dt
1
= ol M([1]).

Notice that the behavior of the proposed DNA memristor is
similar to that of the original memristor, as the memristance of
the DNA memristor can be expressed in the same form as the
proposed molecular memristor. Therefore, the proposed DNA
memristor exhibits analogous behavior to the original memristor.

B. DNA Readout Layer

For the molecular readout layer, each molecular reaction
shown in reactions (4) and (5) can be mapped into 3 and 2 DSD
reactions, respectively, as follows [40]:

(a): Sy +Wzy :>S + W™ + Y, F
(b)Y,

b
_—
Sy + Lj % Hj + B; 0
(@) YW, + B, L2250, ®
0; +T; L G+ Wyt + Y,
®) {Ymi +G 20
Oj +Tj e %

where L ; and T} represent auxiliary complexes, and ¢ is chosen
to obtain the desired rate (k) of the corresponding molecu-
lar reaction. The readout layer with 2M (N + 1) molecular

Time-series iEEG signal _Time |

[ 1sec | | [

Fig. 6. Create additional segments by sliding a 1-second window along the
time axis at every step 7" where the value of 7" is determined for each subject to
ensure that the number of samples in each class (ictal or interictal) is similar in
the training set [54].

TABLE I
UPENN AND MAYO CLINIC’S SEIZURE DETECTION CHALLENGE DATASET
INFORMATION
Subj. # inctal  # interictal  # test  # channel  f (Hz)
Dog_1 1771 1669 3181 16 400
Dog_2 1711 1148 2997 16 400
Dog_3 4791 4760 4450 16 400
Dog_4 2561 2790 3013 16 400
Patient_1 691 825 2050 68 400
Patient_2 1501 2990 3894 16 400
Patient_3 3261 3566 1281 55 400
Patient_4 191 190 543 72 400
Patient_5 1073 2610 2986 64 400
Patient_6 2241 2772 2997 30 400
Patient_7 2811 3239 3601 36 400
Patient_8 1433 1710 1922 16 400

reactions that transfers the N-dimensional reservoir state to
the M -dimensional output vector can be further mapped into
(6N M + 4M) DSD reactions.

IV. SEIZURE DETECTION USING DNA RESERVOIR

In this section, the memristor-based RC system was applied
to analyze the iEEG dataset from the UPenn and Mayo Clinic’s
Seizure Detection Challenge [38], which was organized by
Kaggle [53]. The dataset contains iEEG from 4 dogs and 8
patients with epileptic seizures. iEEG signals were recorded
from 16 electrodes at a frequency of 400 HZ for dogs and
varying numbers of electrodes (ranging from 16 to 72) at two
different frequencies (500 Hz or 5000 Hz) for patients. This
dataset comprises 48 seizures and 6.5 hours of interictal data
that were pre-organized into 1-second clips where each clip
represents one second of iEEG data.

The presence of imbalanced class instances poses a challenge
in various classification tasks. In the UPenn and Mayo Clinic’s
dataset, the interictal to ictal ratio per subject averages at 10:1.
To address this imbalance, we adopt an overlapping technique
during the training phase to generate additional segments [54].
We slide a 1-second window along the time axis at each step, 7',
over the ictal time-series EEG signals (refer to Fig. 6) where T’
is selected for each subject to ensure that the number of samples
per class (ictal or interictal) in the training set is approximately
the same. For the sake of simplicity, we also resampled all iEEG
signals recorded from patients to 400 Hz. Table I presents the
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Process flow of seizure detection task using molecular memristor-based RC system. Each original 1-second clip can be viewed as a matrix, with a number

of rows equal to the number of channels and a number of columns equal to the sampling frequencies. Once the resampling process is applied to all clips belonging
to the patients, all the matrices have the same size with a number of rows equivalent to the number of channels and a number of columns equal to 400. Then the
application of the LBP encoding method resulted in matrices with a size equal to the number of channels multiplied by 399. The information of each channel is
fed into one molecular memristor externally. The classification result is produced by the trained readout layer once it receives the state of the reservoir.

number of ictal and interictal 1-second clips after balancing, the
number of test 1-second clips, the number of channels, and the
sampling frequency of the dataset after resampling.

Then we applied the local binary pattern (LBP) encoding
method proposed by [55], [56] to the preprocessed iEEG dataset.
The encoding process involved converting iEEG signals into
LBP codes. These codes reflect time-domain information and
can distinguish between ictal and interictal clips. The com-
putation of LBP codes involves converting consecutive iEEG
signal samples into a bit stream, where the assigned LBP code
depends on the sign of the temporal difference between adjacent
samples. A positive difference corresponds to acode of 1, while a
negative difference corresponds to a code of 0. To illustrate, let’s
consider the encoding of a raw data time series consisting of 7
points ([2.0,1.5,1.2,2.3,2.2, 3.2, 3.5]) using the LBP method.
The resulting LBP code has a length of 6 and is represented
as [0,0,0,1,0,1]. Notice that the length of the LBP code is
consistently one bit shorter than that of the raw data.

As shown in Fig. 7, each original 1-second clip can be
viewed as a matrix, with a number of rows equal to the number
of channels and a number of columns equal to the sampling
frequencies. Once the resampling process is applied to all clips
belonging to the patients, all the matrices have the same size
with a number of rows equivalent to the number of channels and
a number of columns equal to 400. Then the application of the
LBP encoding method resulted in matrices with a size equal to
the number of channels multiplied by 399. Subsequently, each
channel undergoes encoding as a pulse stream input of 399 time
steps, where the 399 binary LBP codes are fed externally into a
single molecular memristor. At each time step, a corresponding
input molecule (1) unit is added to the system if a pulse is present
in the input signal. Thus this reservoir necessitates one molecular
memristor for each channel. Each memristor was implemented
by 2 molecular reactions or 5 DSD reactions.

We utilized a supervised learning algorithm, namely logistic
regression, to train the readout layer in software. For the RC sys-
tem shown in Fig. 7, the reservoir state, X, is a vector containing
8C elements (8 memristors’ states over time per memristor and
for C' memristor in total) where C' stands for the number of
channels used. Then the state vector was fed into the readout
layer. The probability of the molecular reservoir state belonging

to the different classes can be computed as follows [57]:
1

h - -

W(X) 1+ e~ Wx’

where W represents the weight matrix which is the same as
Weut in Fig. 1. And the cost function is defined as:

n

> 1=y log(hw (x') = (1—y") log(1—hw (x"))],

i=1

J(W)==

where n represents the number of training samples and %’
represents the target output for the corresponding state vector
x’. We trained the weight matrix to minimize the cost function
using the gradient descent as follows:

=1

oW,

The training process was computed by using a function called
fmincg() [58] in MATLAB.

Following this, the trained readout layer can be realized
via the molecular reactions mentioned earlier, which can be
subsequently mapped into DSD reactions. For each 1-second
clip, the output of the readout layer yields a 2-dimensional
vector, with one dimension corresponding to the ictal class and
the other to the interictal class. The final classification decision
is made based on the dimension with the maximum value. To
train the readout layer, we employed preprocessed 1-second
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Process flow of seizure detection task using molecular memristor-based RC system with selected channels. After channel selection, each original 1-second

clip matrix of size C' x f5 was reduced to a smaller size of SC' x f5, where C and SC represent the total number of channels and the number of selected channels,
respectively. Subsequently, the remaining processes, including resampling and LBP encoding, were identical to those employed before. The information of each
selected channel is fed into one molecular memristor externally. The internal directed connections between memristors were randomly generated with probability
0.25. The classification result is produced by the trained readout layer once it receives the state of the reservoir.

TABLE I
SEIZURE DETECTION TEST RESULTS WITH ALL CHANNELS

Subj. # Memristor ~ Accuracy (%)  Sensitivity (%)  Specificity (%) AUC
Dog_1 16 85.29 91.19 84.98 0.95
Dog_2 16 61.96 69.74 61.55 0.72
Dog_3 16 85.60 83.25 85.83 0.91
Dog_4 16 58.61 82.40 57.58 0.80
Pat_1 68 78.63 28.22 82.99 0.53
Pat_2 16 92.55 62.01 94.46 0.88
Pat_3 55 55.35 64.84 54.29 0.66
Pat_4 72 71.82 20.00 77.08 0.40
Pat_5 64 84.19 70.24 85.02 0.84
Pat_6 30 96.43 57.73 99.50 0.93
Pat_7 36 95.11 87.22 95.99 0.97
Pat_8 16 95.01 82.78 96.27 0.95
Average 80.05 66.64 81.30 0.80

clips from both the ictal and interictal classes for each subject.
Subsequently, we utilized preprocessed 1-second clips from a
testing dataset to evaluate the classification accuracies of the
RC systems.

Throughout the entire simulation duration of 399 time steps,
each memristor’s state was measured at eight distinct time steps,
specifically at the 50th, 100th, 150th, 200th, 250th, 300th, 350th,
and 399th time steps. Consequently, the input dimension of the
readout layer is 8C', where C' denotes the number of channels.
For seizure detection classification, we employed an 8C' x 2
molecular readout layer. Each molecular memristor can be re-
alized via five DSD reactions, resulting in a total of 5C' DSD
reactions. The molecular readout layer, consisting of (32C' + 4)
molecular reactions, can be mapped into (96C' + 8) DSD re-
actions. Altogether, the DNA RC system requires (101C' + 8)
DSD reactions.

As epilepsy is characterized by seizure durations of typi-
cally ten seconds to two minutes, seizure detection essentially
involves an imbalanced data classification issue. As a result,
accuracy may not sufficiently evaluate the detection perfor-
mance for highly imbalanced datasets. The receiver operat-
ing characteristic (ROC) curve is a plot of sensitivity against
(1-specificity), and the area under this curve (AUC) can be
utilized to evaluate the overall classification performance. AUC
is a threshold-free metric. In this article, accuracy, sensitivity,

specificity, and AUC are employed to measure classification
performance. Table II shows the seizure detection test results for
each subject. The DNA memristor-based RC system can achieve
an overall detection performance with a test accuracy of 80.05%,
test sensitivity of 66.64%, test specificity of 81.30%, and test
AUC of 0.80. The RC system in this experiment requires the
same number of memristors as the number of channels for each
subject, as each memristor processes the information from one
channel.

In the previous experiment, it is important to note that there
was no interconnection between the memristors, and the data
from all channels were utilized. For this experiment, we con-
structed a molecular memristor-based RC system comprising 16
fixed memristors, utilizing information from the selected chan-
nels. Asillustrated in Fig. 8, after channel selection, each original
I-second clip matrix of size C' x f; was reduced to a smaller
size of SC x fs, where C' and SC represent the total number
of channels and the number of selected channels, respectively.
Subsequently, the remaining processes, including resampling
and LBP encoding, were identical to those employed in the prior
experiment. The information of each selected channel is fed
into one molecular memristor externally. The internal directed
connections between memristors were randomly generated with
probability 0.25. These connections can be represented by a
directed graph as shown in Fig. 9, where black circles represent
memristors and an arrow from memristor 2 to memristor y means
that the first molecular reaction of memristor  as shown in Fig. 2
will generate the input molecule I, of the memristor y as well
as its state molecule .S,.. For example, there are two arrows from
memristor 1 to memristor 3 and memristor 9 in Fig. 9. The
molecular implementation of memristor 1 can be achieved as
follows:

I + Sio g, + 13+ Iy
Spp 22 55,

The RC system employed in this experiment consisted of 16
molecular memristors, each state of which was sampled at 8
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TABLE III
SEIZURE DETECTION TEST RESULTS WITH SELECTED CHANNELS. TWO SETS OF SELECTED CHANNELS FROM [59] AND [60] WERE USED

Selected Channels from [60] Selected Channels from [59]

Subj. # Memristor ~ Accuracy (%)  Sensitivity (%)  Specificity (%) AUC | # Memristor ~ Accuracy (%)  Sensitivity (%)  Specificity (%) AUC
Dog_1 16 91.26 87.42 91.46 0.95 16 84.44 92.45 84.02 0.96
Dog_2 16 54.02 86.84 52.26 0.81 16 24.08 90.13 20.53 0.69
Dog_3 16 82.13 83.50 82.00 0.89 16 82.49 85.25 82.22 0.91
Dog_4 16 56.29 88.80 54.88 0.68 16 46.96 74.40 45.78 0.56
Pat_1 16 63.46 42.33 65.29 0.56 16 70.54 56.44 71.75 0.67
Pat_2 16 86.08 37.55 89.11 0.72 16 91.37 53.71 93.72 0.83
Pat_3 16 15.38 100.00 5.98 0.87 16 32.40 93.75 25.59 0.81
Pat_4 16 67.22 28.00 71.20 0.44 16 57.27 34.00 59.63 0.43
Pat_5 16 89.85 52.98 92.05 0.79 16 80.25 38.09 82.75 0.61
Pat_6 16 94.19 63.64 96.61 0.92 16 89.09 48.18 92.33 0.78
Pat_7 16 85.31 65.00 87.57 0.87 16 86.56 76.94 87.62 0.91
Pat_8 16 88.24 3222 94.03 0.79 16 86.32 38.33 91.27 0.80

Average 72.79 64.02 73.54 0.77 69.31 65.14 69.77 0.75

Fig.9. Randomly generated internal directed connections between 16 memris-
tors. 58 directed connections were generated. Black circles represent memristors
and an arrow from memristor « to memristor y means that the first molecular
reaction of memristor 2 as shown in Fig. 2 will generate the input molecule I,
of the memristor y as well as its state molecule S,,.

distinct time steps, as previously described. A molecular readout
layer of size 128 x 2 was utilized. The 16 memristors were
realized through 32 molecular reactions or 80 DSD reactions,
while the molecular readout layer required 516 molecular reac-
tions, equivalent to 1544 DSD reactions. We utilized two sets of
selected channels derived from [59] and [60]. Table III shows the
corresponding seizure detection test performance. Comparing
Tables II and III, using selected channels can achieve similar
average AUC performance as that of using all channels. We note
that the DNA memristors cannot successfully detect seizures for
all subjects. For example, with all channels, the AUC values for
patients Pat_1, Pat_3, and Pat_4 are below 0.7 (see Table II).
Using selected channels, the AUC values for dog Dog_4 and
patients Pat_1, and Pat_4 are below 0.7 (see Table III).

V. SOLVING A SECOND-ORDER NONLINEAR DYNAMICAL TASK
USING DNA RESERVOIR

The section employed a memristor-based RC system to solve
a second-order dynamical task that involves input in the time
domain [7], [34]. Nonlinear dynamical systems have numerous
applications in various engineering fields [61]. Given their close
affinity with electrical systems, second-order nonlinear dynam-
ical systems have been the subject of extensive scrutiny.

Given an input I (¢) and past outputs, we generated the current
output y(¢) based on a nonlinear input-output equation [62]:

y(t) = 0.4y(t — 1) + 0.4y(t — Dy(t —2) + 0.6I°(t) + 0.1.

This experiment, as described in [7], involves predicting the
current output y(t) based on the current input /(¢) and the prod-
uct of two past outputs, y(t — 1) and y(¢ — 2). This introduces
a two-step time-lag to the system, making the task difficult for
conventional networks to solve. However, it is well-suited for
RC systems with memory effects. The DNA memristor-based
RC system was trained to learn the implicit and hidden nonlinear
relationship between the input and output.

We generated two input signals for training and testing the
DNA memristor-based RC system, which are illustrated in
Fig. 10(a) and (b), respectively. Each input signal consisted of
300 time steps with the value of each time step being sampled
from a continuous uniform distribution ranging from 0 to 0.5.
As shown in Fig. 11, the RC system’s reservoir, consisting of
3 molecular memristors in cascade, was implemented using 6
molecular reactions. These reactions could be further mapped
to 15 DSD reactions. External analog input was encoded into
the concentration of the input molecule ;. The input molecules
I and I3 are internally generated by the previous memristor
as shown in Fig. 11. The state vector of the reservoir was
computed by cascading the concentrations of the three state
molecules (S11, So1, and S31), and the readout layer was a
4 x 1 feed-forward layer used to convert the three states of the
memristors and one bias to a single output y(¢). The molecular
readout layer, consisting of 10 molecular reactions, could be
mapped to 28 DSD reactions. During the training process, the
first transient period (50 initial data points) was excluded, and
only the last 250 points in the training dataset were used to train
the readout function using linear regression.
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Three molecular memristors in cascade which are used as the reservoir of the memristor-based RC system. These memristors can be achieved by 6

molecular reactions. External analog input is encoded into the concentration of the input molecule /7. The state vector of the reservoir is computed by cascading

the concentrations of the three state molecules (S11, S21 and Ss1).

Given the reservoir state vector, X, consisting of 3 states of the
memristors and one bias, the cost function can be defined as:

n

1 .
J(W) = 5 Z(WTX(z) —y

i=1

(i))27

where n represents the number of samples, y*) represents the
target output for the corresponding input () and W represents
the weight vector containing 4 readout-layer weights W; (j =
1,---4).

We trained the readout layer to minimize the cost function
using the gradient descent as follows:

Z WTa:

The training process was computed in MATLAB. The nor-
malized mean square error (NMSE) is defined as:

>0 i (@i(k) — yi(k))?
Zk Zi yf(k) 7

5”_ 1

—y)x{).

NMSE =

where g is the predicted signal and y is the target signal. The
error is unitless due to the normalization.

The results of the DNA memristor-based RC system are
presented in Fig. 10(c), where the blue solid line represents the
target output y(¢) and the red dots represent the predicted outputs
after training. The training process resulted in a normalized mean
squared error (NMSE) of 2.7222 x 1075, The system was then
tested using a different input signal than the one used during
training, as shown in Fig. 10(b). The predicted output for this
new input signal is shown in Fig. 10(d), and it indicates that
the DNA memristor-based RC system can accurately predict
the target output for this new input signal. The NMSE for this
testing phase is 2.4008 x 10~°, which is comparable to the
NMSE achieved in our previous work with a DNA memristor-
based RC system consisting of 10 memristors [34]. Notably,
the NMSE of the DNA memristor-based RC system is an order
of magnitude better than that of the DNA oscillator-based RC
system [40]. Table IV summarizes the comparison of the number
of molecular and DSD reactions and the NMSEs between this
work and our previous works [34], [40]. Note that the number
of DSD reactions in the proposed approach is about 4 and 9
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TABLE IV
COMPARISON OF SECOND-ORDER NONLINEAR DYNAMICAL TASK RESULTS USING THE PROPOSED MOLECULAR AND DNA RC SYSTEM WITH EXISTING WORK

Method Proposed Liu et al. [34] Liu et al. [40]
# Memristors/Oscillators 3 10 10
Size of Readout Layer 4x1 11 x1 11 x1
. Memristors/Oscillators 6 20 100
# Molecular Reactions Readout Layer 10 1z ~a
. Memristors/Oscillators 15 50 300
# DSD Reactions Readout Layer 28 132 70
Total Molecular Reactions 16 64 124
Total DSD Reactions 43 182 370
Training NMSE 2.7222 x 107° | 1.3472 x 107° | 2.3595 x 10~—%
Testing NMSE 2.4008 x 107> | 1.2019 x 10~° | 3.1455 x 10—%

times less compared to the prior approaches [34] and [40],
respectively.

VI. CONCLUSION

In this article, we propose the molecular and DNA memristor
with an analog input and an analog output. The new proposed
molecular and DNA memristors have short-term memory effects
and are proven to be analogous to the original memristor math-
ematically. This article also shows that the memristor-based RC
system can be synthesized using molecular reactions as well
as DNA. Then we demonstrated that even a small RC system
with only 16 DNA memristors can be used to solve a seizure
detection task. Another RC system with 3 DNA memristors was
also used to solve a second-order nonlinear dynamical task and
it can successfully predict the target output without knowing the
original nonlinear input-output equation. For the second task, the
proposed DNA memristor-based RC system can achieve similar
performance to that of the original DNA memristor-based RC
system from our previous work [34] with much fewer DSD
reactions. For the time-series prediction, the number of reac-
tions can be reduced by a factor ranging from 4 to 8. In the
Supplementary Information, we show that for classifying digits
from the MNIST database, the proposed approach can reduce
the number of DSD reactions by a factor of 3 to 4, compared to
prior approaches [34] and [40], respectively. Future work will be
directed toward analyzing the relationship between the number
of memristors used in the DNA memristor-based RC system and
its performance.

While practical validation is currently lacking, the proposed
method has been shown to be theoretically feasible through
simulation. This theoretical advance is significant as it paves
the way for future practical use, either in-vitro or in-vivo,
once the necessary technology becomes available. Further opti-
mization of DNA memristor-based RC systems and practical
validation of the proposed framework are needed in future
work. It should be noted that although the simulation of the
chemical kinetics of molecular and DNA systems is highly
accurate, the accuracy of experiments in a test tube may differ.
DNA computing involves using DNA molecules as information
carriers and computational elements. However, due to various
factors such as differences in DNA synthesis, purification, and

handling, there can be inherent variations between individual
DNA molecules or devices. This device-to-device variation can
lead to inconsistencies in computation results, affecting the
reliability of DNA computing systems. In DNA computing,
computation typically involves multiple cycles of biochemical
reactions, including DNA hybridization, enzymatic reactions,
and DNA amplification. However, these reactions are subject to
inherent variability, resulting in cycle-to-cycle variation. This
variation can introduce errors and uncertainties, leading to un-
reliable computation outcomes. It’s important to note that while
device-to-device and cycle-to-cycle variation pose challenges
to the reliability of DNA computing, research efforts are fo-
cused on addressing these issues [63]. Therefore, it is important
to continue working toward practical validation. Additionally,
future work will focus on exploring the use of these memris-
tors for other computations, such as dot products and neural
networks.
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