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Abstract—The article presented herein proposes an alternative
skin cancer screening method that delivers non-invasive diagnosis
and monitoring of skin lesions by leveraging electromagnetic waves
with radio frequency technology and circuits. The proposed hand-
held device, named SkanMD, comprises a sensitive electromagnetic
sensor, customized radio frequency wave analyzer circuits, and
machine learning algorithms. The device is used in clinical studies
that are performed on a total of 46 individuals that are composed
of 18 patients with pre-diagnosed skin cancer, 10 individuals with
benign nevi, 7 patients with arbitrary diseases, and 11 healthy indi-
viduals. These studies included the measurement of the reflection
coefficient, S11, on multiple skin regions and recording the obtained
complex values to build a Support Vector Machine (SVM)-based
classification model. Due to the lesion-optimized sensor and the
unified cross-patient classifier, our results differentiate between
cancerous and non-cancerous skin lesions with a sensitivity that
exceeds 92% and a specificity that exceeds 81.4%. These reported
results are based on a limited population size study. They also
demonstrate that SkanMD is a promising solution that could aug-
ment conventional diagnosis methods to greatly improve patient
comfort and enable instantaneous and accurate diagnosis.

Index Terms—Electromagnetic sensor, machine learning, non-
invasive, skin cancer, wave analyzer.
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I. INTRODUCTION

SKIN cancers are among the most prevalent types of cancer,
while also counting as some of the most dangerous forms

of skin anomalies [1]. Skin cancer can be divided into two
categories, non-melanoma and melanoma. Non-melanoma skin
cancers (NMSCs) are mainly Basal Cell Carcinoma (BCC) and
Squamous Cell Carcinoma (SCC) which are often non-lethal and
comprise the largest portion of skin cancers [2]. Screening for
skin cancer often includes surgical intervention to confirm the
diagnosis, which can be uncomfortable and potentially disfigur-
ing [3]. Notably, the world health organization estimates that 2
to 3 million non-melanoma and more than 130,000 melanoma
cancers occur globally each year [4]. It is needless to emphasize
that early diagnosis of skin cancer and timely intervention in-
crease the chances of successful treatment and enhance the rate
of survival [5].

Currently, skin cancer is primarily diagnosed using subjective
approaches such as visual inspection, which highly depends
on the experience of dermatologists and practitioners. Fig. 1
presents some of the common anomalies that require further
examination to deduce malignancy. In addition, dermatologists
often rely on invasive procedures such as the biopsy, which is
considered the gold standard in determining the malignancy of
a tumor. Notably, the biopsy procedure remains discomforting,
scarring, and may result in complications for the patient [6], [7],
[8], [9], [10], [11], [12]. Due to the inconvenient, subjective,
invasive, and time-consuming nature of skin cancer diagnosis,
many researchers have explored the potential of relying on non-
invasive means for the characterization of healthy and anoma-
lous skin, such as bio-electrical impedance, machine learning-
based image classification, and electromagnetism-based (EM-
based) techniques to diagnose a variety of skin anomalies [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. EM and
bio-impedance techniques exploit the differences between the
electrical properties of healthy and suspicious lesions (dielectric
permittivity) which cause a notable difference in the magnitude
and phase of the transmitted and reflected electrical signals. EM-
based techniques often employ structures such as waveguides,
coaxial probes, radars, and multi-antenna systems operating
within the microwave or millimeter wave (mm-wave) portion of
the frequency spectrum. These techniques characterize human
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Fig. 1. A variety of skin anomalies [28].

skin permittivity at different frequency spans and leverage EM
principles to differentiate between healthy and anomalous skin
lesions, which have been proven to possess different dielectric
properties as detailed in [17], [20], [21], [24]. These studies,
which concluded with statistically significant differences be-
tween the devices’ physical responses to healthy and anomalous
skin, highlight the ability of EM-based techniques to sense skin
abnormalities safely and non-invasively.

On the other hand, machine learning and artificial intelligence
techniques, which have gained significant interest in the recent
years, are dedicated to classifying and diagnosing skin anomalies
based on images of the suspected lesions [14], [15], [16], [25],
[26]. Accuracies comparable to the visual inspection of der-
matologists and general practitioners have been reported. Such
techniques typically rely on Convolutional Neural Networks
(CNNs), a well-known deep learning algorithm used to identify
skin cancer patterns through images, and provide a diagnosis
accordingly [14]. However, the authors in [27] revealed that
alterations in color balance due to non-standardized lighting
conditions as well as the orientation of the photos can lead
CNNs to produce false results, therefore resulting in significant
misclassification. This drawback further emphasizes the need
for a completely objective method of sensing that is immune to
all non-intrinsic variables of skin cancer.

In this work we propose a novel, portable, real-time, and
low-cost sensing system tailored for the accurate detection of
skin cancer by relying on a highly sensitive electromagnetic
sensor, a custom wave analyzer circuit, and machine learning
algorithms that rely on the EM sensor’s physical responses to
assess the risk of the skin anomaly. Fig. 2 illustrates the applica-
tion of our non-invasive EM sensor on top of a cancerous skin
lesion. The proposed system relies on detecting the variations
between the dielectric properties of healthy and diseased skin
using electromagnetic waves. Subjective features, such as color,
size, orientation, and lighting conditions are effectively invisible
to electromagnetic waves, therefore we enforce and guarantee
the sensing of the intrinsic skin properties without interference.
The proposed system overcomes multiple challenges faced by
traditional counterparts and puts forth several advantages, such
as lesion-optimization via a narrow and focused beam strictly
confined to the lesion being studied, external Radio-frequency
(RF)/EM interference mitigation, immunity to pigmentation and
lighting conditions, as well as unprecedented compactness and

Fig. 2. An illustration of examining a cancerous skin lesion with the proposed
EM sensor.

low-cost, as elaborated throughout this manuscript. The system
has been clinically studied on skin cancer patients among others,
and the results have successfully shown a significant ability to
detect skin cancer non-invasively. The novelty of the proposed
system is divided into multiple aspects. The first aspect of
novelty resides in presenting a complete and stand-alone system
that is clinically validated for skin cancer detection. The second
aspect relates to the specific design of the sensor, which is
characterized by a lesion-shape optimized topology that enables
a better resolution in sensing very small skin lesions. The third
aspect of novelty relates to the frequency operation of the system
which can span from 2.3 GHz to 6 GHz controlled and driven by
one back-end circuitry. Such wide frequency potential unlocks
the possibility of expanding the future capability of this device
to offer more flexibility in the penetration depth to track the
skin lesions in depth and width in addition to the ability to
switch between various frequencies to identify different dielec-
tric signatures of other diseases. The last novelty aspect relates
to the miniaturization of the entire system, which enables the
swift and easy implementation of such skin cancer detection
system.

Section II of this paper provides the theoretical background
behind the interaction of EM waves with different materials,
and specifically skin. Section III details the concept and design
of the proposed system, including the EM sensor, the wave
analyzer, and the corresponding algorithms. Section IV presents
the system’s measurements and results. Section V concludes the
work presented and discusses clinical significance.

II. THEORETICAL BACKGROUND

The complex relative permittivity of biological materials such
as skin, blood, among other tissues dictates the behavior of the
biological material under exposure to an electric field [29]. The
permittivity is typically given by (1) [30], where the real part is
defined as the dielectric constant, and the complex part is defined
as the dielectric loss factor.

εr = ε′r − jε′′r (1)
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εr is the complex permittivity, ε′r is known as the dielectric
constant and ε′′r is the complex part.

The sensing indicators can be a shift in the resonant frequency
or a change in the magnitude or phase of scattering parame-
ters [30]. One of the unique features proposed in this work herein
is its single-port operation. In our one-port approach, we rely on
the reflection coefficient, or S11. Within this context, the S11

is a measure of the power reflected from a sensor operating at
radio-frequency (RF) after being excited with a source RF signal.
Upon the introduction of a specimen with dielectric properties
to the sensing device, the emanating electric and magnetic fields
are perturbed by the specimen’s properties. This is known as
the “Perturbation Method” which is typically used in material
characterization and thoroughly discussed in [31].

The above abstraction is utilized as the underlying foundation
of our study and technique, which can be summarized as: the
electrical properties of skin tissues can alter the behavior of
electromagnetic structures, such as sensors. Such sensors gen-
erate electromagnetic fields that are perturbed by the presence
of a specimen under test (SUT) of a characteristic permittiv-
ity, such as skin, which is represented by a change in the
sensor’s S11. Such characteristics of biological materials and
their interaction with EM waves are thoroughly studied and
described in [20], [32], [33], [34]. Specifically, variations in
the permittivity of skin due to several factors, such as disease,
humidity, and dryness cause the response of the sensor to shift
from a baseline corresponding to healthy skin. Throughout the
literature, it has been proven that diseases such as cancer change
the dielectric properties of skin, and hence, cause the behavior
of a sensing structure to shift accordingly [17], [18], [24], [35].
By studying such shifts and the associated trends, one can
ultimately conclude characteristics that are representative of the
disease. A plethora of work in the literature has verified that,
indeed, statistically significant dielectric differences are present
between healthy, benign, and cancerous skin, allowing for the
conception of methods that aim to diagnose skin cancer by
means of electromagnetic technology. For example, the work
presented in [24] executes an ultra-wide-bandwidth study of the
dielectric properties of freshly excised healthy skin and malig-
nant tissues such as BCC and SCC cancers. The experiment
is carried out by means of a typical open-ended coaxial probe
as the electromagnetic structure performing the measurement.
After analyzing the dielectric properties of these excisions, the
study concludes with the existence of statistically significant
differences in the dielectric properties of malignant and healthy
tissues. It is also concluded that the varying water and protein
content within BCC and SCC was the cause of variation in the di-
electric properties. Furthermore, the work presented in [35], [36]
also illustrates the ability of EM waves to differentiate between
healthy and malignant tissues by relying on an ultra-wideband
synthetic imaging system. This system is tested on a variety
of skin lesions, and was successful at differentiating between
malignant and benign lesions based on their electromagnetic
reflectivity.

The proposed work exploits these fundamentals to produce a
unique response from the proposed system which highlights the
distinct properties of the SUT (whether a cancerous or a healthy
one) non-invasively.

III. THE PROPOSED SYSTEM

A. The Lesion-Optimized EM Sensor

The design of a specialized microwave sensor for skin cancer
detection must possess multiple features that are pivotal to
its ability to differentiate between healthy and cancerous skin
with heightened resolution at a practical stand-off distance.
These features include enhanced sensitivity to skin lesions,
immunity to environmental factors, optimal design for lesion
geometry, and minimal signal distortion. The proposed sensor
is a planar microstrip resonator with a length equivalent to a
half wavelength (λ/2) at a frequency of 4.75 GHz (Fig. 3).
The developed sensor utilizes the high performance RT Duroid
5880 substrate [37] having a thickness of 0.79 mm, a dielectric
constant of 2.2, and a loss tangent of 0.0009. We designed,
validated, and optimized the sensor using the Ansys Electronics
Desktop (HFSS) electromagnetic fields solver [38]. The sensor is
composed of two sections: a resonant element and an impedance
matching network. The optimized sensor design resulted in an 85
ohms resonant element that corresponds to a narrow 1 mm-wide
microstrip line, which increases the quality factor, and equiv-
alently, the sensitivity. In addition, this element is 19.825 mm
long, which corresponds to the optimized half wavelength at
4.75 GHz. Consequently, the matching network matches the sen-
sor’s impedance to the standard feeding impedance of 50 ohms.
The matching network comprises a 4.5 mm long microstrip line
with a 40 ohms characteristic impedance, along with a 1.2 mm
long open shunt stub section having a characteristic impedance
of 35 ohms. Furthermore, the 40 ohms microstrip line is tapered
to further optimize the impedance matching. This procedure
results in a well-matched sensor that is fabricated and assembled.
The overall dimensions of the assembled sensor within its enclo-
sure are 31 mm x 11.8 mm x 6 mm. In addition, the sensor’s op-
eration within the microwave region of the frequency spectrum
(4.75 GHz), a form of non-ionizing radiation, ensures the safety
of our technique when compared to other forms of radiation such
as X-rays [39]. This frequency is chosen as a trade-off between
both the sensor and circuitry’s size and cost. Primarily, utilizing a
lower frequency would physically increase the size beyond what
is considered portable (due to the dependence on the wavelength
of the frequency used) and makes the sensor design significantly
more challenging when aiming to focus EM waves on very
small regions (skin lesions). On the other hand, going higher in
frequency would incur much more complex and costly circuitry
while miniaturizing the sensor beyond practical convenience.
From an electromagnetics perspective, 4.75 GHz falls within
what is known as the gamma region [33], which means the
biological changes detected by the sensor are due to water, and
proteins, among other constituents of the specimen, which is
suitable for cancer detection. Notably, the sensor adheres to
the regulations adopted by the Federal Commissions Committee
(FCC) to limit radiation emission levels as stated in ANSI/IEEE
C95.1-1992 [40]. The proposed sensor achieves a peak SAR of
0.1 W/Kg at its operational input power of -15 dBm, which is
well below the critical SAR threshold.

Traditional EM sensors typically face challenges related to:
1) Low density of EM fields interacting with the SUT due to the
fact that the evanescent fields are majorly confined within the
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Fig. 3. The lesion-optimized topology, and the dimensions of the proposed EM sensor along with the designed metallic enclosure.

Fig. 4. (a) The E-Field distribution along the length of the sensor’s resonant element. (b) The high E-Field concentration at the hemispherical sensing tip highlights
its sensitivity at this region.

substrate material of the sensor instead of being concentrated
near the SUT [23], [41]; 2) Significant dependence on the stand-
off distance (the distance between the sensor’s active region and
the SUT) which means that slight variations in this distance
are capable of noticeably changing the sensor’s response; 3)
Large sensors or impractical circuitry due to extremely high
cost and difficult mobility. The proposed sensor addresses these
challenges simultaneously.

First, we achieve a significant sensitivity by: 1) Implementing
a narrow line topology to achieve a higher quality factor. The
higher quality factor, and equivalently the exhibited narrow
bandwidth of operation allows for the detection of finer dielectric
changes within the SUT that otherwise would have been shad-
owed by the bandwidth of a wide-band sensor [42]); 2) Actively
integrating part of the resonant element and its emanating fields
into the sensing procedure, which results in stronger and denser
electromagnetic fields at the sensing tip when compared to other
techniques involving evanescent-field fringing. This is achieved
by extending the length of the planar resonant element into a
hemispherical tip of 1 mm diameter, which is incorporated into

a cylindrical substrate of 5 mm radius and 0.79 mm thickness,
as shown in Fig. 3.

In Fig. 4(a) we present the electromagnetic simulation of the
electric field (near E-field) intensity distribution along the sensor,
and in Fig. 4(b) we present the concentration of the E-field
at the hemispherical sensing tip. The peak magnitude of the
E-field at the surface of the hemispherical tip is 5.5 ∗ 104 V/M,
more than twice the peak magnitude along the resonant element
(2.571 ∗ 104 V/M). These simulations attest to the success of
our approach in focusing the EM waves at the hemispherical tip
where the skin of the patient will be positioned. Additionally,
Fig. 4(a) highlights the confinement of the sensing area at a
stand-off of 0.6 mm, where the maximum illumination region,
and therefore sensitivity (highlighted in red), is directly beneath
the hemispherical tip in a circle of radius r = 1 mm (an area
of π mm2), and the full-width at half-maximum (FWHM) is
approximately 3 mm (an area of 28.3 mm2). Furthermore, the
sensing depth is analyzed by evaluating the normalized near
E-field at several distances from the sensor’s tip, as shown in
Fig. 5(a). Notably, the normalized E-field is significantly reduced
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Fig. 5. (a) presents the normalized magnitude of the E-field and its decreasing
intensity within a SUT to highlight its sensing depth. (b) presents the effect of
the stand-off distance on the response of the sensor (sensitivity) in terms of the
S11 and the frequency shift.

at 3.5 mm and vanishes completely beyond 6 mm. Additionally,
the sensitivity degradation incurred by the stand-off distance is
also studied. In Fig. 5(b), we simulate the sensor’sS11 initially at
an unloaded state (without adding a skin-mimicking layer) and
at a skin-loaded state with increasing stand-off distances in steps
of 0.1 mm. At a stand-off distance of 0.5 mm, we can observe an
85 MHz frequency shift and a 6.7 dB decrease in theS11 from the
initial unloaded state (4.631 GHz and −16 dB). As the stand-off
increases, the frequency shifts, and the change in S11 decreases.
At 1 mm stand-off, the frequency shift decreases to 9 MHz,
and the S11 changes by 0.8 dB. Furthermore, the geometry of
the sensing tip is chosen to conform to the lesion’s topology,
suiting the natural geometry of the anomaly by adopting the
hemispherical shape that enables a high sensing resolution for
small cancerous lesions, which are typically larger than 1.5 mm.
When this sensor is positioned directly above a SUT, the inter-
action of the E-field emanating from the hemispherical tip with
the SUT is maximized. This interaction between the E-field and
the SUT manifests itself as a unique response from the sensor
upon the perturbation of its concentrated fields by the nature and
composition of the SUT.

Second, this sensor’s miniature microstrip-based topology
with lesion-optimization guarantees an accurate measurement
of the suspected region without being influenced by the adja-
cent healthy skin. The latter can happen consequently to us-
ing relatively large sensing apertures in other electromagnetic

Fig. 6. (a) The fabricated EM sensor. (b) The fabricated EM sensor is assem-
bled within its metallic enclosure.

Fig. 7. The EM sensor’s measured and simulated S11.

technologies, such as coaxial probes, waveguides, and radars
which are physically and electrically larger. Third, a metallic
shield is designed and fabricated to the dimensions of the sensor,
which immunizes it to environmental radio frequency (RF)
noise such as WiFi signals among others. Furthermore, such a
shield provides a stable fixture that maintains the desired sepa-
ration distance. The metallic shield is a conductive enclosure
which prevents interaction with the ambient electromagnetic
waves while simultaneously thwarting sensing from undesired
skin regions. This enclosure includes a cutout at the sensing
tip’s location, where the desired sensing will be performed.
Furthermore, the shield incorporates a compartment that fits a
hard-foam spacer between the sensing tip and the SUT. Hence,
a fixed separation distance is ensured, and the flatness of the
underlying skin is preserved. The fabricated sensor prototype is
shown in Fig. 6(a), it is fitted inside its shielding enclosure in
Fig. 6(b). After fabrication, the sensor’s operation is validated by
measuring itsS11 using a Vector Network Analyzer (VNA) [43].
It is shown in Fig. 7 that the measured and simulated S11 are in
great agreement. Additionally, the observed narrow bandwidth
of operation also verifies the high quality factor required for
sensing small dielectric differences.

B. The WaveWhisperer

The second major component of the proposed sensing system
is the backend wave analyzer that we name “WaveWhisperer”.
This component is the “brain” of our proposed system that inter-
rogates the sensor, which in turn examines the skin. Technically,
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Fig. 8. The block diagram of the WaveWhisperer’s architecture, in addition to showing a fabricated receiver module within the palm of the hand.

this wave analyzer generates the stimulus signals transmitted to
the sensor, analyzes the reflected signals in the measurement
procedure, extracts the S11 magnitude and phase, and executes
tailored learning algorithms on the obtained on-skin measure-
ments for the detection of malignancy. This device is a new,
customizable, portable, compact, and cost-efficient analyzer that
operates from 2.3 GHz to 6 GHz and it is also WiFi connected
for practicality. A VNA is typically used for generating and
analyzing transmitted and reflected signals from a variety of high
frequency devices and structures such as antennas and sensors.
Although a traditional VNA serves multiple and more compre-
hensive functions other than measuring the S11, the proposed
wave analyzer is custom-made, and it overcomes the size, power,
and cost constraints of a traditional VNA for this specific task
of measuring the complex S11 of a sensor within the specified
frequency range without the extra functions and the standard
metrology-level measurement accuracy. Hence, in addition to
providing a highly sensitive EM sensor, we also present an
alternative wave analyzer that achieves suitable performance
characteristics for integration within portable and compact med-
ical devices. Essentially, the design decisions should achieve a
device capable of measuring the lowest magnitude of S11 of our
sensor in free-space, which is between−20 dB to−25 dB. Fig. 8
presents the complete block diagram of the WaveWhisperer. The
fabricated prototype of the receiver module is shown in Fig. 9(a)
where the different stages are labeled, and Fig. 9(b) presents
the backside of the receiver module where the microcontroller
resides. Also, Fig. 9(c) presents the front side of the transmitter
module, which is only populated with the synthesizer IC. The
bottom side of the transmitter module can have an optional
microcontroller attached or left unpopulated.

We designed the printed circuit board (PCB) of the analyzer
circuit based on a 4-layer stack-up using KiCad [44]. This is
the typical standard for high-performance RF and mixed signal
circuitry. Such a stack-up allows for better isolation between
high-frequency signals, power planes, and external interference.

Fig. 9. (a) and (b) present the front and back sides of the fabricated and
assembled receiver module of the WaveWhisperer; (c) presents the populated
side of the transmitter module.

This PCB connects the signal and power traces in-between and to
the various components forming the network analyzer circuitry.
The 4-layer PCB was fabricated at JLCPCB according to the
technology offered in [45]. The signal in the WaveWhisperer
is initiated by a source, known as the frequency synthesizer,
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MAX2871 from MaximIntegrated. This source is capable of
synthesizing frequencies from 23.5 MHz to 6 GHz, and in our
device we utilize frequencies from 2.3 GHz to 6 GHz. The
source is fabricated onto a separate WaveWhisperer PCB (a
transmitter module that only includes the soldered synthesizer
IC). Additionally, this source is programmed via SPI through
the on-board microcontroller to mimic a VNA sweep. Since we
utilized the VNA to sweep a 1 GHz bandwidth from 4 GHz
to 5 GHz (encompassing the used sensor’s frequency of op-
eration) at 1001 points, we also program the synthesizer to
sweep this 1 GHz bandwidth in steps of 1 MHz (1001 points).
This frequency step is made possible by using a high frequency
temperature-compensated crystal oscillator (TCXO) operating
at 40 MHz from Kyocera (KT2520 K). This oscillator is chosen
to reduce the effects of temperature changes on the stability of
the frequency feeding the synthesizer. The output of the source
is connected to two high directivity (>30 dB) directional cou-
plers from MiniCircuits (ZHDC−10−63+) connected in series,
whose purpose is to couple portions of the incident and reflected
signals propagating towards and from the sensor, respectively.
These two coupled signals are of high-frequency content and
must be down-converted to enable more convenient process-
ing. Consequently, we utilize two double-balanced mixers from
MiniCircuits (SIM-762H+) to down-convert the reflected and
incident waves simultaneously to a lower intermediate frequency
(IF). These mixers operate from 2.3 GHz to 6 GHz and are
capable of down-converting a signal to a frequency ranging
from DC to 3 GHz at a typical conversion loss of 6 dB. For
these mixers to operate, another source labeled as the Local
Oscillator (LO) (another MAX2871) must be used to drive them.
Similar to the first source, we program the LO to always operate
at 40 MHz lower than the source frequency in order to arrive
at a 40 MHz down-converted signal (fIF = fSource − fLO).
Additionally, the LO signals that are typically 3 dBm in power
are fed to two gain blocks to increase their power before entering
the mixers. The used gain blocks are from Texas Instruments
(TRF37A75) that provide a 12 dB gain over a wide frequency
range from 40 MHz to 6 GHz. After down-conversion, the signal
in the reflected path passes through a custom-made Pi-type
low-pass filter to block undesired harmonics and intermodu-
lation products from propagating into the detector. This filter
is achieved by connecting two 47 pF capacitors and a 220
nH inductor in a Pi configuration. The filter is designed and
simulated in ADS [46]. On the other hand, the signal in the
incident path passes through an attenuation stage by means of
a programmable attenuator from pSemi that enables attenuation
from 0.25 dB to 31.75 dB (PE43711). This attenuation stage
allows us to perform signal-balancing to avoid a large difference
in the power of the reflected and incident signals once fed
to the detectors that specify a maximum difference of 30 dB.
Similarly, this signal also passes through an identical LPF as
in the reflected path. Both the reflected and incident signals
enter two magnitude and phase detectors from Analog Devices
(AD8302) which output the difference between two signals in
terms of magnitude and phase. The detectors can measure a
signal as low as −60 dBm. It must be noted that the detectors
can output a phase difference ranging from 0 to 180 degrees and

cannot output the full 0–360 degrees range on their own. For this
reason, the signal in the reflected path is split into two, where
one of the paths undergoes a 90 degrees phase shift by means
of a custom T-type LPF and enters one detector along with half
the signal from the incident path, while the other unshifted half
enters the second detector along with the second half of the
incident signal. This phase shifter is designed using two 200nH
inductors and one 82 pF capacitor. Additionally, this approach
is known in the user community of this detector and allows us
to obtain the full phase range. Finally, the microcontroller reads
the analog voltages from the two detectors and maps them to
their magnitude (dB) and phase (degree) counter-parts. These
voltage differences correspond to the voltage ratios between
the reflected and incident signal, which represent the reflection
coefficient or S11 that we are seeking. These calculations are
performed within the microcontroller. To energize the entire
system, we utilize four low-dropout regulators (LDO regulators)
that take the 5 V Arduino (Nano 33) input (USB voltage) and
output steady voltages required by the frequency synthesizers
and the crystal oscillator. Three of these regulators are from
Texas Instruments (LP5907), which transform the 5 V input
into three 3.3 V outputs to supply the synthesizers, which
is the recommended best practice approach suggested by the
manufacturer. These regulators are specifically chosen due to
their low-noise specification which is essential when supplying
phase-locked loops in frequency synthesizers. On the other hand,
another regulator from Microchip Technologies (MIC5366) is
chosen to supply the crystal oscillator by transforming the
5 V input to a 1.8 V output. The 4-layer design significantly
contributes in reducing the size of the whole system due to the
additional routing and assembly space. Each of the 4 layers in
the WaveWhisperer serves a designated role, as follows: Layer 1
- contains RF transmission lines and high-speed signals. Layer 2
- a continuous ground plane. Layer 3 - a power plane containing
the 3.3 V and 1.8 V supply lines. Layer 4 – an additional signal
and ground layer.

The entire system is powered by a 5 V output from the Arduino
module which can either be powered by means of a USB cable
connected to a personal computer or a battery. The maximum
power consumption of the WaveWhisperer is 2.5 W during mea-
surement collection where the output powers of all synthesizers
is chosen as the highest option (5 dBm). It is essential to note that
measurement collection is momentary, typically lasting about 1
minute, after which the synthesizers are put into sleep-mode
while the gain blocks and attenuator are turned off, thereby
reducing the power consumption to a maximum of 0.61 W. The
prototype is capable of being fully wireless by attaching a battery
instead of the USB for power and using the microcontroller’s
on-board WiFi and Bluetooth support for transmitting the data
and receiving commands. We validate the performance of the
WaveWhisperer by connecting it to a personal computer via
USB. The entire system is shown in Fig. 10 and a close-up of
the WaveWhisperer is shown in Fig. 11. The design decisions
of the WaveWhisperer resulted in a scan time of approximately
8 seconds, and a noise figure of approximately 14 dB. These
results satisfy our design requirements comprising a short scan
time (less than 2 minutes), a sufficient noise figure that does not
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Fig. 10. The full measurement setup including the WaveWhisperer connected
to the proposed EM sensor and controlled via laptop.

Fig. 11. A close-up of the connected system showing the transmitter and
receiver modules of the WaveWhisperer, the directional couplers, and the EM
sensor.

Fig. 12. The WaveWhisperer’s measured S11 for a skin loaded/unloaded
measurement with an overlay from a reference VNA from Keysight [43].

degrade the incident and reflected signals (which are larger than
−50 dBm), and the ability to measure the lowest magnitude
of S11 in the range of −20 dB to −25 dB. Additionally, the
frequency stability of the device is primarily governed by the
TCXO’s 2.5 ppm stability which results in around± (5–15) KHz
at the boundary frequencies of 2.3 GHz and 6 GHz, respectively.
Such variations have insignificant effects on our sensing and
frequency resolution since the bandwidth and sensitivity of the
sensor in addition to the intermediate frequency (IF) chosen
(1 MHz) are orders of magnitude larger. Then, the EM sensor is
connected to the WaveWhisperer through a coaxial connector,
and S11 measurements are executed.

First, we measure the S11 of the sensor in an unloaded free-
space state (not on skin). Then, the sensor is loaded with the
skin and the S11 is measured. Fig. 12 shows the success of the

Fig. 13. The full unwrapped phase range between a loaded and unloaded
measurement on skin.

WaveWhisperer in producing the sensor’sS11, both in the loaded
and unloaded states, where the observed shift in frequency and
magnitude confirm the expected response, as verified by the
VNA reference overlays. Additionally, we implemented a digital
LPF FIR filter to eliminate the high-frequency noise from the
signal, and therefore produce the aforementioned S11 plot. The
FIR filter samples the signal at 9 KHz and is composed of 33 taps.
The filter produces optimal results at a cut-off frequency of 1
KHz. Similarly, we produce the S11’s unwrapped phase angle in
both skin loaded/unloaded states in Fig. 13. The obtained results
clearly validate the performance of the WaveWhisperer and its
ability to produce the complex S11, satifying the requirements
of our application.

C. Study Design and Statistical Analysis

1) Data Collection: We use the proposed EM sensor to per-
form measurements on the skin of patients and healthy volun-
teers, totaling 46 individuals. The sample size was chosen based
on the availability of patients, their willingness to participate,
and the COVID restrictions. Then, we record the observed
complex S11 (magnitude and phase). We perform these mea-
surements by placing the sensor on the skin and ensuring light
contact between the foam spacer and the lesion. The recorded
S11 is key to understanding the nature of the SUT, especially
since the unique composition of a specimen dictates its complex
permittivity, which in turn governs the unique variation in the
sensor’s S11. For each specimen, whether healthy, benign, or
diseased, 1001 complex S11 points – each corresponding to the
frequencies from 4 GHz to 5 GHz in steps of 1 MHz – are
captured and replicated 10 times while maintaining continuous
contact. This frequency range encompasses the sensor’s fre-
quency of operation. Once the data from the designated locations
is obtained, it is then categorized and labeled based on the
skin’s nature, dimensions, and locations. This results in a set of
S11 magnitude and phase measurements for each measurement
class (healthy, benign, arbitrary, cancerous) on the two examined
locations per everyone, which forms the differential pair.

After observing the measured S11 over the entire frequency
range (4 GHz – 5 GHz), we notice that a specific range within
the entire bandwidth is significant for analysis. Particularly,
the S11 data of the skin-loaded sensor within a bandwidth of
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141 MHz, centered at the resonance frequency of the sensor,
experienced significant changes in theS11 magnitude and phase.
Therefore, we extract 141 points, corresponding to the desired
bandwidth from the original spectrum. The resultant is a band-
width containing valuable measurements that will be further
analyzed and used for building our classification model. This
procedure is then repeated for the healthy volunteers on pairs of
data corresponding to adjacent healthy locations (e.g.: Temple1,
Temple2, Forehead1, Forehead2). It is important to note that
data for training and testing are shuffled at each iteration to
ensure randomization. Additionally, the study was conducted
with the operators and examiners being aware of everyone’s
case. However, the built model, as discussed in the next section,
is blind to the samples passed for testing and validation, i.e.,
we evaluate the trained model with the testing data without
passing their labels and then examine the diagnostic output of the
model.

2) Wrapper-Based Multi-Feature Analysis of the Frequency,
Magnitude, and Phase of theS11: In building our model, we rely
on dual measurements, which are obtained for the samples of
cancer patients, healthy individuals, benign nevi, and arbitrary
diseases to extract a feature set (S11 magnitude and phase values
at specific frequencies) that will be used to develop a correspond-
ing classification model. Common to all test scenarios, we adopt
a two-class classification model. Our learning model expects two
classes, cancerous and non-cancerous, and we herein, refer to
class 1 as the skin cancer class, and class 2 changes depending on
the specific scenario. The statistical significance of our technique
is studied by developing and evaluating three case study sce-
narios. These scenarios comprise evaluating three data groups
that combine different measured samples from the general
population to investigate our technique’s ability to distinguish
between the cancer group and non-cancer groups. The scenarios
are as follows: Scenario 1 – ‘skin cancer’ measurements vs.
‘healthy skin + benign nevi’ measurements (abbrev. ‘SC’ vs. ‘H
+ BN’); Scenario 2 – ‘skin cancer’ measurements vs. ‘benign
nevi + arbitrary diseases’ measurements (abbrev. ‘SC’ vs. ‘BN
+ AD’); Scenario 3 – ‘skin cancer’ measurements vs. ‘healthy
skin + benign nevi + arbitrary diseases’ measurements (abbrev.
‘SC’ vs. ‘H + BN + AD’). Each scenario utilizes a two-class
support vector machine (SVM) classifier that is trained on all
patients and healthy volunteers (not individual-based SVM).
Notably, SVMs are known for their robustness and use within
binary medical classification [47], [48], [49], [50]. Hence, for
scenarios 1, 2, and 3, class 2 corresponds to the previously
defined ‘H + BN’, ‘BN + AD’, and ‘H + BN + AD’, respectively.
For purposes of our model, we then compute the difference
between the dual measurements for each individual and use
this difference, Δ, obtained at different frequencies as the input
feature set to the model. Hereon, we refer to the difference
obtained for class 1 individual patients as ΔHC , and the data
based on the difference of the dual measurements that comprise
the non-cancer population as ΔHH . The said differential data
represent the difference in the S11 magnitude (ΔMAG) and
phase (ΔP) for the different classes, e.g.: (ΔMAG HC), (Δ
PHC), (ΔMAG HH ), and (Δ PHH ), as obtained from the dual
measurements at multiple frequencies. This data is then passed

Fig. 14. The variation of the cross-validation error as a function of the number
of features for each used kernel function for a specific training dataset. For this
example, the best kernel function is the RBF, achieving a CV error of 0.091 at
9 features.

through a pre-processing stage for filtering and normalization,
then a feature selection stage which selects magnitude and
phase data at specific frequencies deemed accurate by the fea-
ture selection algorithm (Sequential Feature Selection, [51]).
Furthermore, these features are then used in a classification
algorithm (SVM) which produces a model capable of predicting
a suspected lesion’s malignancy. The wrapper, a multi-iteration
process of choosing the best model based on the cross-validation
error values, is then executed and evaluated. Within the multiple
iterations of the wrapper, the best kernel (important parameter
of an SVM) and the best feature set are identified. The best
feature set is a combination of S11 magnitudes and phases at
specific frequencies which are deemed capable of accurately
classifying the measured lesion based on their cross-validation
score (the lowest error). Fig. 14 presents the variation of the
cross-validation error versus the number of features included in
building the model. For illustration purposes, we can see that
the Radial Basis Function (RBF) achieved the lowest cross-
validation error at 9 “best” features for one of the scenarios.
The “best features” and the “best kernel type” are then used
to build the SVM model, which is then evaluated using our
measurement data that is split into training and testing portions
(90% training, 10% testing). We also note that the training
data that is labeled cancerous has been labeled as such based
on the results of the clinical diagnosis (post Moh’s surgery).
The evaluation comprises the computation of the most common
classification performance metrics, such as model sensitivity and
specificity.

D. Data Pre-Processing

First, we obtain the difference values for each concerned class,
where for each individual we obtain a total of 282 features (141
points for ΔMAG and 141 points for ΔP) centered around
the resonant frequency due to the high-quality factor of the
sensor (narrow resonance bandwidth). Then, this data passes
through a normalization and filtering stage which normalizes the
magnitude and phase data and selectively omits dual measure-
ment features (frequencies) that do not meet specific thresholds.
Without loss of generality and for our purposes, noting the large
observed variations, we set the thresholds to beΔMAG> 10 dB
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TABLE I
SAMPLES WITH AND WITHOUT SMOTE

Fig. 15. The block diagram of the proposed machine learning algorithm. This
diagram highlights the process and data flow to reach the optimal classification
model.

and ΔP > 30◦. To improve statistical performance, we employ
the Synthetic Minority Oversampling Technique (SMOTE) [52]
to synthetically increase the number of patient measurements.
SMOTE is a popular algorithm for balancing different classes
(minority, majority) that utilizes a distance metric to interpolate
between a specified number of neighboring data points (real
points), which are 4 neighbors in our case. The algorithm would
therefore balance the imbalanced data, which has been shown to
improve the prediction capability of a machine learning model
and reduce misclassification. This algorithm is typically used in
medical classification scenarios where the minority set (disease
set) is lesser than the majority (control set) [48], [52], [53], [54],
[55]. As an example, in [54] the authors have applied SMOTE
on an imbalanced dataset of cervical cancer patients, where they
have synthetically increased the patient population from 35 to
805 to balance it with the non-patient population of 823. In our
application, the patient population (class 1) was synthetically
increased to match the size of the largest class 2 sub-group. Since
the sub-group containing the ‘H + BN + AD’ is the largest in size,
being 61 samples, we, therefore, increase the cancer population
(18) by 43 synthetic sample points to achieve balance. We also
note that the ‘SC’ class contains the 17 BCC cases and the 1 SCC
case lumped together. As for the remaining class 2 scenarios:
for ‘H + BN’, we increase the ‘BN’ samples synthetically by
7 such that the size of ‘H + BN’ is 61, and for ‘BN + AD’
case (totaling 17), we increase both equally to achieve a total of
61 samples. Table I summarizes the sample populations before
and after SMOTE. These balanced datasets are then randomly
shuffled and divided into 90% training and 10% testing data.
The procedure is repeated 10 times to obtain a good estimate of
the average test error. The full statistical analysis algorithm is
illustrated in Fig. 15.

IV. MEASUREMENTS AND RESULTS

A. Clinical Studies: A Differential Measurement Approach

Clinical studies are performed on a population composed of
patients with pre-diagnosed skin cancer, healthy individuals, pa-
tients with benign nevi, and a selection of patients with arbitrary
diseases. These studies aim to evaluate the proposed device in
a clinical setting. The focus of the work is on distinguishing
between cancerous and non-cancerous skin lesions, and it is im-
perative to reiterate that the scope of this work does not include
identifying diseases other than skin cancer. Notably, the diver-
sified population aims to introduce variability to the sensor and
technique to better evaluate their performance. These studies are
approved by the Institutional Review Board (IRB) committee at
the American University of Beirut (Protocol DER.MK.01) [56].
Accordingly, 46 individuals participated in the measurements,
including 18 patients with pre-diagnosed skin cancer, 11 healthy
volunteers, 10 volunteers with benign nevi, and 7 volunteers with
arbitrary diseases. In what follows, we discuss the measurement
procedure for each sub-group, ultimately leading to the perfor-
mance evaluation and statistical significance.

1) Measurements on Skin Cancer Patients: The patient pop-
ulation primarily consists of 17 BCC cases and 1 SCC case,
corresponding to 50% male and 50% female participants whose
ages fall between 32 and 87 years. All patients had lesions
greater than 1.5 mm and smaller than 10 mm in diameter. These
patients were set for Moh’s surgery (defined in [57]) for the
removal of their cancer and have signed the pertinent consent
forms. The proposed measurement procedure consists of placing
the sensor on the skin (in-vivo) and recording its resultant
response afterwards in real-time. It is necessary to emphasize
that during such measurements, the awareness of the effects of
multiple internal and external factors on the measured properties
is vital to the preservation of the quality of the measurements.
These factors include body temperature, hydration, dryness,
room temperature, and the introduction of any solutions to the
skin. As presented within the literature, such factors are known
to distort the measurements that reveal the specimen’s true
properties [18], [20], [32], [58], [59]. Consequently, ensuring
the fidelity of our measurements has been a priority throughout
our study, and thus we ensured it by introducing and adopting
several protocols within the measurement process to factor in
the internal and external variables. Of said protocols, dual in-
vivo measurements for the differential approach are performed,
since in-vivo measurements preserve the fidelity and quality of
the lesion undergoing examination when compared to ex-vivo
measurements. Particularly, it was revealed that the dielectric
properties of ex-vivo biological specimens may differ from the
specimen within its natural medium, e.g., on-body skin. These
differences are especially present if the environmental and phys-
iological conditions of the measured specimen are not properly
maintained [60], [61], [62]. Furthermore, the adopted dual mea-
surement mode comprises measurements of the cancerous lesion
and its adjacent healthy tissues. Hence, for each patient, we
establish a healthy baseline that the associated cancer measure-
ment is compared to. This results in eliminating the effects of the
internal and external factors common to both measured samples.
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Fig. 16. (a) The measured S11 magnitude for all patients on their cancerous
lesions and their adjacent non-cancerous skin. The cancerous and non-cancerous
measurements have been centered at their average frequency shift to highlight
the measured difference between both. (b) shows the measured S11 phase
for the cancerous and non-cancerous patches for all patients, where a clear
difference in the phase is observed. (c) The measured S11 magnitude for all
healthy individuals on two adjacent patches of skin. (d) shows the S11 phase
similarity between both healthy patches for all healthy individuals. (e) shows
the difference/delta curves between the healthy and cancer S11 measurements
of each patient to display the measurement variability across all patients without
averaging.

These measurements are executed as follows: First, the sensor
is positioned directly on top of the cancerous lesion, and 10
S11 measurements are recorded. Next, the sensor is positioned
on the healthy skin adjacent to the cancerous lesions, and 10
S11 measurements are also recorded. These S11 magnitude
and phase values within a specified frequency range form the
“differential pair”. During these measurements, a 0.6 mm-thick
foam cylinder is loaded into the sensor’s foam compartment to
maintain a fixed stand-off distance from the SUT. Such stand-off
distance and the underlying contact-less sensing are considered
crucial elements in combatting the effects of different lesion
topologies as well as undesired lesion fluids that may otherwise
distort contact-based sensors. The tested skin cancers included
in our study are located on the nose, cheeks, temples, forehead,
and scalp. Fig. 16(a) presents our S11 measurements on the
cancerous lesion and its adjacent healthy skin for all patients,
where each class of measurements has been centered at the

average shifted resonance frequency of its relevant class for
clearer presentation of the difference between them. Similarly,
Fig. 16(b) presents the measured S11 phase at the cancerous
lesion and its adjacent healthy skin for all patients.

2) Measurements on Healthy Skin, Benign Nevi, and Arbi-
trary Diseases: We perform the dual measurements on healthy
individuals to establish a baseline reference of healthy mea-
surements for comparison with cancer measurements. Such a
reference reveals the properties of healthy skin and enables us to
understand the sensor’s response to healthy skin measurements.
Accordingly, the executed dual measurements are performed
over multiple locations of the skin for 11 healthy individuals
comprising 5 males and 6 females. The measurement locations
are chosen to imitate the skin cancer locations identified within
the patient group. In addition to establishing a profile of healthy
reference measurements, we have further increased our test
specimens to include dual measurements on patients with benign
moles and arbitrary diseases. Accordingly, we conducted mea-
surements on 10 patients with benign nevi, where we recorded
the response of the sensor when loaded with the nevi, as well
as on the adjacent healthy skin, and consequently compared
both. The nevi are primarily located on the face and arms of
the participants, and they were generally less than 5 mm in
diameter. Similarly, we tested the sensor on 7 patients with
arbitrary diseases, including Pemphigus Vulgaris, Accessory
Tragus, Pyogenic Granuloma, Warts, and Leukemia Cutis. We
also differentially measured the response between the diseased
lesions and their adjacent healthy counterparts. These experi-
ments allowed us to quantify the difference between healthy
skin and cancer within a patient, multiple healthy skin regions
within a healthy individual, the difference between benign nevi
and arbitrary diseases as well as their adjacent healthy skin, and
finally, the variation between all the different sets. Fig. 16(c)
and (d) present the dualS11 magnitude and phase measurements
from two different locations (e.g., two sides of the temples, and
two sides of the nose, among others) on all healthy volunteers,
respectively. As expected, there were negligible changes in terms
of the resonant frequency, theS11 magnitude, and theS11 phase.

3) The Distinct Response to Healthy Skin and Cancerous
Lesions: By comparing these measurements from the patient
and healthy populations in Fig. 16, the response of the sensor,
and equivalently, the nature of the SUT, is manifested as (i)
shifts in the resonance frequency of the sensor, and (ii) changes
in the magnitude and phase of the sensor’s measured S11. For
patients, the sensor reacted differently to the cancerous skin
lesion and healthy skin, as represented by the shift in resonance
frequency, the S11 magnitude, and the S11 phase. We also
present in Fig. 16(e) the difference between the healthy and
cancer measurements of each patient across all patients without
centering the results at their average shifted resonance frequency
to display the measurement variability. Each curve represents the
difference curve for one patient, where it is clearly observed that
there is a significant and noticeable difference between the S11

of the healthy and cancerous skin for each patient. On the other
hand, the healthy population exhibited negligible differences in
the aforementioned variables. Hence, not only have we identified
the key variables indicative of differences within the measured
specimen (frequency, magnitude of S11, and phase of S11), but
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we have also displayed the existence of distinctive response dif-
ferences between cancer and healthy skin measurements based
on those variables. Such unique differences, their levels, and
their associated trends form the basis of our analysis in the
coming sections.

B. Skin Cancer Diagnosis

Our objective is to generate an accurate model capable of
predicting the malignancy of a suspected lesion based on the
differences found within the collected measurement data. There-
fore, the obtainedS11 measurements from the clinical studies are
passed onto several data processing stages (as elaborated previ-
ously). We rely on the multi-feature nature of the input data (S11

measurements obtained at different frequencies) and the mea-
sured contrast between healthy skin and diseased skin (within
patients) and the measured difference between different healthy
regions (within healthy individuals), as well as the differences
within individuals having benign nevi and arbitrary diseases to
build the model. Consequently, the differential data is then fed
into the SVM classifier and then the performance is evaluated.

We analyze the performance of our classifiers by executing
the corresponding Receiver Operating Characteristic analysis
(ROC analysis) in which we also compute the Area Under the
ROC Curve (AUC) to quantify the general performance at all
classification thresholds. This analysis is applied to the training
and testing data for all three scenarios mentioned previously.
Fig. 17(a) presents the ROC curves resulting from the models
of the cross-validation training folds corresponding to the ‘SC’
vs ‘BN + AD’ scenario along with the mean plotted as well.
In Fig. 17(b), we present the mean ROC curves and AUCs
corresponding to the analysis executed over all the classifiers
that are being applied post cross-validation for the remaining
testing data for all three scenarios. The obtained mean AUCs
are 1, 0.952, and 0.946, corresponding to the ‘SC’ vs ‘BN +
AD’, ‘SC’ vs ‘H + BN’, and ‘SC’ vs ‘H + BN + AD’ scenarios,
respectively. These values validate the high performance and
capability of our proposed system since both sensitivity and
specificity were maintained at high values with insignificant
compromise despite utilizing diverse groups corresponding to
each scenario (inclusion of benign nevi and arbitrary diseases).
The ROCs provide a general overview of the system’s perfor-
mance over many classification thresholds, however, in a clinical
setting, a threshold must be chosen to enable prediction utility
upon the acquisition of new measurement data. In our approach,
we favor the sensitivity metric rather than the specificity, as
also adopted in [13]. This is because sensitivity indicates the
probability that a diagnosed cancer lesion is truly cancerous, and
specificity indicates the probability that a non-cancerous lesion
is truly non-cancerous. Hence, a low sensitivity would have
dangerous consequences on the patient due to the misdiagnosis
of a cancerous lesion as a benign one. For this reason, we focus
our efforts on maximizing the sensitivity, without sacrificing the
specificity, as it would be safer for the patient to misdiagnose
a healthy lesion as cancerous rather than a cancerous lesion
as healthy. We also note that, per iteration, the test data was
not included in the threshold selection. Table II summarizes the
obtained sensitivity and specificity values for all three scenarios.

Fig. 17. (a) represents the ROC curve for the ‘SC’ vs ‘BN + AD’ scenario’s
CV training performance. (b) represents the ROC curves and mean AUCs for the
classifiers of all test scenarios based on the performance of the corresponding
models resultant from the testing and validation data.

TABLE II
THE CORRESPONDING SENSITIVITY AND SPECIFICITY FOR EACH TEST

SCENARIO. SC REPRESENTS SKIN CANCER; H REPRESENTS HEALTHY SKIN;
BN REPRESENTS BENIGN NEVI; AD REPRESENTS ARBITRARY DISEASES

Our analysis effectively validates the promising capability
of the proposed solution to distinguish cancerous from non-
cancerous groups with a sensitivity and specificity of up to
100% and a minimum sensitivity of 92% and specificity of
81.4%, respectively, based on our limited size clinical study.
Future wider scale clinical studies will be performed to better
understand the efficacy of the proposed solution. In Table III,
we present a comparison of the presented work to previous
work in the literature. Our primary points of comparison rely
on the electromagnetic structure used as well as the stand-alone
nature of the proposed system. Importantly, the electromagnetic
structure used, such as a near-field sensor [42], a waveguide [17],
[18], an antenna [36], or an electrode [13], has a direct influence
on the size and cost of the system being proposed. The proposed
microstrip-based near-field sensor has the advantage of a more
conformal size (31 mm × 11.8 mm × 6 mm) as compared to
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TABLE III
LITERATURE COMPARISON

the different standard waveguide system assemblies along with
their corresponding VNAs. Additionally, the proposed approach
is also considered application-oriented since no special setups
are required. Most of the proposed systems in the literature
require stable fixtures for mounting the sensing device or special
alignment accommodations as in the case of the antenna-based
transmission systems. To the contrary, the adoption of our pro-
posed system in clinics is smoother and easier. While the systems
in [13], [36] presented higher sensitivity (97% and 100%) and
specificity (98% and 87%) than the proposed system (92% and
81.4%), we provide a fully handheld solution. Additionally,
the work in [18] provides a handheld system composed of a
waveguide and a diode detector to output the magnitude of the re-
flected signal, however it does not measure phase values (which
contain additional valuable information that can supplement the
magnitude values) as well as a statistical model is not presented
for diagnostic output.

V. CONCLUSION

The presented system establishes a unique and innovative
platform that successfully integrates EM-based sensing for der-
matology diagnostics. The combination of several sensor design
decisions tailored for malignant lesion detection and the multi-
feature statistical analysis methods enhanced our sensitivity.
Our findings attest to our system’s ability to electromagnetically
interrogate suspected skin lesions non-invasively. There is a clear
need for a quick point-of-care device capable of diagnosing skin
cancer, especially because delays in skin cancer screening cause
the disease to evolve, potentially spreading into other tissues and
resulting in dangerous health complications.

As for clinical utility, the sensing tip is particularly useful
for surgeons removing cancerous skin lesions. In the traditional
wide-margin excision method, “normal skin” surgical margins
need to be drawn around the skin cancer and removed. They vary
in size from 3 mm to 20 mm beyond the visible tumor size. This is
done to make sure all the cancer is removed as cancer cells often
extend beyond what the physician clinically sees. Due to its fine
sensing tip, the proposed “pen-like” device can accurately deter-
mine small and large tumors’ malignancy, effectively identifying
the boundaries of cancer both qualitatively and quantitatively,
as proven by our clinical studies. Similarly, this also confers a
massive advantage to patients undergoing Moh’s Micrographic
Surgery where successive excisions from the suspected lesions
are often required to ensure the complete removal of cancer.
The sensor can detect the actual limit of the tumor much more
accurately when compared to the conventional methods of skin
cancer assessment. Hence, the number of stages (or re-excisions)

needed can be minimized, therefore allowing the surgeon to
draw the cancer limit more precisely from the beginning. Such
an advantage reduces the duration of the procedure as well as the
risk of potential disfigurement in sensitive regions and the risk of
tumor recurrence. In addition, the frequency of operation, being
within the microwave range, results in a significantly reduced
design cost of the RF components required for the wave analyzer
system when compared to the design cost of components that
operate at mm-wave frequencies and beyond. Moreover, the
proposed device exhibits several advantageous features when
compared to other efforts within the literature, such as porta-
bility, non-constraining, and low-cost. The results from our
limited population studies are highly encouraging, which drives
towards up-scaled and more extensive clinical testing in the
future.
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