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Cooperative Distributed GPU Power Capping for
Deep Learning Clusters
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Abstract—The recent GPU-based clusters that handle
deep learning (DL) tasks have the features of GPU device
heterogeneity, a variety of deep neural network (DNN) mod-
els, and high computational complexity. Thus, the tradi-
tional power capping methods for CPU-based clusters or
small-scale GPU devices cannot be applied to the GPU-
based clusters handling DL tasks. This article develops a
cooperative distributed GPU power capping (CD-GPC) sys-
tem for GPU-based clusters, aiming to minimize the training
completion time of invoked DL tasks without exceeding the
limited power budget. Specifically, we first design the fre-
quency scaling approach using the online model estimation
based on the recursive least square method. This approach
achieves the accurate tuning for DL task training time and
power usage of GPU devices without needing offline pro-
filing. Then, we formulate the proposed FS problem as
a Lagrangian dual decomposition-based economic model
predictive control problem for large-scale heterogeneous
GPU clusters. We conduct both the NVIDIA GPU-based lab-
scale real experiments and real job trace-based simulation
experiments for performance evaluation. Experimental re-
sults validate that the proposed system improves the power
capping accuracy to have a mean absolute error of <1%,
and reduces the deadline violation ratio of invoked DL tasks
by 21.5% compared with other recent counterparts.

Index Terms—Deep learning (DL) cluster, economic
model predictive control (EMPC), GPU power capping,
Lagrangian dual decomposition, Lipschitz continuity.
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I. INTRODUCTION

IN RECENT years, the pervasive use of parallel-computing
GPUs has accelerated the development of diverse appli-

cations based on deep learning (DL). Equipped with highly
paralleled streaming multiprocessors (SMs), GPU devices can
achieve very rapid distributed computing in the training process
for data-rich deep neural networks (DNN). Therefore, research
on GPU cluster-assisted DL task processing has received great
attention in the past few years. For example, Microsoft and
NVIDIA have launched the DGX-1 system which deploys 8
Tesla P100 GPUs (each can yield over 80 teraflops) per server
chassis. Facebook has built the GPU cluster, namely, Big Basin,
which is similar to DGX-1.

On the other hand, the outstanding computing capability of
GPU devices is achieved at the cost of remarkably high power
consumption. Even with great advances in transistor density,
i.e., 16 nm, the recent NVIDIA Pascal architecture (P100)
still requires high thermal design power (TDP) up to 300 W,
which is much larger than the modern CPUs. Such high power
consumption may cause the power budget overloading and the
sudden circuit breakdown [1].

To resolve the above concerns, power capping based on throt-
tling server capability has been discussed in the past years [2].
The main goal of power capping is to adjust the power usage
of servers, to maintain the peak power consumption below the
given power budget. For CPU-based clusters, power capping
methods based on CPU core frequency scaling (FS) have been
developed. For instance, a multiinput–multioutput (MIMO) con-
trol theoretic approach was proposed to guarantee the control
accuracy and stability [3]. Furthermore, dynamic workload-,
priority-, and electricity price-aware power capping approaches
have been proposed for Internet data centers [4]. The proposed
adaptive power capping schemes can efficiently respond to the
varying environmental factors. Recently, power control schemes
for GPU devices have also been developed. Empirical modeling-
based GPU power and performance estimation approaches have
been discussed in [5]. They proposed to maximize the overall
performance with acceptable power usage on top of a single GPU
device. Moreover, offline-profiling-based approaches have been
explored in [6] and [7], so as to find the power-efficient frequency
setting for a single GPU device.

However, to the best of our knowledge, no generalized ap-
proach or model has been developed to implement power cap-
ping for GPU-based clusters handling DL tasks. In contrast to a
single GPU device, the power capping for GPU-based clusters
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that handle DL tasks has the following main challenges. First,
due to continuous upgrade and replacement [8], GPU devices
in the cluster are heterogeneous in having different power and
performance characteristics. Therefore, developing a specific
power model dedicated to a particular GPU device does not take
a good effect on a GPU cluster. Second, it is difficult to make
an optimal power capping decision when various different DNN
models are simultaneously trained to handle multiple DL tasks.
Finally, the power capping is a nonseparable coupled problem
throughout entire heterogeneous GPU servers, therefore it is
not easy to achieve on-time power capping for large-scale GPU
clusters.

Research on power capping for GPU clusters is still in the in-
fancy stage. GPU power and performance estimation approaches
have been discussed [5], [9], which highly depend on offline
profiling for a specific GPU architecture. The long latency and
high cost of offline profiling prevent us from applying such
approaches to power capping for a GPU cluster consisting of
heterogeneous GPU devices. Recently, the effect of GPU FS on
DL task processing has been investigated in [10] and [11] which
just exhibits the empirical results without an explicit manage-
ment scheme for GPU clusters. Runtime power control schemes
for small-scale GPU clusters have been explored in [6] and [7],
but they are not applicable to large-scale GPU clusters consisting
of hundreds of servers, due to the unacceptable computation time
for optimal capping decision-making.

To tackle the above challenges, we propose a novel cooper-
ative distributed GPU power capping (CD-GPC) system in this
article. The goal of the proposed CD-GPC is to minimize the
training performance degradation for invoked DL tasks on GPU
clusters by means of on-time power capping that does not exceed
the power budget. To do this, We first design an online power
and performance model estimator for GPU servers based on
the recursive least square (RLS) [12] method and FS (FS) [13].
The estimator enables an accurate runtime tuning for GPU FS
without needing the time and cost-consuming offline profiling.
Then we formulate the power capping for GPU clusters as an
economic model predictive control (EMPC) problem [14], aim-
ing to achieve rigorous and stable power control. Specifically, we
exploit the Lagrangian dual decomposition method [15] to divide
the entire EMPC problem into multiple subproblems. Thanks to
the strong convexity of our EMPC problem, we can apply the
tight Lipschitz constant [16] to the updating of the associated
dual variable, so as to efficiently accelerate the convergence to
the optimal power capping solution.

To evaluate the performance of the proposed CD-GPC
system, we conduct the NVIDIA GPUs-based lab-scale real
experiments. By training well-known DNN models such as
AlexNet [17], GoogleNet InceptionV3 [18], ResNet152 [19],
and VGG19Net [20] upon the CD-GPC system, we verify the
practicality of our work. Furthermore, in order to strengthen
the reliability of the performance evaluation for the CD-GPC
system, we conduct the Microsoft real job-trace [21]-based
large-scale (200+ GPU servers) simulation experiments. Both
lab-scale real experiments and large-scale simulation experi-
ments validate that the proposed system improves the power
capping accuracy to have a mean absolute error of <1%, and

Fig. 1. Proposed CD-GPC system for GPU-based cluster handling DL
tasks.

reduces the deadline violation ratio of invoked DL tasks by
21.5% compared with other recent counterparts.

II. OVERVIEW OF CD-GPC SYSTEM

In this section, we describe the structure of the proposed
CD-GPC system and the detailed control procedures. As shown
in Fig. 1, the CD-GPC system consists of three major layers,
saying local GPU clusters, local GPU power controllers, and a
coordinator from top to bottom. A local GPU cluster is usually
composed of tens to hundreds of GPU servers, each of which
then consists of a single or multiple GPU devices. When a DL
task with its associated deadline is invoked on a certain server,
the iteration-by-iteration DNN training process is triggered.
DNNs are typically trained using stochastic-gradient-descent
(SGD), where network model parameters are iteratively up-
dated for every randomly selected training subdataset called
minibatch [22]. In the SGD method, an iteration is considered
finished when a feed-forward and a back-propagation for a
single minibatch are completed. An epoch consists of multiple
iterations and one epoch is completed when all iterations (i.e.,
for the entire input dataset) are completed. A DL task usually
includes hundreds of epochs in order to achieve a satisfactory
estimation accuracy based on a predetermined loss function.
This hierarchical structure of a DL task is shown in Fig. 2.

Each GPU server has an the internal online model estimator.
Whenever an iteration is completed, the corresponding iteration
time is reported to the estimator through the training output
parser. Meanwhile, the GPU power consumption is monitored
by utilities (e.g., NVIDIA-SMI) and then reported to the esti-
mator. Based on the current GPU frequency setting and reported
values, the online model estimator repeatedly updates the model
coefficients for iteration time and power consumption, by using
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Fig. 2. Epoch- and iteration-based entire deep neural network model
training.

the RLS regression method (presented in Section III-C). The
model coefficients from all GPU servers in a local cluster are
delivered to the corresponding local GPU power controller.

A local GPU power controller elaborates on finding the opti-
mal GPU frequency setting for all GPU servers of a cluster so as
to minimize the deadline violation of a DL task. Based on EMPC
formulation, the controller adjusts the GPU frequency appropri-
ately for all GPU servers in a local cluster. Meanwhile, since
the total power consumed by all local clusters cannot exceed the
given power budget, each local GPU power controller receives
the dual variable, i.e., the price of the power capacity, from the
coordinator through the Lagrangian dual decomposition method.
Based on the proper dual variable, collected model coefficients,
and the deadline, the quadratic programming (QP) solver in the
local GPU controller calculates the optimal control input for
each GPU server in a local cluster. The details are presented in
Sections III and IV.

The coordinator retrieves the system-wide information (i.e.,
the suboptimal control input of each local GPU power con-
troller and power budget) and provides the dual variable to
each local controller. The coordinator gradually updates the
optimal dual variable through the repeated interactions with
local controllers. Specifically, it exploits the Lipschitz continuity
of the control problem, so as to accelerate the convergence in
dual variable updating. The sufficiently updated dual variable
is fed back to the local GPU power controllers as the optimal
dual variable, and each local GPU power controller generates
optimal control input for GPU servers in each local cluster
accordingly.

III. MODEL AND ONLINE ESTIMATOR

In this section, we first present the power and performance
models based on iteration time of DL tasks and FS of GPUs.
Then, we design the RLS method-based online model estimator
which enables accurate runtime tuning of GPU core/memory
frequency values.

A. Deep Learning Task Model

All invoked DL tasks have their deadline within which all the
associated iterations should be completed as shown in Fig. 2.
Let dij denote the deadline for a DL task invoked on the GPU
server j of the local cluster i. We define the actual completion
time of an iteration as iteration time, and use it as a performance
factor for DL task processing. Let μi

j denote the iteration time
of a DL task invoked on the GPU server j of the local cluster i.
Let T and k denote the unit control period and the index of the
current time step, respectively. Then, we present the following
definition.

Definition 1: (Iteration Time Requirement)

λi
j(k) =

dij − Tk
(E ij(k)− E

i
j(k)− 1)Iij(k) + Iij(k)− I

i
j(k)

. (1)

The iteration time requirement λi
j(k) represents the subdead-

line of an iteration on the GPU server j of the local cluster
i at time step k. Here, dij − Tk denotes the remaining time
for completing a DL task without deadline violation. E ij(k)
and E ij(k) denote the total numbers of required epochs and
completed epochs, respectively. Iij(k) is the total number of
iterations in an epoch (all epochs contain the same number of
iterations) and Iij(k) is the number of completed iterations for
the current epoch. If the current iteration time is larger than
the required one, i.e., λi

j < μi
j , then we deem the deadline for

training the DL task is violated. In contrast, if λi
j > μi

j , a part of
the assigned computing capability for the DL task is deemed to
be wasted, i.e., the power capacity is dissipated. Ideally, they
should be the same, i.e., λi

j = μi
j , in order to achieve both

power efficiency and performance insurance. Therefore, for a
given power budget, the objective of power capping for DL task
processing is to minimize the gap between λi

j and μi
j .

B. Frequency Scaling-Based Power and
Performance Model

We exploit the GPU FS approach [13], which adjusts the
clock rate of GPU SMs and the access rate of GPU memory
controllers. By using the FS approach, we can tune the power
usage of GPU servers and iteration time of invoked DL tasks in a
fine-grained manner. Specifically, we adopt the regression-based
statistical approach, for it is device-agnostic and more suitable
for heterogeneous GPU devices than the empirical approaches
that are dedicated to certain GPU architectures.

Let xi
j(k) = (xij,c(k), x

i
j,m(k)) ∈ R2 denote the GPU core

and memory frequency pair of the GPU server j of the local
cluster i at time step k. If there are multiple GPU devices in the
server, they use the equal frequency setting. Let pij(k) denote
the power consumption of the GPU server j of the local cluster
i at time step k and it can be estimated as follows:

pij(k) = N i
j(α

i
j,c(k)x

i
j,c(k) + αi

j,m(k)xij,m(k) + αi
j,e(k)).

(2)
Here, N i

j denotes the number of GPU devices in the GPU
server j of the local cluster i. αi

j,c(k), α
i
j,m(k), αi

j,e(k) denote
power consumption model coefficients at time k for associated
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GPU core instruction-set, memory instruction-set, and remain-
der operations, respectively [13]. The current iteration time at
time step k, i.e., μi

j(k) can be estimated similar to pij(k) as
follows:

μi
j(k) =

1

N i
j

(
βi
j,c(k)

xij,c(k)
+
βi
j,m(k)

xij,m(k)
+ βi

j,e(k)

)
. (3)

Note that each GPU server executes only one DL task at a
time. In [23], we assume that both the power consumption and
the DL performance are linearly proportional to the number of
GPU devices, as defined in (2) and (3). βi

j,c(k), β
i
j,m(k), βi

j,e(k)
denote iteration time model coefficients at time k, respectively,
similar to αi

j,c(k), α
i
j,m(k), αi

j,e(k) [13].
Now, we present the control system dynamics based on the

GPU power and performance model (2) and (3). By [3], we
present the discrete-time system as follows:

xi
j(k + 1) = xi

j(k) + Δxi
j(k) (4)

pij(k + 1) = pij(k) +∇pij(k)TΔxi
j(k) (5)

μi
j(k + 1) ≈ μi

j(k) +∇μi
j(k)

T
Δxi

j(k) (6)

where Δxi
j(k) = xi

j(k + 1)− xi
j(k), ∇pij(k) = (N i

jα
i
j,c(k),

N i
jα

i
j,m(k))∈R2, and∇μi

j(k) = (
−βi

j,c(k)

Ni
j (x

i
j,c(k))

2 ,
−βi

j,m(k)

Ni
j (x

i
j,m(k))2

)∈

R2. Due to the nonlinearity of (3), the dynamic model for
μi
j is formulated as the approximated first-order Taylor

equation as shown in (6). Note that it is necessary to find the
proper coefficients, saying αi

j,c, α
i
j,m, α

i
j,e, β

i
j,c, β

i
j,m, and βi

j,e,
in order to accurately tune the target GPU power consumption
and iteration time. Instead of using traditional regression
methods, we adopt the RLS-based method which is suitable for
online model coefficient estimation.

C. Recursive Least Square-Based Online Model
Estimator

The RLS regression method [12] updates the model coef-
ficients by using both previous model coefficients and newly
retrieved sample data. The RLS method fits the model on the fly
without requiring fully sampled data and any recalculation for
the entire sample data. Due to the low computational burden, it
is suitable for the online GPU model estimation.

In the standard RLS regression formula at time step k, the
model coefficientsϕ(k) can be estimated based on the measured
sample output ψ(k) and the sample input χ(k) as

ϕ(k)=ϕ(k−1)− O(k−1)χ(k)(χ(k)Tϕ(k−1)−ψ(k))
1 + χ(k)TO(k−1)χ(k)

(7)

O(k)=O(k−1)− O(k−1)χ(k)χ(k)TO(k−1)
1 + χ(k)TO(k−1)χ(k) (8)

where O(k) is the covariance diagonal matrix for updating
model coefficients. The sample output data ψ(k) for the GPU
server j of the local cluster i, is measured during the interval
[k − 1, k], respectively. For the estimation of the GPU power

Fig. 3. Recursive least square (RLS) regression-based online model
estimation.

model coefficients, we set ϕ(k)← (αi
j,c(k), α

i
j,m(k), αi

j,e(k)),

ψ(k)← pi
j(k)

Ni
j

, and χ(k)← (xij,c(k), x
i
j,m(k), 1). For the esti-

mation of the iteration time model coefficients, we set ϕ(k)←
(βi

j,c(k), β
i
j,m(k), βi

j,e(k)), ψ(k)← N i
jμ

i
j(k), and χ(k)←

(xij,c(k)
−1
, xij,m(k)

−1
, 1). The initial model coefficients can

be estimated based on the historical data. The initial diagonal
matrix O(k) has large diagonal values (>108). Fig. 3 shows
the procedures of the RLS regression from the viewpoint of a
single GPU server. For every time step k, our RLS-based online
model estimator receives the current GPU frequency vector
χ(k) and the associated output data ψ(k). By using (7) and (8)
together with the previous model coefficient vector ϕ(k − 1),
the estimator derives the updated model coefficient vector ϕ(k)
and report it to the local GPU power controller. Then, ϕ(k) is
fed back to the estimator as the next feedback value.

IV. ECONOMIC MPC-BASED FORMULATION

In this section, we design the power controller for GPU
clusters using control dynamics (4)–(6). We adopt the EMPC
theory, which can find the trajectory of optimal frequency setting
among multiple GPU servers [14]. The EMPC-based design
generally incorporates a general cost function which consists
of two terms, i.e., a tracking error and a control penalty. Our
controller optimizes the cost function over a certain time interval,
called the control horizon. Let Hc denote the length of the
control horizon. Then we formulate the EMPC cost function
J(k) as follows:

J(k) =

M∑
i=1

J i(k) (9)

where

J i(k) =

Ni∑
j=1

Hc∑
t=1

τ ij‖μi
j(k + t|k)− λi

j‖2

+

Ni∑
j=1

Hc−1∑
t=0

‖(Δxi
j(k + t|k))‖2Ri

j
. (10)
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Based on (4), we also setΔxi
j(k + t|k) = xi

j(k + t+ 1|k)−
xi
j(k + t|k), where xi

j(k + t|k) denotes the predicted GPU fre-
quency vector at time step k + t. Subsequently, μi

j(k + t|k) =
1
Ni

j
(

βi
j,c(k)

xi
j,c(k+t|k) +

βi
j,m(k)

xi
j,m(k+t|k) + βi

j,e(k)) denotes the predicted

iteration time derived byxi
j(k + t|k). Based on (6) and a succes-

sive linearization around the current state xi
j(k|k) = xi

j(k), we

set μi
j(k + t|k) ≈ μi

j(k) +∇μi
j(k)

T ∑t
l=0 Δxi

j(k + l|k). The
scalar τ ij and the positive definite matrix Ri

j ∈ R2×2 denote
the weight for iteration time requirement violation and the
weight for control penalty, respectively. The first term of (10)
penalizes the violation of iteration time requirement as described
in Section III-A. The second term is used to avoid the sudden
change of state (i.e., GPU frequency value) [4]. Let [X] denote
the integer set {1, . . . , X}, then the associated constraints are
given as follows:

xi
j � xi

j(k + t|k) � xi
j , ∀j∈ [N i], ∀i∈ [M ], ∀t∈ [Hc] (11)

M∑
i=1

Ni∑
j=1

pij(k + t|k) ≤ pb(k), ∀t∈ [Hc] (12)

where xi
j ,x

i
j ∈ R2 denote the lower and upper bounds of the

GPU frequency vector, respectively. pb(k) denotes the given
power budget at time step k. Similar to μi

j(k + t|k), we set
pij(k + t|k) = N i

j(α
i
j,c(k)x

i
j,c(k + t|k) + αi

j,m(k)xij,m(k +

t|k) + αi
j,e(k)) = pij(k) +∇pij(k)T

∑t
l=0 Δxi

j(k + l|k).
Constraint (11) ensures the feasible frequency range of
each GPU server. Constraint (12) represents the total power
consumption of the entire cluster should not exceed the power
budget at every time step.

Now, based on cost function (9) and constraints (11)–(12), we
formulate the primal quadratic programming (QP) problem as
follows.

Problem 1: (Primal QP control problem)

minΔẋ(k)J(k) =
1

2
Δẋ(k)TH(k)Δẋ(k) + gT(k)Δẋ(k) + e(k)

(13)
subject to

Ax,i(k)Δẋi(k) � bi(k), ∀i ∈ [M ] (14)

Ap(k)Δẋ(k) � bp(k). (15)

Here, Δẋ(k) = (Δẋ1(k), . . . ,ΔẋM (k)) ∈ R
∑M

i=1 2Ni·Hc

denotes the input trajectory over control horizon Hc, where
Δẋi(k) = (Δxi(k|k), . . . ,Δxi(k +Hc − 1|k)) ∈ R2Ni·Hc

and Δxi(k + t|k) = (Δxi
1(k + t|k), . . . ,Δxi

Ni(k + t|k)) ∈
R2Ni

. The positive symmetric definite matrix H(k) and the
vector g(k) are corresponding to Hessian and gradient of (9),
respectively. Ax,i(k) and bi(k) are corresponding matrix and
vector for constraint (11), respectively. Ap(k) and bp(k) are
corresponding matrix and vector for power budget constraint
(12), respectively. For details, readers of interests are referred
to [3]. The scalar e(k) denotes the corresponding constant term
for (9) and does not affect the optimal solution for Problem 1.

V. ACCELERATED DUAL DECOMPOSITION

A. Lagrangian Dual Decomposition

Due to the high complexity caused by the large dimension
of the input trajectory Δẋ(k), i.e.,

∑M
i=1 2N i ·Hc, it is pretty

tough to solve Problem 1 in a centralized fashion. As an alterna-
tive, we apply the Lagrangian dual decomposition approach [14]
to Problem 1 as follows.

Problem 2: (Dual control problem)

maxγD(γ) (16)

where

D(γ) = minΔẋ(k)J(k) + γT (Ap(k)Δẋ(k)− bp(k)) (17)

subject to (14) and

γ 
 0. (18)

The vectorγ = (γ1, . . . , γH
c
) ∈ RHc

is the Lagrangian dual
variable for constraint (15). The term γTAp(k)Δẋ(k) can be
decomposed as follows:

γTAp(k)Δẋ(k)

= γT [Ap,1(k)| · · · |Ap,M (k)][Δẋ1(k)
T · · ·ΔẋM (k)

T
]T

=

M∑
i=1

γTAp,i(k)Δẋi(k).

(19)
Therefore, the dual control problem becomes separable and

can be solved in a distributed manner. Based on (19), the dual
subfunction Di(γ) for LCi is formulated as follows:

Di(γ) = min
Δẋi(k)

J i(k) + γTAp,i(k)Δẋi(k). (20)

By using the concept of a conjugate function [24], we can
derive the gradient of Di(γ) as follows:

�γD
i(γ) = Ap,i(k)Δẋi∗(γ, k), ∀i ∈ [M ]. (21)

Finally, the unique optimum Δẋi∗(γ, k) forDi(γ) is derived
as follows:

Δẋi∗(γ, k)=argmin
Δẋi(k)

J i(k)+γTAp,i(k)Δẋi(k), ∀i ∈ [M ].

(22)
The strong duality holds for the primal and dual control prob-

lems if there is at least one feasible solution within the relative
interior of constraints (14) and (15). This is called Slater’s
condition [24]. In such a case, min J = maxD holds. We can
derive the optimal solution γ∗ for the dual control problem by
using the iterative numerical method. Letγ(h) denote the interim
dual variable at dual step h. Then γ(h) is updated by the gradient
projection method as follows:

γ(h+1) =

[
γ(h) + ε

(
M∑
i=1

�γD
i(γ(h))− bp(k)

)]
+

=

[
γ(h) + ε

(
M∑
i=1

Ap,i(k)Δẋi∗(γ(h), k)− bp(k)

)]
+

(23)
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where ε > 0 is the gradient step length, and [·]+ represents the
projection into the nonnegative orthant. At max count hmax, we
can derive the (approximated) optimum γ(hmax) ≈ γ∗.

B. Acceleration With Tight Lipschitz Continuity

Note that the convergence rate for the optimum γ∗ of (23)
depends on the gradient step size ε. Instead of using an arbitrary
value, we exploit the tight Lipschitz continuity in dual functions
to find a proper ε for fast dual convergence. Since J(k) is
strongly convex and H(k) is positive symmetric definite, the
dual function D(γ) satisfies the following bound [16]:

D(γ) ≥ D(γ ′)+ <�γD(γ ′),γ − γ ′> −1

2
‖γ − γ ′‖2L (24)

where for all γ,γ ′ ∈ RHc
, L ∈ RHc×Hc

is the associated Lip-
schitz constant. Then, (23) can be reformulated as follows:

γ(h+1) =

[
argmax

γ

{
D(γ(h))+〈�γD(γ),γ−γ(h)〉

− 1

2
‖γ−γ(h)‖2L

}]
+

=

[
γ(h) + L−1

(
M∑
i=1

Ap,i(k)Δẋi∗(γ(h), k)− bp(k)

)]
+

.

(25)

Obviously, the minimization for L (i.e., maximization for ε)
accelerates the convergence rate most rapidly for dual decompo-
sition. Then, we present the following proposition for minimum
L, i.e., tight Lipschitz constant.

Proposition 1: When the power budget pb(k) is not sufficient
to meet the iteration time requirement of all invoked DL tasks,
the minimum L, i.e., tight Lipschitz constant in (24) is defined
as L(k) = Ap(k) ·H−1(k) ·Ap(k)T .

Proof: Note that J(k) is the strongly convex QP function. If
pb(k) is not sufficient, thenAp(k)Δẋ∗(γ∗, k) = bp(k) holds (it
means that the total power consumption by the optimal power
capping exactly reaches out to the given power budget). And
then, we regard the constraint (15) as the equality constrained
form and derive the tightest value for L as Ap(k) ·H−1(k) ·
Ap(k)T by using Theorem 10 in [16]. �

It may be highly time-consuming to directly derive
L(k)−1 due to the calculation for H−1(k). Let H(k) =
blkdiag{H1(k), . . . ,HM (k)}, where Hi(k) is the Hessian for
J i(k). Then, we present the following proposition.

Proposition 2: Let Ap,i(k) ·Hi−1(k) ·Ap,i(k)
T denote

the local tight Lipschitz constant. The inverse of the tight
Lipschitz constant is L(k)−1 = (

∑M
i=1 A

p,i(k) ·Hi−1(k) ·
Ap,i(k)

T
)−1.

Proof: Without loss of generality, Hi ∈ R2NiHc×2NiHc∀i is
the invertible square matrix. Then, based on the characteristics

Fig. 4. Control flow diagram of the proposed CD-GPC system.

of a block diagonal matrix, we can obtain the following:

L(k)−1 = (Ap(k) ·H−1(k) ·ApT (k))−1

=(Ap ·blkdiag{H1−1(k), . . . ,HM−1(k)}·Ap(k)T )−1

=

(
M∑
i=1

Ap,i(k) ·Hi−1(k) ·Ap,i(k)
T

)−1
.

�
Proposition 2 enables the distributed computation for L(k)−1

over multiple local power controllers.
We present the procedures of the CD-GPC, in Algorithms 1

and 2. Based on Proposition 2, the coordinator iteratively updates
the dual variable γ(h) by interacting with local controllers (line
06–10 in Algorithm 1). The coordinator sends the final dual
variable as the optimum to local controllers (line 11 in Algorithm
1). Based on γ(h), the QP solver in each local controller calcu-
lates the intermediate suboptimum Δẋi∗(γ(h), k) (line 06–10 in
Algorithm 2). At hmax, the controller applies the first input
Δxi∗(k|k) from Δẋi∗ as the optimal input to all GPU servers
(line 13 in Algorithm 2). The control sequences of the CD-GPC
system over time are shown in Fig. 4.

VI. LAB-SCALE REAL EXPERIMENTS

In this section, we investigate the performance of the proposed
CD-GPC approach upon a lab-scale GPU cluster.

A. NVIDIA GPU Based Experimental Environment

The experimental environment of our GPU cluster is shown in
Table I. Our experimental environment consists of 1 coordinator,
3 local GPU power controllers, and 11 heterogeneous GPU
servers (one of them contains 4 GPU devices). The GPU chipsets
are DVFS-capable GTX1060/1080 using NVIDIA PASCAL



7250 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 69, NO. 7, JULY 2022

Algorithm 1: Coordinator of CD-GPC.

INPUT : Power budget for the cluster, pb(k),
OUTPUT : Optimal dual variable, γ∗,
01 : receive power model slope∇pij(k) of (5), from local
GPU power controllers LCi ∀i, j
02 : form matrix Ap(k) for power budget constraint of
(15) and send submatrix Ap,i(k) to LCi∀i
03 : receive Ap,i(k)·
Hi−1(k) ·Ap,i(k)

T from LCi∀i (Proposition 2)
04 : get the tight Lipschitz constantL(k)−1 (Proposition 2)
05 : initialize the dual variable γ(h=1) of (25)
06 : for dual steps, h = 1→ [hmax − 1] do
07 : send γ(h) to LCi ∀i
08 : receive the intermediate suboptimum Δẋi∗(γ(h), k)

of (22) from LCi ∀i
09 : get γ(h+1) of (25)
10 : end for
11 : γ∗ ← γ(hmax) and send γ∗ to LCi∀i

Algorithm 2: Local GPU Power Controller LCi of
CD-GPC.

INPUT : Iteration time requirement, λi
j(k)∀j,

OUTPUT : Optimal control input, Δxi∗(k),
01 : get model coefficients αi

j,c(k), α
i
j,m(k), αi

j,e(k),
βi
j,c(k), β

i
j,m(k), βi

j,e(k) of (2)–(3) via RLS estimator
02 : get ∇pij(k),∇μi

j(k)∀j of (5)–(6)
03 : send power model slope ∇pij(k), ∀j of (5), to the
coordinator
04 : receive submatrixAp,i(k)of (15) from the coordinator
05 : send Ap,i(k)·
Hi−1(k) ·Ap,i(k)

T to the coordinator (Proposition 2)
06 : for dual steps, h = 1→ [hmax − 1] do
07 : receive dual variable γ(h) from the coordinator
08 : QP solver finds the intermediate suboptimum
Δẋi∗(γ(h), k) of (22)
09 : send Δẋi∗(γ(h), k) to the coordinator
10 : end for
11 : receive optimal dual variable γ∗ from the coordinator
12 : Δẋi∗(k)← Δẋi∗(γ∗, k)
13 : apply first input Δxi∗(k|k) from Δẋi∗(k) to all
associated servers

architecture that supports CUDA. We use the object-based
database framework and MongoDB as the control message
queue and use computation network toolkit (CNTK) [25] as the
DL framework.

Upon CNTK, we train the well-known DNN models including
Resnet152 [19], VGG19net [20], Alexnet [17], and Googlenet
InceptionV3 [18]. Table II shows the DL task mapping for the
experiment. The iteration time requirement, i.e., IterTR, for each
DL task is the median of the processing time range available for
each GPU server. All GPU servers initiate the FS at the starting
value of the range. The control horizon is Hc = 10. We select

TABLE I
GPU CONTROLLER/SERVER SPECIFICATION, 3 LOCAL CLUSTERS, AND 11
GPU SERVERS, GTX1060(CORE RANGE (MHZ) [580-1850], MEM RANGE
(MHZ) [2850-4440]), GTX1080(CORE RANGE (MHZ) [580-1950], MEM

RANGE (MHZ) [3515–5414])

TABLE II
INVOKED DL TASKS, P:PARALLEL, NP:NONPARALLEL, ITERTR: ITERATION

TIME REQUIREMENT

the max count for dual steps, hmax as 7 based on our empirical
analysis. The time interval for GPU power measurement is set
as 1 s. The iteration time (IterT) of each DL task is reported
whenever the iteration is finished.

In order to evaluate the performance of the CD-GPC system,
we use the following metrics, saying, violation of iteration time
requirement (sec) denoted by max{μi

j − λi
j , 0}, ∀i, j, power

consumption (W) denoted by
∑
∀i
∑Ni

j=1 p
i
j(k), dual conver-

gence rate, and control computation time (sec). The curves
of the violation of iteration time requirement and the power
consumption are shown in Figs. 5 –7, and 10. The curves
of the dual convergence rate are shown in Fig. 8. The control
computation time for our lab-scale small GPU cluster (which
contains 11 GPU servers and three local controllers) is not so
long. Therefore we put the evaluation of the control computation
time for the large-scale GPU cluster (contains 200 GPU servers)
to the next Section VII of simulation experiments.

To the best of our knowledge, our work is the first to study
the power control for GPU-based cluster handling DL tasks,
and thus, it is difficult to find proper benchmark algorithms.
Regarding this, we implement the MIMO CPU power control
algorithm [3] as a comparison. For the MIMO algorithm, we
use the cost function (5) in [3], instead of using our function
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Fig. 5. Control accuracy of the proposed CD-GPC method at low
power budget pb = 600W, and enough one pb = 800W. (a) IterT curves
of 3 DL tasks a1, a4, a11 with pb = 600W. (b) IterT curves of 3 DL tasks
a1, a4, a11 with pb = 800W. (c) Average IterTR violation curves of 11
DL tasks. (d) Total power consumption curves of 11 servers.

Fig. 6. Control accuracy given dynamic power budget. (a) Average
IterTR violation curve. (b) Total power consumption curve.

(13). In addition, we consider three types of fixed GPU fre-
quency settings, i.e., minimum, medium, and maximum types,
as the baseline. For the minimum and maximum types, we use
frequency ranges shown in Table I. For medium setting, we
used {core 1000Mhz, mem 3500Mhz} for GTX1060, and {core
1000Mhz, mem 4400Mhz} for GTX1080, respectively.

B. Evaluation

Fig. 5 shows the control accuracy of the proposed CD-GPC
system in terms of the iteration time requirement violation
and the power budget compliance. We consider only three DL
tasks, i.e., a1, a4, and a11 (see Table II) for readability. Even

Fig. 7. Performance comparison of the CD-GPC method, fixed GPU
frequency setting approach, and MIMO control [3]. (a) At pb = 600W.
(b) At pb = 800W. (c) At pb = 600W. (d) At pb = 800W.

Fig. 8. Comparison of dual convergence rate. (1) CD-GPC (using tight
Lipschitz constant). (2) Fast gradient method (FGM) [15]. (3) Standard
decomposition algorithm (SDA) [26]. (a) Optimal Primal function value
versus dual function value. (b) Average IterTR violation curve.

Fig. 9. (a) Cumulative distribution of the total iteration count of gen-
erated DL tasks based on Microsoft real job-trace [21] (b) Cumulative
distribution of the required DL task deadline based on Gaussian distri-
bution (avg = 50%, std = 7.5%).

under the low power budget, i.e., pb = 600W, our CD-GPC
system enables minimizing the violation of the iteration time
requirement as shown in Fig. 5(a). Unsurprisingly, under the
sufficient power budget, i.e., pb = 800W, the CD-GPC system
achieves nonviolation of the iteration time requirement after a
control period 2100s+ as shown in Fig. 5(b).
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Fig. 10. Performance comparison of the proposed CD-GPC, MIMO [3],
SHIP [1], and Dynamo [27], in terms of (a) average time slot ratio of
budget violation (b) average level of budget violation (c) average time
slot ratio of deadline violation (d) average level of deadline violation.

Note that in both cases, our controller can finely tune the
GPU frequencies toward the target iteration time requirement
and power budget before that the control period reaches 500 s.
Without offline profiling information, our proposed RLS-based
online model estimator accurately captures the model coeffi-
cients for different DL tasks upon heterogeneous GPU servers.
Fig. 5(c) shows that the proposed CD-GPC system efficiently
minimizes the performance degradation by maximally using
the limited power budget. Fig. 5(d) shows that the proposed
CD-GPC system can always ensure the power consumption does
not exceed the given power budget.

Fig. 6 shows the CD-GPC control accuracy under a dynamic
power budget. The power budget pb is set to 850, 600, and 670 W
in control period intervals of [0 s, 2000 s], [2001 s, 4000 s], and
[4001 s, 6000 s], respectively. From Fig. 6(a) and (b), we observe
that the CD-GPC can accurately scale the GPU frequencies
adapting to the unpredictable changes of the power budget.
Fig. 6(b) shows the power consumption dynamically drops at
2100 s and smoothly increases at 4100 s. This is because our
system considers the power budget as a hard constraint. The
associated control is more sensitive to the power budget than to
the iteration time, indicating that the CD-GPC system is suitable
for GPU clusters in which peak power management is critical.

Fig. 7 compares the performance among the proposed CD-
GPC, MIMO power control, and fixed GPU frequency. Fig. 7(c)
shows that the MIMO method approaches the power budget
(600 W at 13 s) faster than the CD-GPC system does. However,
its average violation for iteration time requirement of 1.5 s
is much higher than that of the CD-GPS, i.e., 0.5 s. This is
because the MIMO mainly focuses on the power budget, and
does not explicitly consider the deadline of running DL tasks.
The approach using fixed GPU frequency performs the worst.
Even though the power consumption of fixed setting “MAX” is

more than twice of the proposed CD-GPC, their derived iteration
times are almost the same as shown in Fig. 7(b) and (d). Com-
prehensively, the results indicate that our EMPC formulation in
the CD-GPC system enables efficient best-effort use of the given
power budget.

Fig. 8 compares the dual convergence rate of the proposed CD-
GPC with other dual variable updating schemes when the power
budge is pb = 600w. In particular, we compare the proposed
CD-GPC system with the standard decomposition algorithm
(SDA) [15] and the fast gradient method (FGM) [26]. The SDA
uses an arbitrary small step size ε for dual updating without
considering the Lipschitz continuity. We set ε = 0.1. The SDA
cannot ensure a certain dual convergence rate. In contrast, the
FGM uses the Lipschitz constant

L′ =
1

σ
∗ max
∀h∈[2N ·Hc]

Hc∑
l=1

|Ap
lh| ∗ max

∀l∈[Hc]

2N ·Hc∑
h=1

|Ap
lh| (26)

where N = 2
∑M

i=1N
i, σ, and Ap

lh denote the total number of
GPU servers, the strongly convex parameter, and the hth column
value of lth row in Ap, respectively. The dual convergence rate
of the FGM is slower than the CD-GPC since L′ does not reflect
the curvatures of H(k) in different directions.

Fig. 8(a) depicts the gap between the optimal primal function
value J∗(k) and the iterative dual function value D(γ). We can
see that while the SDA and the FGM require the nonnegligible
number of dual steps, i.e., h > 35, to reach the optimal point,
i.e., min J = maxD, the proposed CD-GPC reaches the optimal
point within only seven dual steps, i.e., h = 7. Moreover, the
violation of the iteration time requirement of the CD-GPC
decreases faster than the other dual variable updating schemes,
i.e., FGM and SDA, as shown in Fig. 8(b).

VII. LARGE-SCALE SIMULATION EXPERIMENTS

To evaluate the performance of the proposed CD-GPC in
large-scale GPU clusters, we conduct the simulation for GPU
clusters consisting of 50 and 200 GPU servers, i.e.,N = 50 and
N = 200, respectively. The simulation settings on servers and
DL tasks are shown in Tables I and II for both cases. Besides,
we adopt three DNN models, i.e., VGG19Net, InceptionV3, and
ResNet152, for DL task invocation and exploit the workload
characteristics of the Microsoft real job-trace [21]. We generate
the total iteration count for each DL task as shown in Fig. 9(a)
based on the distribution of job run-time. The deadline of each
DL task is generated based on the Gaussian distribution (avg =
50%, std = 7.5%) in the range of [0, 1], indicating how fast the
DL task is completed. Fig. 9(b) shows the deadline distributions.

We compare the CD-GPC with two existing power capping
methods, i.e., SHIP [1] and Dynamo [27], and MIMO. SHIP
is a hierarchical version of MIMO and Dynamo adopts the
distributed capping structure including multiple rack controllers.
In SHIP, a two-level control problem, saying the power dis-
tribution unit (PDU) level and rack level, are solved in every
control period. Dynamo avoids the power dissipation under an
overprovisioned power budget, by flexibly making the power
capping and/or uncapping decisions.
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Fig. 11. Control computation time for (a) # of GPU servers = 50
(b) # of GPU servers = 200.

We run the simulation instance ten times and assign 2880
control time slots to each instance, with one minute per slot.
Fig. 10(a) shows the ratio of time slots that violate the power
budget. Due to the online model estimation by the RLS method,
the CD-GPC system achieves a lower violation ratio (≈0.09 at
2.5 kW) than other methods. Interestingly, MIMO and SHIP
using the RLS method also derive the low ratio of the budget
violation, similar to the CD-GPC system. Note that MIMO and
SHIP without the RLS method derive the high ratio (≈0.45 at
2.5 kW) of the budget violation because they use the inaccurate
power model coefficients based on the static offline regression.
Dynamo derives the worst budget violation (≈5.7 at 2.5 kW)
because it uses simple heuristics for power control instead of
using elaborate theoretical models. Fig. 10(b) shows the average
level of the budget violation (the ratio of the amount of power
consumption to the budget at budget-violated time slots) of
which trends are similar to Fig. 10(a). Fig. 10(c) shows the
average ratio of the deadline violation. The CD-GPC system
derives the lowest violation ratio (36% on average) due to the
IterTR-based control. The MIMO and SHIP derive the high vio-
lation ratio (65% on average) because they adjust the frequency
only based on the server utilization. The Dynamo shows better
performance (49% on average) than the MIMO and SHIP. This is
because the Dynamo periodically redistributes the power budget
to the servers according to the priority of the DL tasks. Fig. 10(d)
shows the average level of the deadline violation (the ratio of the
completion time to the deadline for deadline-violated DL tasks)
of which trends are similar to Fig. 10(c).

Fig. 11 shows the control computation time. The MIMO
requires high computation time for both cases (N = 50, 200)
because the inverse computation burden in (13) is exponentially
increased with the increasingH . In contrast, the CD-GPC (M =
50) needs the trivial computation time (0.08 s for N = 50,
0.7 s for N = 200). This is because the computation burden of
the CD-GPC system can be dispersed by the local controllers.
Note that the CD-GPC (M = 5) requires the nonnegligible high
computation time (762.6 s for N = 200). This is because the
number of local controllers is not enough to sufficiently reduce
the dimensionality of each subcontrol problem. Nonetheless, the
computation time of CD-GPC can be further reduced by simply
increasing the number of local controllers. We observe that the
computation time can be decreased by 1070 times (762.6 s→
0.7 s) whenM is increased by just ten times (5→ 50). Dynamo
shows the improved computation time compared to our CD-GPC
system. However, the rapid computation of Dynamo is due to its

simple heuristics at the expense of elaborate control. As shown
in Fig. 10, our CD-GPC system outperforms Dynamo in terms
of power budget and deadline assurance, at the trivial cost of the
slightly increased control computation time.

VIII. CONCLUSION

In this article, we proposed a CD-GPC system for DL task pro-
cessing so as to minimize the training completion time without
exceeding the limited power budget. To the best of our knowl-
edge, this is the first study to explore the device-agnostic and
scalable power control for heterogeneous GPU servers handling
DL tasks. Through our presented RLS model estimation-based
GPU FS method, we achieved accurate power capping without
needing the offline-based profile operation. Our sophisticated
EMPC formulation based on the tight Lipschitz continuous
Lagrangian dual decomposition efficiently accelerated the con-
vergence to the optimal control. The experimental results based
on both the NVIDIA GPU based lab-scale real experiments
and large-scale simulation with job-trace demonstrated that the
CD-GPC is the promising candidate for the power control system
of modern GPU clusters handling DL tasks.
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