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Abstract—Epilepsy tracking System-on-Chips (SoC) usually
perform patient-specific classification to deal with the patient-to-
patient seizure pattern variation from a surface electroencephalo-
gram (EEG). However, the patient-specific classifier training re-
quires the EEG signals from the target patients a priori, which
involves costly and time-consuming hospitalization for the inpa-
tient data collection. To address this issue, this paper presents
a patient-independent epilepsy tracking SoC that is trained with
pre-existing databases and can be directly deployed to the target
patients without collecting their data and performing cumbersome
patient-specific training beforehand. The proposed SoC adopts
a Seizure-Cluster-Inception Convolutional Neural Network (Sci-
CNN) Neural Processor (SNP) to reduce SRAM access rate by
179.05× with the Kernel-Wise Pipeline (KWP). The 22-Ch. SoC
achieves event-based sensitivity of 90.3%/90.4%/83.3% and speci-
ficity of 93.6%/95.7%/88.6% on unseen patients from CHB-MIT
database/EU database/local hospital patient, respectively.

Index Terms—Cross-patient, epilepsy management, hardware,
inter-patient variation, intracranial EEG (iEEG), kernel wise
pipeline (KWP), neural network, neural processor, non-patient-
specific, patient-nonspecific, patient-to-patient variation, seizure
classification, seizure detection, surface EEG.

I. INTRODUCTION

PATIENT-SPECIFIC classifiers are widely adopted by the
epilepsy tracking SoC to perform timely and accurate

electrical stimulation treatment upon seizure onset to suppress
the seizure. Seizure, induced by epilepsy, is a life-threatening
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neurological disorder that is suffered by more than 50 million
population world-wide [1]. Electroencephalogram (EEG) is the
recording of the electrical activity in the brain that is widely
used for seizure detection. An epilepsy tracking SoC usually
senses the EEG of the target patient with an Analog Front-end
(AFE), which amplifies and digitalizes the EEG signals; and a
Digital Back-end (DBE) subsequently processes and classifies
the digitalized EEG into either seizure class or normal class [2].
Furthermore, these seizure tracking SoC needs to be low energy
consuming for monitoring over an extended period powered by a
small battery, energy harvesting or body-coupled powering [3].

A challenging aspect of detecting seizure/epilepsy from sur-
face EEG is, a pattern may be a seizure for patient A, while the
same pattern can be a normal pattern for patent B (inter-patient
variations) [2]; Due to the inter-patient variation manifested in
the seizure patterns of different patients, patient-specific classifi-
cation is usually applied to learn and classify the specific seizure
pattern of the target patient. EEG signals of both epileptic periods
and normal periods are first recorded during hospitalization. Af-
ter sufficient seizure events have been collected, patient-specific
classifiers are trained to differentiate the epileptic EEG patterns
from the normal EEG patterns (Fig. 1). Surface EEG is a popular
and simple-to-obtain bio-signal for seizure detection. Several
works have applied machine learning to learn the patterns of
the surface EEG for the seizure monitoring. Two linear Support
Vector Machines (SVMs) are used to analyze the spectral domain
frequency of the surface EEG for detecting the patient-specific
seizure based on hysteresis voting, achieving sensitivity of
95.7% and specificity of 98% [4]. To reduce the hardware-
intensive classification, a patient-specific event-triggered 2-level
classifiers are used; where a complexed and more powerful
classifier will only be triggered when a classifier that is simpler,
yet biased to seizure detection, detects a seizure [5]. It reduces
the complexed classification triggering rate by 7×, consequently
reducing the power consumption. Since the traditional classifiers
require manual feature engineering that could lead to ineffi-
ciency while deciding the suitable features for the classification,
neural network-based seizure-detection classifiers have emerged
due to their ability of automatic feature mining. Convolutional
Neural Network (CNN) is implemented in the patient-specific
SoCs and achieve accuracy of 99.8% [6], sensitivity/specificity
of 92.2/95.1% [7], and sensitivity/F1 score of 99.95%/0.93 [8],
respectively. However, these three works only test with limited
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Fig. 1. Comparison between the training/deployment steps of a patient-
specific and a patient-independent epilepsy tracking SoC.

dataset and lack of thorough verification. To obtain the EEG
signal with less noise, intracranial EEG (iEEG) is also used as
the bio-signal for the seizure monitoring. Compared to surface
EEG, iEEG contains cleaner signal with less noise due to the
direct contact with the brain without the interference of the
skull and the scalp, which deteriorates the spectral energy in
high frequency bands (64–500 Hz). Based on the iEEG signal
of the target patients, spectral energy, phase locking value,
and cross-frequency coupling are extracted as the features to
detect the patient-specific seizure events, achieving event-based
sensitivity of 97.7% and false detection rate of 0.185/hr [9].
However, utilizing iEEG comes with the trade-off of invasive
surgery, which is less welcoming due to the surgery and the
potential side effects. Nevertheless, regardless of the classifier
types (traditional classifier/deep learning) and EEG recording
types (surface/intracranial), these patient-specific classifiers re-
quire patients to be hospitalized for the inpatient EEG signal
recording and the follow-up analysis by the doctors to identify
the seizure patterns and the seizure occurrence regions of the
brain. As 30% of the epileptic patients come from a low- or
middle-income background [1], this treatment could be almost
unaffordable, as the seizure occurrence interval could be as long
as 97 hours [10].

To avoid prolonged hospitalization duration, online learn-
ing/tuning is an emerging technique presented in recent works.
Support Vector Machine (SVM) is a widely used patient-specific
classifier to detect seizure accurately. On-chip SVM retraining
was achieved by using techniques such as L0/1 alternative di-
rection method of multipliers (ADMM), pointer-based matrix
multiplication, and rearranging the calculation sequence of ma-
trix inversion. These techniques successfully reduce the SVM

retraining power consumption and the latency to a hardware-
friendly level [11]. However, a big pool of data points needs
to be collected and to be stored on-chip before performing the
retraining. To further decrease the power consumption and the
latency of updating the classifier, SVM tuning is achieved by
editing the support vectors pool, which contains the support
vectors that have been trained off-chip to form the classification
boundary [10], [12]. Compared to entirely retraining a new SVM
classifier, tuning the SVM approximates the retraining effect
while requiring >800× less clock cycles. However, it needs su-
pervised input to label the data during the online tuning. To elim-
inate the manual labeling, a logistic regression (LR) classifier
is implemented with unsupervised online learning [13]. Based
on the stochastic gradient descent and a series of confidence
threshold comparisons, the weights of the LR classifier could be
updated in an unsupervised manner. Nevertheless, prior inpatient
EEG data collection of the target patient is still unavoidable for
all the aforementioned online learning/tuning methods to firstly
build a patient-specific classifier.

Aside from the long seizure occurrence interval, the seizure
occurrence brain region is also patient dependent. Seizure can
be categorized into generalized seizure and focal seizure. The
former has the seizure pattern that is observable from the entire
brain, whilst the latter only shows the seizure pattern in certain
regions. To cover more possible epileptic regions for higher
detection precision, a 256-channel seizure detection SoC is
presented [14]. With hardware sharing techniques and selectable
sub-channels, it achieves 1.51μW/channel power consump-
tion, event-based sensitivity of 95.6%/94.0%, and specificity of
96.8%/96.9% on surface EEG/iEEG databases. However, the
channels selection and the classification still require patient-
specific training in advance.

To fully eliminate the inpatient data collection and the data
analysis of the target patient before the actual deployment, this
paper presents a 0-shot-retraining patient-independent epilepsy
tracking SoC that implements Seizure-Cluster-Inception Con-
volutional Neural Network (SciCNN) as the classifier [15].
Patients do not need to be hospitalized for data collection nor
data analysis. Instead, they only need to undergo a 2-min auto-
matic on-chip calibration for the classifier adaptation to address
the patient-to-patient variation. This significantly increases the
practicality of the seizure detection SoC for those patients who
cannot afford the expensive incurred cost due to the inpatient
data collection. Besides, to capture the seizure events from all
the possible regions on different patients with the focal-seizure
type, our SoC comprises 22 channels of EEG recording channels
(all the channels used in CHB-MIT database, based on 10-20
electrode placement system). Furthermore, both the calibration
and the classification of the EEG signal can be performed
without any manual input for the labeling and the training. To
decrease power consumption while adopting the inception-based
SciCNN on a resource-constrained SoC, we implemented three
power-efficient hardware techniques, namely Sensor-Stationary
Process Elements (SS-PEs), Ping-Pong Layer Buffer (PP-LB),
and Kernel-Wise Pipeline (KWP).

This paper is organized as follows: Section II presents the
system architecture and motivation. Section III describes the
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Fig. 2. System architecture.

design considerations and circuit novelty of SNP. Section IV
evaluates and discusses the measurement results. Section V
concludes the paper.

II. SYSTEM ARCHITECTURE

Fig. 2 shows the proposed patient-independent epilepsy track-
ing SoC. 22-Ch. differential EEG is used to cover the possible
seizure origins of different unseen patients. Chopper Stabilized-
Capacitive Coupled Instrumentation Amplifiers (CS-CCIAs)
senses and amplifies the EEG signals with low noise and small
footprint [12]. To reduce the footprint and avoid the device
mismatch, time-sharing Double Data Rate Nyquist Analog
Front-End (DDR-NQAFE) is implemented [16]. 11 CS-CCIAs
are time-shared by one Double-Data-Rate 2-Stage Pipelined
ADC, where the amplified signal of each amplifier is digital-
ized in a Time-Division Multiplexing (TDM) manner. Then,
Seizure-Cluster-Inception Convolutional Neural Network (Sci-
CNN) Neural Processor (SNP) pre-processes (normalization)
and stores the digitalized data with three Ring Global Buffers
(RGBs), which achieve classification of 2s time window with
1s overlapping. Sensor-Stationary Process Elements (SS-PEs)
subsequently perform SciCNN processing with the data stored
in two out of the three RGBs, while the remaining one RGB
receives the incoming data. Thanks to the 1-D filter used by
all the layers in SciCNN, the data from different sensors can
be processed independently by all four SS-PEs. This parallel
processing enhances the scalability and reduces the overall
system clock rate by ∼4×. Within each SS-PE, the hardware
resources are reused for both the initial bandpass filtering and the
MAC processes in the forward propagation of SciCNN. During
which, two Ping-Pong Layer Buffers (PP-LBs) are implemented
to reduce the SRAM size for saving the intermediate data by
only storing the output of the previous layer and the current
layer; Kernel-Wise Pipeline (KWP) further reduces the power
consumption by reducing the data SRAM access rate, which is
achieved by computing all the partial sums (psum) that involve
the current data point before reading the next data from data
SRAM. Finally, Neural Pattern Clustering (NPC) classifies the

Fig. 3. EEG recordings from two different CHB-MIT patients (patient 01 and
patient 13).

input data into either seizure data or normal data, which is
achieved by checking the label of the cluster centroid that lies
the closest to the feature point. The labels are assigned to all 256
cluster centroids during the 1-time 2-min on-chip calibration.

III. SCICNN NEURAL PROCESSOR

Seizure-Cluster-Inception Convolutional Neural Network
Neural Processor (SNP) is a hardware accelerator that real-
izes Seizure-Cluster-Inception Convolutional Neural Network
(SciCNN) for the seizure classification. As the computation
complexity of the neural network is normally higher than
the traditional classifiers, Sensor-Stationary Process Elements
(SS-PEs), Ping-Pong Layer Buffer (PP-LB), and Kernel-Wise
Pipeline (KWP) are adopted to reduce the power consumption
by reducing the sampling clock, SRAM size, and SRAM access
rate, respectively.

A. Patient-Independent Classification

To perform a good classification, choices of feature selec-
tion and the classifier type are crucial. Traditional classifiers
require manual feature engineering to decide the features for
performing the data classification. Researchers have suggested
many feature types for the seizure detection application, such as
spectral energy, phase-locking value, cross-frequency coupling,
and line length. Regarding the classifiers, Linear Support Vector
Machine (L-SVM) [4], Non-Linear Support Vector Machine
(NL-SVM) [11], [12], [17], Decision Tree [18], [19], [20] and
Logistic Regression [13] are shown to perform well in the
patient-specific classification. However, these techniques would
face difficulties in the patient-independent classification due to
the inter-patient variation. As shown in Fig. 3, two patients from
CHB-MIT database show different EEG signal characteristics
during the seizure event. This causes confusion to the classifier,
especially if the selected features cannot identify the differences.
In contrast, deep learning has the advantage of mining the fea-
tures automatically, which excels in image classification, facial
recognition, and natural language processing [21]. Vanilla CNN
has been adopted by patient-specific seizure-detection devices
[6], [7], [8]. However, vanilla CNN also struggles to perform
patient-independent seizure detection well (Fig. 4).

Fig. 4 shows the simulation results of different types of the
aforementioned classifiers. Seven bandpass frequency bands
(0–28 Hz with 4 Hz bandwidth) are used as the features of the
traditional classifiers; 22 channels × 128 samples × [1 raw +
7 bandpass frequencies ranging 0–28 Hz with 4 Hz bandwidth]
is resized into 227 × 227 × 3 and 224 × 224 × 3 to fit the
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Fig. 4. Simulation of the patient-independent classification performance per-
formed by both traditional classifiers (154-weight LR; 8096-SV linear SVM;
133-SV poly2 SVM; 27884-SV RBF SVM; 1519-node DT; 1024-tree random
forest; 256-centroid KNN) and deep learning classifiers; these classifiers are
constructed in-house and being fed with spectral features of 8 frequency bands.

input size of AlexNet [22] and GoogLeNet [23], respectively.
AlexNet is one of the earliest successful vanilla CNNs that
achieves satisfactory results in image classification. Whereas
GoogLeNet is an improved CNN that incorporates inception
modules in each layer. Multiple inception modules utilize their
different filter sizes to extract different features from the same
source, hence achieving higher accuracy [23]. Furthermore, the
neural networks in this simulation adopt transfer learning by
initializing with pre-trained weights in the layers and replacing
the last fully connected layers with the proper sizes, which
helps in achieving higher accuracy in the application where
the sample size is small [24]. More recent efficient networks
such as ResNet [25] and MobileNet [26] are not included in
the simulation as they will introduce computation and storage
overhead due to the shortcut connection (residual blocks). Fig. 4
shows event-based sensitivity and specificity as the verification
metrics of the classifiers to detect seizure and normal EEG
signal, respectively. These two metrics are crucial to justify
the classification ability for not resulting in too many mis-
detections and false alarms. As the result, all the traditional
classifiers, vanilla CNN (AlexNet) and inception-based CNN
(GoogLeNet) fail to achieve >90% event-based sensitivity and
>90% specificity simultaneously. Hence, we present Seizure-
Cluster-Inception Convolutional Neural Network (SciCNN), a
0-shot-retraining patient-independent seizure-detection classi-
fier, which can achieve>90% event-based sensitivity and>90%
specificity simultaneously.

B. Seizure-Cluster-Inception CNN (SciCNN)

SciCNN comprises two parts: a 3-layer inception-based CNN
(iCNN) and a Neural Pattern Clustering (NPC) layer. iCNN
functions as a feature extraction engine and NPC layer functions
as a classifier. Fig. 5 shows the convolution structure of one
layer in iCNN. Compared to the image classification performed
by the general-purpose CNN classifiers, the ‘images’ of the
seizure signals used in this work have a different structure.

Fig. 5. Convolution structure of inception-based convolutional neural network
(iCNN).

In the seizure signal images, height H represents the signals
detected by different sensors; width W shows the data samples
in a time window; depth D contains the filtered signals with
different filtering frequencies. Due to the geometric location of
the sensors, neighboring rows might not have strong correlation.
Therefore, 1D filter kernels are used in all the SciCNN layers.
In contrast to vanilla CNN, inception-based CNN can extract
the features from the same source with different filter kernel
sizes, hence resulting in higher accuracy [23]. As shown in
Fig. 5, two sizes of the filters with different lengths L (shown
in different colors) perform convolution with the same input
feature map (ifmap). The yielded output feature map (ofmap)
is subsequently formed by concatenating the ofmaps generated
by all (M) filter kernels. The overall SciCNN structure is shown
in Fig. 6. iCNN first receives the digitalized EEG signal and
structures it into a 3D image. As the spectral features show
promising results in seizure detection, seven filters have been
applied to the normalized raw signal to obtain the extra depth
dimensions (D) of the iCNN input. This forms an ifmap of Top
Layer with the dimensions of H = 22 sensor channels, W = 128
data samples, and D = 1 raw signal + 7 frequency bands. Then,
Middle Layer and Deep Layer extract the patient-independent
features of the EEG signals and form a 16-D feature point in NPC
Layer. Neural Pattern Clustering (NPC) subsequently performs
the classification while addressing the inter-patient variation.

Taking the inspiration from k-means clustering, NPC de-
picts the clusters distribution of the EEG patterns on a patient-
independent feature space, which is the feature space that the
feature point generated by iCNN is projected on. Fig. 7 shows
the training process done in MATLAB 2020b with the solver of
stochastic gradient descent with momentum (SGDM). Momen-
tum value γ is set at 0.9, L2 is set at 10-6, initial learning rate is
set at 10-5, which decreases by half every 20 epochs, while the
maximum number of epoch is set at 40. First, 256 NPC centroids
are randomly initialized on the feature space. Then, a mini-batch
of 50 samples forward propagate through iCNN to generate
50 feature points. All the feature points in one mini-batch are
deliberately chosen to have the same labels (seizure/non-seizure)
and from the same patient to avoid the confusion caused by inter-
patient variation, where the same pattern could have different
labels on different patients. The Euclidean distance between the
cluster centroids and the centers of the feature points that lie the
closest to them is used as the loss function to be minimized. As
the results, the cluster centroids move towards the centers of the
feature points. This increases the ability of the clusters to reflect
the EEG pattern more effectively. Meanwhile, the weights of
iCNN will be updated based on Euclidean distance between the
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Fig. 6. SciCNN detailed structure.

Fig. 7. Training of Neural Pattern Clustering (the number of feature dimen-
sion, NPC centroids, and feature points in one mini-batch have been reduced for
the ease of visualization).

feature points and the cluster centroids as well. Furthermore, as
different patients in the training group have different number
of seizure samples, a factor γpatient is added to balance the
significance of the update of the weights in each mini-batch
for alleviating overfitting (1). γpatient is inversely proportional
to the number of the seizure samples of one patient Npatient.
λpatient is a hyperparameter, setting at 0.8, to alter the effect of
γpatient. N is the array that contains seizure sample counts of
each patient in the training group. δbalanced is the new change
of weight after taking γpatient into account (2).

γpatient = λpatient ×
(
max (N) + min (N)−Npatient

max (N) + 1

)

(1)

δbalanced = δorig × γpatient (2)

By having this semi-supervised training strategy (supervised
on the data feeding and unsupervised on the parameters up-
dating), SciCNN can resemble different EEG patterns on a
patient-independent feature space based on the knowledge of
seizure/normal labeling (Fig. 8). Fig. 9 shows the t-SNE visual-
ization of the 16-D feature space. The two subfigures show the
locations of the NPCs trained with different groups of patients.
Red dots represent the seizure NPCs. Blue dots represent the
non-seizure NPCs. Gray dots are the EEG patterns that did
not manifest on the specific patient. Nevertheless, they are still
necessary for other patients who have different seizure patterns.

During the actual deployment of the trained SciCNN to the pa-
tient who is totally new to the classifier, a short (2-min) automatic
on-chip calibration is conducted at the start to label the NPCs
based on the normal EEG patterns of the target patients. Since

Fig. 8. Illustration of inference of Neural Pattern Clustering (NPC).

Fig. 9. Visualization of reduced dimensionality of neural pattern clusters with
patient 12 and patient 1 in CHB-MIT database. .

the calibration is conducted when the patient is seizure-free, all
the NPCs that have been identified as the closest NPCs will be
labeled as non-seizure NPC. To reduce the false negative rate,
these NPCs will only be labeled after having>2 (programmable)
feature points that lie the closest to them.

C. Ring Global Buffer (RGB)

This work implements three Ring Global Buffers (RGBs),
2KB SRAM each, to store the digitalized data sent from the
decimation unit. Two decimation blocks are implemented to
cater to surface EEG and iEEG, respectively. With 20-tap FIR
filters, one decimation unit decimates the input signal from 256
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Fig. 10. Storing and processing sequence of ring global buffer (RGB).

Hz to 64 Hz; another decimates from 1024 Hz to 128 Hz. The
ADC sampling rate is adjustable based on the EEG electrode
types. After decimation, each RGB is controlled separately to
store 1 s/0.5 s data each for EEG/iEEG signals (Fig. 10). During
the normalization state, mean and standard deviation of the 3
s/1.5 s EEG/iEEG data are computed.

μoverall =

∑N
i=1 μi

N
(3)

σoverall =

√√√√∑N
i=1 σ

2
i

N
+

1

N − 1

N∑
i=1

(μi − μoverall)
2 (4)

Equation (3) and (4) show the equations to compute the overall
mean and overall standard deviation, respectively. N shows the
number of rounds to compute the partial mean,μi, and the partial
standard deviation,σi. By computing the partial mean and partial
standard deviation, long period of data can be split into multiple
3s partial windows and processed sequentially. As a result, three
GLBs that store 1s each can be reused for the computation of
the mean and standard deviation of longer period of data. To
further reduce the hardware complexity, 10b fixed-point adders
are used for calculating the mean, where the division is done by
a right shifter (shift by 3 bits to divide 24s data). To calculate
the standard deviation, a 16b floating-point multiplier is used for
higher precision. After the overall mean and the overall standard
deviation are obtained, the decimated data will be normalized
using these calculated mean and standard deviation, followed by
being stored into RGBs.

During the actual process, each RGB takes turns to receive
and store the normalized data. Two fully stored RGBs provide
SciCNN with the normalized data as input; while the remain-
ing one receives and stores the latest data. This ring structure
realizes 2 s/1 s data processing with 1 s/0.5 s overlapping for
CHB-MIT/EU database. To filter the normalized data for the
depth dimension of SciCNN input, seven 20-tap FIR filters are
designed. For CHB-MIT database, seven 4 Hz-bandwidth bands
ranging between 0–28 Hz frequency are used; for EU database,
six 4 Hz-bandwidth bands ranging between 0–24 Hz frequency
and one highpass filter (>24 Hz) are used. Since causal filter
requires previous data points for correctly filtering the current

Fig. 11. Schematic of kernel-wise pipeline (KWP).

data point, the last few data points of the previous sample
window are stored in two RGBs, one is the RGB that is storing
the latest data and another one is the RGB next to it (Fig. 10).
No data collision will happen as all the SciCNN computations
finish in 0.59 s with the system clock of 4 MHz.

D. Kernel-Wise Pipeline (KWP)

Hardware-efficient data movement is essential for realizing a
low-power CNN accelerator [27]. Among the power consump-
tion of the data management within the chip, SRAM access
dominates [28]. General-purpose CNN accelerators thrive to
realize hardware-efficient data movement while processing the
neural network computation. However, they normally cater to
multiple types of popular neural networks (AlexNet, VGGNet,
GoogLeNet, and ResNet) and utilize fast clock speed (>100
MHz) for high throughput (>1 GOPS). The resulting compli-
cated logics control and high power consumption (>100 mW
[29], [30]) are hence not optimal for the biomedical wearable
devices. Moreover, they usually need to associate with off-chip
memory for storing large amount of input data, which will
become a hindrance for the users if the device footprint increases
[31]. To customize to the patient-independent seizure tracking
SoC implemented with SciCNN, Kernel-Wise Pipeline (KWP)
is utilized to achieve low-power neural network processing on
an Application Specific Integrated Circuit (Fig. 11).

Ow,m = Bm +

D∑
d = 1

L∑
l = 1

Wl,d,mI w+l,d (5)

Ncomp =
W∑

w=1

M∑
m=1

Ow,m (6)

Equation (5) shows the computation of Ow,m, which is the
output feature map (ofmap) at location w on the input feature
map (ifmap) computed with filter m of length L and depth D.
I is the ifmap, W is the weight, B is the bias. (6) shows the
number of computations Ncomp to yield one row (one sensor)
of ofmap with width W and stride of 1. It can be observed that
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Fig. 12. Signal flow of kernel-wise pipeline (KWP), sizes of the kernels and
the buffers have been reduced for the ease of visualization.

two adjacent ofmaps will reuse L− 1 ifmaps, hence resulting
in re-reading the same addresses in data SRAM for M(L− 1)
times. To compute all the ofmaps in one zero-padded row, the
repeating data SRAM access adds up to 99.4% of the total
data SRAM access in our proposed structure. To alleviate this
power-consuming SRAM access, Kernel-Wise Pipeline (KWP)
is utilized to avoid accessing data SRAM for the overlapped
ifmaps.

Fig. 12 illustrates the data movement of KWP. After one
ifmap is read from data SRAM (AxDy), it will be reused L×O
times to compute all the involving ofmaps in all branches.
Corresponding weights (WaOb on Time1 direction) are read
from weight SRAM sequentially to compute the partial sum
(psum) of each ofmap, which is stored into Psum Buffer (PB) at
different addresses. PB is built with 256-word 16b register files
to accommodate the largest value of L×O in all the network
layers without overflow.

To avoid storing all ofmap before starting to process Maxpool
Layer (MPL), MPL is processed in a pipeline fashion and is
facilitated by reading ifmap along D-dimension (Time2) first,
followed by A-dimension (Time3). When an ofmap is fully
computed (fsum), positive ofmap will be compared against
the Ofmap Candidate (OC) stored in Maxpool Buffer (MPB),
which is set to be equal to ofmap at the start of every Maxpool
Kernel (MPK). MPB is built with 32-word 16b register files to
accommodate the largest number of filters used in all SciCNN
layers. OC will be subsequently updated with the larger value
after each comparison of the fully-computed ofmap. On the
other hand, negative ofmap is skipped and the comparison is
data-gated. Max-pooled ofmap (mp-ofmap) is obtained everyM
comparisons, which will be stored into Ping-Pong Layer Buffer
(PP-LB) as ifmap of the next layer.

To give an example, when A4D1 is read, the psum A4O1W4D1

is computed and stored in B4. Then, without reading the next
ifmap, A4O1W3D1 is computed and stored in B3. This continues
until A4O2W1D1 is computed and stored in B5. Next, A4D2

is read, and the same process repeats. When A4O1W1D2 is
computed (triangle tile), all the psum of the first ofmap is fully
computed and accumulated (fsum). Since it is the first ofmap of
the first MPL, M1 updates into this value. When the last psum of
the second ofmap is computed (A5O1W1D2), if it is a positive
value, it will be compared against M1. Then, M1 updates into
the larger value. This goes on until M1 has compared against
A7O1W1D2 and updated accordingly. The final M1 value is sent

Fig. 13. Data SRAM saving by KWP.

Fig. 14. Sensor-stationary process elements (SS-PE).

to Ping-Pong Layer Buffer (PP-LB) for storing. Fig. 13 shows the
reduced data SRAM access rates in each network layer, which
sums up to 179.05× saving in total.

E. Ping-Pong Layer Buffer (PP-LB)

After performing the intra-layer acceleration with KWP, in-
termediate data on the inter-layer level (ifmap and ofmap) need
to be stored efficiently to minimize the area consumption. In
this work, we implement Ping-Pong Layer Buffer (PP-LB) to
manage the intermediate data. PP-LBs consist of two SRAMs.
At the first SciCNN layer, ifmap is read from GLB and ofmap is
stored in one PP-LB. At the subsequent SciCNN layers, ifmap
is read from the PP-LB that stores the ofmap of the previous
layer; meanwhile, ofmap of the current layer is stored in another
PP-LB. Hence, the PP-LBs are sized according to the ofmap
sizes of the first two layers, which yield the largest numbers
(12KB and 6KB) among all the layers. PP-LB successfully
reduces the required SRAM size by 23.67%.

F. Sensor-Stationary Process Elements (SS-PEs)

Elevating from the localized level of the intra-PE processing,
inter-PE data movement is also accelerated. Thanks to the 1D
filter kernels used by all the SciCNN layers, all the rows in
ifmap can be processed independently. Hence, we implement
four Sensor-Stationary Process Elements (SS-PEs) to process
the rows in parallel. After receiving the signals recorded from
different sensors on the brain, four SS-PEs process 22 sensor
channels by tiling them into four groups (Fig. 14). Thanks to the
parallel processing of the SS-PEs, the total processing latency
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Fig. 15. Hardware reuse among bandpass filtering, iCNN, and NPC.

is reduced by ∼4×. Furthermore, as all SS-PEs process their
ofmap in parallel, weight value is broadcasted to all the SS-PEs.
This reduces weight SRAM access rate by∼4×, hence reducing
the power consumption proportionally.

G. Neural Pattern Clustering

Inter-patient variation is one of the biggest challenges while
designing a patient-independent classifier. The characteristics
of the seizure events recorded from different patients can be
significantly different (Fig. 3). Furthermore, the characteristics
of the seizure event of one patient can be well similar to the
characteristics of the normal signal of another patient. Hence,
Neural Pattern Clustering (NPC) is adopted to extract the neural
pattern distribution.

After the coordinates of the NPCs have been fully trained
with the existing databases, they are preloaded to the weight
SRAM before deploying to the new patients. During the actual
classification, ofmap of the last layer in inception-based CNN
(iCNN) represents the coordinates of the feature point, which
serves as the ifmap of NPC layer. Euclidean distances between
the generated feature point and all NPC centroids are computed
sequentially. Since we are interested in relative distances only,
computational-expensive square root process is removed for
power saving and area saving. Furthermore, the MAC unit and
the adder are reused (Fig. 15), which is facilitated by Dimension-
Wise Ofmap Pipeline (DW-OP). Here, each ifmap is the coor-
dinate of the feature point in each dimension on the feature
space. To save the data SRAM access rate, each ifmap value
is read once-and-only-once. Then, psum is computed, which is
equivalent to the partial sum of the distances to all the NPCs
in one feature space dimension. PB is reused to store the psum
of different NPCs. Finally, all the distances are fully computed
when the last ifmap is read from data SRAM. Thanks to DW-OP,
the data SRAM access rate is reduced by 16×. The stored
distances are subsequently compared one-by-one to obtain the
closest NPC. The final classification result is determined by the
label of the closest NPC.

Fig. 16. Chip micrograph.

Fig. 17. Measured average event-based sensitivity, specificity, and power
breakdown of SciCNN.

IV. MEASUREMENT RESULTS

The proposed 0-shot-retraining patient-independent epilepsy
detection SoC is fabricated in 40 nm 1P8M CMOS process. It
integrates DDR-NQAFE and SNP in an area of 3 mm × 2 mm,
where the active area per channel is 0.114 mm2 (Fig. 16). Power
breakdown is shown in Fig. 17. Table I shows the comparison
between this work and the state-of-the-art epilepsy-tracking
SoCs. This work, to the best of the authors’ knowledge, is the
first work that verifies the patient-independent seizure tracking
SoC on both surface EEG (CHB-MIT database) and iEEG (EU
database) and achieves event-based sensitivity of >90% and
specificity of >93% on both databases. Although the perfor-
mance drops compared to other arts due to the inter-patient
variation, it advances in the following aspects:

1) Training the classifier without the need of pre-recording
the EEG signals of the target patients, hence capable of
being directly deployed to the new patients.

2) Performing unsupervised on-chip calibration that does not
require the input from the patient.

3) General applicability has been verified by measuring the
tape-out chip on 24 surface EEG subjects and 20 iEEG
subjects, plus a local hospital patient.

A. Verification setup

Sensitivity =
TP

TP + FN
(7)
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TABLE I
COMPARISON WITH STATE-OF-THE-ART EPILEPSY MANAGEMENT SOCS

Specificity =
TN

TN + FP
(8)

Accuracy =
Sensitivity + Specificity

2
(9)

Event-based sensitivity and specificity are used in this work
as the verification metrics, shown in (7) and (8), respec-
tively. TP and TN are correctly-detected seizure event and
correctly-classified normal samples, respectively; whereas FN
and FP are missed seizure event and incorrectly-classified
normal samples, respectively. Both event-based sensitivity and
specificity are equally crucial in justifying the classification
performance, as they show the ability in detecting the seizure
events and avoiding false-alarms, respectively. Accuracy is
shown with the average of sensitivity and specificity as an overall
justification (9).

Terasic DE10-Nano FPGA equipped with Cyclone V SoC
(Intel) is used in the setup to control the chip and provide 22
channels 10b data from the database to SNP at the sampling
frequency of 64 Hz/channel and 128 Hz/channel for CHB-MIT
database and EU database, respectively. Parameters (2017 bit)
such as number of layers, number of inception modules in each
layer, sizes of filter kernels, sizes of maxpool layers, and sizes
of fully-connected layers are uploaded to the chip from FPGA
at the start, followed by the trained weights of the filter kernels
(73.13 KB).

B. CHB-MIT Database

The benefits of the 0-shot-retraining patient-independent
epilepsy detection SoC is maximized when patients can directly
use it without undergoing any surgery. Hence, open-access
CHB-MIT database [32], [33] is used for verification, which
contains 990 hours of surface EEG recordings and 180 seizure

Fig. 18. Measured event-based sensitivity and specificity of SciCNN of all
folds in 8-fold cross validation.

events from 24 pediatric patients (1.5–22 years old). All the
seizure events and 18.38hr of non-ictal samples in total from the
24 patients are used to measure the event-based sensitivity and
specificity with on-chip measurement. 8-fold cross verification
is adopted in the verification. In each fold, SciCNN is trained
only with 21 patients and is inferenced on the remaining three
patients. In other words, the EEG samples of one patient are only
assigned to either training set or testing set in each fold. This is to
imitate the actual deployment that the trained device does not use
any data from the target patient for the offline training. Table II
shows the details of the patients grouping. All 22 channels
that are commonly used in CHB-MIT database with the 10-20
system are adopted, namely T8P8, T7P7, T7FT9, P8O2, P7T7,
P7O1, P4O2, P3O1, FZCZ, FT9FT10, FT10T8, FP2F8, FP2F4,
FP1F7, FP1F3, F8T8, F7T7, F4C4, F3C3, CZPZ, C4P4, C3P3.
By inferencing on the new patients with the 0-shot-retraining
scheme, SciCNN successfully achieves event-based sensitivity
and specificity of 90.3% and 93.6%, respectively, in average
(Fig. 17). Detailed classification performance of each fold in the
8-fold cross validation is shown in Fig. 18.
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TABLE II
DETAILED INFORMATION OF 8-FOLD CROSS VALIDATION

C. EU Database

To further verify the general applicability of SciCNN, Sci-
CNN is verified with iEEG signals in European Epilepsia
database (EU database) [34], [35], which contains>40000 hours
iEEG recordings and 2400 seizure events. In this work, all 20
EU patients recorded with 1024 Hz sampling frequency are
included in the verification. All the seizure events and 22.15hr of
non-ictal signals are used in the verification during the on-chip
measurement. 8-fold cross validation is also applied to split the
20 patients into training group and testing group (Table II). By
training with iEEG signals with the 0-shot-retraining scheme,
SciCNN successfully achieves 90.4% and 95.7% for event-based
sensitivity and specificity, respectively (Fig. 17). Compared to
CHB-MIT database, EU database yields higher specificity. It
could be due to the lower recorded noise baseline, which is
resulted by direct contact of the intracranial electrodes to the
brain tissue. Besides, iEEG electrodes are less prone to motion
artifact as well.

D. Local Hospital Patient

The general applicability to the new patients is further verified
with a patient recruited from the local hospital. After training
SciCNN with all the 24 CHB-MIT patients, a 1-hour recording
from the local hospital’s patient is inferenced. This recording
includes 6 seizure events, each of which lasts for 7–11 s. As
the results, SciCNN achieves 83.3% event-based sensitivity
and 88.6% specificity, respectively. This result verifies that the
performance of SciCNN is decent to apply to new patients while
being trained with the pre-existing database. The reason that the
local hospital’s results are slightly inferior than the database
results is because the EEG patterns from the sole recruited
patient might be rather different from the NPC trained with

Fig. 19. Measured power performance with different layer complexity, each
number in x-axis tick labels represents the number of branches in one layer.

the databases. This could be improved by either increasing the
number of NPC or increasing the number of the training dataset.

E. Classifier Complexity

Multiple combinations of different numbers of layers and
branches have been tested on the fabricated chip by changing
the parameters uploaded to the chip at the start of the usage.
Fig. 19 shows the power consumption and the classification
performance with different layer complexity. As the complexity
increases, the number of computations and power consump-
tion increase proportionally. The corresponding classification
performance in terms of event-based sensitivity and specificity
plateaus after 3-layer 2-branch inception modules are used in
iCNN. As the result, the combination of 3-layer iCNN with 2
branches in each layer is chosen (73.13KB), which yields>90%
event-based sensitivity and >90% specificity simultaneously
after inferencing with CHB-MIT database.

F. Discussion

Patient-specific classifiers have been extensively researched
and have achieved excellent classification performance with
optimized hardware efficiency. However, there is room for im-
provement in the practicality in terms of generalization. Patient-
independent classifier can fill in this gap by skipping the part
of data collection from the target patients. Researchers have
proposed different algorithms, mainly deep learning classifiers,
to achieve patient-independent classification. Zhu explored 0-
shot and n-shot learning on the patient-independent feature
space using a generative adversarial network-based classifier
[36]. However, it is only verified with iEEG database, and it
is less suitable for the actual hardware realization due to the
complex structure of the deep learning classifiers. Li presented
the parallel processing of memrister crossbar array that achieved
both seizure detection and prediction with low latency and low
power consumption [37]. However, it also lacks broader pools
of databases for the verification, such as surface EEG databases
that significantly increase the generalization of the application.

In this work, SciCNN is verified with both the surface
EEG and iEEG databases with good classification performance
(>90% event-based sensitivity and>95% specificity). Although
they are relatively inferior to other patient-specific state-of-the-
arts due to the inter-patient variation, it is important to know that



1212 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 17, NO. 6, DECEMBER 2023

patients do not need to be hospitalized at all for any inpatient
data collection. This highly increases the practicality of the
epilepsy-tracking SoC, especially for the patients who cannot
afford the high cost of the incurred treatment. Therefore, this
work paves the way in delivering the automated machine-aided
seizure-detection SoCs to more epileptic patients, while they can
directly use the device with the least help from the professional.
As the future direction, this work can serve as the fundamental
classifier that performs preliminary on-chip classifications. The
yielded classification results and the corresponding confidence
level of the detection can be utilized in the follow-up online
learning for updating the weights of the classifiers accordingly.
In this way, unsupervised online learning can be achieved to
further increase the vector-based sensitivity.

V. CONCLUSION

We present a 0-shot-retraining patient-independent epilepsy-
tracking SoC that is verified with both surface EEG database
and iEEG database, to the best of authors’ knowledge, for the
first time in the literature. In contrast to the conventional patient-
specific seizure detection SoCs, the proposed SoC does not need
to be trained with the EEG signals of the target patients, nor it
requires to perform supervised online training after the actual de-
ployment to the new patients. With the 0-shot-retraining patient-
independent neural network structure and the hardware-efficient
techniques, SciCNN achieves 90.3%/90.4%/83.3% event-based
sensitivity and 93.6%/95.7%/88.6% specificity on unseen pa-
tients from CHB-MIT database/EU database/local hospital re-
cruited patient, respectively.
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