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Naturally Damaged Wind Turbine Blade Bearing
Fault Detection Using Novel Iterative Nonlinear

Filter and Morphological Analysis
Zepeng Liu , Student Member, IEEE, and Long Zhang , Member, IEEE

Abstract—Wind turbine blade bearings are pivotal com-
ponents to pitch blades, which optimize electrical energy
output and stop wind turbines for protection. Blade bearing
failure can cause the turbine to lose control or even break
down. However, due to the very slow rotation speeds (often
less than 5 r/min) and limited rotation angles (less than
100o), blade bearings can only produce weak and limited
operating condition data, which makes condition monitor-
ing and fault diagnosis very challenging, in particular for
naturally damaged conditions. In this article, a naturally
damaged large-scale blade bearing, which was in operation
on a real wind farm for over 15 years, is investigated. An
iterative nonlinear filter is proposed to remove heavy noise
and extract weak fault vibration features. Then, the mor-
phological transform-based envelope method is applied to
diagnose the bearing fault in the frequency domain. The
diagnostic results show that the proposed method can be
an effective tool for diagnosing very slow speed blade bear-
ings and is superior to some conventional bearing fault
diagnosis methods.

Index Terms—Blade bearing, condition monitoring and
fault diagnosis (CMFD), iterative nonlinear filter (INF), mor-
phological analysis, vibration analysis.

I. INTRODUCTION

W IND energy is acknowledged as a sustainable and reli-
able energy source, which has drawn extensive attention

all over the world [1]. Based on global wind statistics, the global
cumulative installed wind capacity was only 23.9 GW in 2001,
but it is estimated that the total capacity will reach over 800 GW
by 2021 [2], [3]. Meanwhile, the single wind turbine capacity
has been increased to over 10 MW. In order to optimize energy
yield, modern wind turbine blades can be controlled at desired
angles, while keeping the main shaft speeds within operating
limits via the pitch systems. The blade bearing, also termed pitch
bearing, is one of the critical components in the wind turbine
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Fig. 1. Example of vibration signals with a 90o rotation angle at
(a) 1.34 r/min and (b) 7.39 r/min.

pitch system, and it is a typical slewing bearing [4]. The blade
bearing inner ring is connected to the blade, while the outer
ring is mounted on the hub, so the bearing inner ring can be
driven by electric motors (electrical pitch systems) or hydraulic
equipment (hydraulic pitch systems) to change the blade pitch
angle [5], [6]. However, blade bearings are usually operated in
extreme and harsh environments, which can increase their failure
rates [7]. The failure of blade bearings can result in lost control
of blades and damage to the whole turbine system. As repair and
replacement costs of failed blade bearings are high, the condition
monitoring and fault diagnosis (CMFD) of blade bearings is of
critical importance to decrease operation and maintenance costs,
and improve system reliability [8].

To the best of the authors’ knowledge, as far as the blade bear-
ing CMFD is concerned, there is no representative publication
and clear industrial standard in this field. This is because the
special working mechanism of blade bearings gives rise to two
main challenges, which are summarized as follows.

1) The fault signals are weak under slow rotation speed
conditions (less than 5 r/min), which is due to the fact that
low rotation can result in low kinetic energy according to
Newton’s Law. For example, Fig. 1(a) and (b) shows raw
vibration signals collected from the Blade Bearing Lab-
oratory with 90o rotation angles at 1.34 and 7.39 r/min,
respectively. The weak fault signals are masked by the
noise generated from bearing rotation motion, gearbox,
and motor driving. Comparing Fig. 1(a) and (b), the fault
signals in Fig. 1(a) at a lower rotation speed are much
weaker than those in Fig. 1(b) at a higher speed.

2) The bearing rotation angle is very limited because blade
bearings can only swing in small angles (less than 100o),
which is different from continuously rotating main bear-
ings, generator bearings, or gearbox bearings.

Drawing on these insights, it is very difficult to conduct blade
bearing CMFD under the conditions of very low rotation speeds
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and limited angles, because low rotation speeds result in weak
fault signals masked by heavy noise, and limited angles result
in a limited number of fault signals. In order to diagnose the
failure type of wind turbine blade bearings, some researchers
utilized fatigue life analysis to identify blade bearing health
conditions [9], [10]. The aim of fatigue life analysis is to
identify changes of blade bearings by comparing the condi-
tions of deteriorated bearings with healthy bearings, so this
analysis needs long-term monitoring to record both healthy
and failed conditions. However, in field operations, the working
conditions of new blade bearings are usually not recorded for
further use. Therefore, fatigue life analysis cannot solve the
two aforementioned challenges and they cannot be utilized for
blade bearing CMFD. The other technique to assess health
conditions of blade bearings is model-based methods [11]–[14].
Based on the inconsistency between the measured outputs of
the bearings and the model-predicted outputs, the specific fault
types can be inferred. However, the model-based methods often
have to use physical parameters of the blade bearings which
may be inapplicable in real wind turbine blade bearing fault
detection. As this research is specifically concerned with blade
bearing fault detection, a real wind turbine blade bearing, which
had already served at a wind farm for over 15 years, is used
for this article. Unlike conventional seeded defect or artificial
defect bearings, this blade bearing is naturally damaged and
so it demonstrates real blade bearing vibration characteristics.
As a result, due to the aforementioned challenges, it is nec-
essary to design effective methods to maximally extract and
utilize the limited weak fault signals. This generally involves
the techniques of signal denoising and fault characteristics
analysis.

For signal denoising, the purpose is to reduce the noise com-
ponents of the raw vibration signal so that the weak fault signals
are extracted. As the bearing fault signals and noise components
are often two uncorrelated parts [15], signal denoising can be
achieved via two approaches, namely fault signal extraction and
noise component elimination. With regard to the first approach,
some band-pass filtering methods, such as fast kurtogram [16],
can directly extract fault signals in a narrow frequency band.
However, some useful frequency components beyond this fre-
quency band are also abandoned. As a result, under slow-speed
conditions, some weak fault signals may be degraded or dif-
fused, which may affect the accuracy of the diagnostic results.
The other denoising manner is noise component elimination.
The noise components generated from blade bearing rotation
movements have a periodic property in the time domain. The
noise cancellation method, such as discrete/random separation
(DRS), is to eliminate the periodic noise from raw vibration
data. Then, the weak fault signals are extracted when the noise
is cancelled [17], [18]. Nonetheless, in practice, the drawbacks
of the noise cancellation method are that the noise components
may not be completely removed and some signals (often in
high frequency) may leak. Therefore, signal denoising may be
unsatisfactory in some cases.

In regard to fault characteristics analysis, the envelope method
is often implemented to detect the presence of defect frequencies

relating to rolling elements that pass over the defect point [19].
The Hilbert transform-based envelope method (Hilbert envelope
method) has been widely used in bearing fault diagnosis [20].
However, for blade bearing fault detection, the Hilbert envelope
is very sensitive to noise, which can submerge weak fault sig-
nals, meaning that defect frequencies are unnoticeable in the
frequency domain.

As a result, the conventional methods mentioned above may
not be the ideal solutions for blade bearing fault detection
because the noise level cannot be maximally suppressed. In order
to minimize noise to an insignificant level and fully utilize weak
fault signals, this article proposes a novel iterative nonlinear
filter (INF) for signal denoising. The new INF method combines
a fault signal extraction method, a nonlinear diffusion filter,
and a noise cancellation method, DRS. In other words, the INF
is a linear combination of a nonlinear diffusion filter and a noise
cancellation filter with the aim of maximally exploiting their
benefits and overcoming their weakness. This can be explained
more specifically as follows.

1) The nonlinear diffusion filter was first used on image
denoising and edge detection by Perona and Milik [21]
and further utilized by Li et al. [22] as an edge-preserving
denoising method for one-dimensional (1-D) signals.
However, this article is the first attempt to apply nonlinear
diffusion filter to bearing vibration signal denoising. The
advantage of the nonlinear diffusion filter is that it can
smooth the signal waveform in the time domain and di-
rectly extract weak fault signals by capturing impulse-like
or sharp edge type fault signals with minimal useful in-
formation loss. This could effectively increase the defect
signal-to-noise ratio.

2) The nonlinear diffusion filter may not effectively reduce
periodic noise. To overcome this drawback, one possible
solution is to utilize the advantage of the noise cancella-
tion method DRS to reduce periodic noise.

3) The new INF iteratively and gradually filters the vibration
signal by extracting the fault signals and cancelling out the
periodic noise. The process continues until the filtering
performance criterion is maximized. In this article, a
kurtosis value is chosen as the criterion because a high
kurtosis value can indicate that the signal has a great deal
of impulsive-type fault signals.

After that, in order to diagnose the bearing fault type in
the frequency domain, the morphological transform-based en-
velope method (morphological envelope method) is employed
for fault characteristic analysis. The morphological transform
is a nonlinear analysis method, which was first utilized to
denoise images [23]. Then, Nikolaou et al. [24] developed the
morphological transform for bearing vibration signal envelope
analysis. Unlike the conventional Hilbert envelope method, the
morphological envelope method can further denoise the residual
noise leaked from the INF filter and enhance the weak fault
signals, so the bearing defect frequencies can be identified
distinctly. Extensive experimental results demonstrate that the
proposed INF and morphological envelope methods outperform
conventional filtering methods or the Hilbert envelope method
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when diagnosing the naturally damaged slow speed blade bear-
ing fault type.

The main contributions of this article can therefore be sum-
marized as follows.

1) First, a new filter method INF is proposed to over-
come the drawbacks of the nonlinear diffusion filter and
DRS method, and it outperforms conventional filtering
methods.

2) Second, to the best of the authors’ knowledge, it is the
first time the diagnosis of naturally damaged wind turbine
blade bearings has been carried out.

3) Finally, blade bearings operate under unique working
conditions, including both slow rotation speeds and lim-
ited rotation angles. These result in weak and limited
vibration data. Nonetheless, our proposed method can ef-
fectively overcome these two challenges, which is demon-
strated in a laboratory setting.

The rest of this article is organized as follows. In Section
II, the theoretical background of bearing defect frequencies,
INF and morphological analysis are discussed in details. Then,
Section III is dedicated to a description of the performed experi-
ments and diagnostic results. Finally, Section IV concludes this
article.

II. THEORETICAL BACKGROUND

A. Bearing Defect Frequencies

A wind turbine blade bearing is made up of the outer race,
inner race, and balls. Balls rolling over the local defects in the
bearing can generate a sequence of impacts. The repetition rate
of these impacts is defined as the bearing defect frequency,
which can be calculated by the mechanical dimensions of the
bearing [6], [25]

fo = (Nb/2) · (1− db · cosα/dp) · fr (1)

fi = (Nb/2) · (1 + db · cosα/dp) · fr (2)

fb = (dp/2db) ·
(
1− (db · cosα/dp)2

)
· fr (3)

where fo indicates the outer race defect frequency, fi is defined
as the inner race defect frequency, and fb is defined as the balls
defect frequency. fr is the rotational frequency of the bearing.
Nb is the number of rolling elements; db is the rolling element
diameter; dp is the pitch diameter; and α is the contact angle.

In the frequency domain, if one of the bearing defect frequen-
cies matches one or more dominant frequencies of the vibration
signal, a specific fault in the bearing can be inferred.

B. Iterative Nonlinear Filter

The new denoising method INF is a linear combination of
a nonlinear diffusion process and a noise cancellation process,
which can iteratively and gradually smooth the signal waveform
and remove periodic noise. On the one hand, if only the nonlinear
diffusion process is applied, the signal waveform, which is
influenced by the high frequency signal, can be smoothed but
the periodic noise cannot be removed; on the other hand, if
only the noise cancellation method DRS is adopted, the periodic
noise can be eliminated but the high frequency signals may leak.

As a result, the combination of the nonlinear diffusion process
and DRS can fully exploit their benefits and overcome their
weaknesses.

1) Nonlinear Diffusion Process: The main idea of INF is
the nonlinear diffusion filter, which is a multiscale smoothing
and impulse signal detection scheme [26]. In other words, the
nonlinear diffusion filter can reduce noise and extract impulsive-
type fault signals with minimal useful information loss. The
nonlinear diffusion filter is summarized as follows.

Let X(n) be a raw vibration signal of length N . The equation
for the nonlinear diffusion process based on the Perona-Malik
model is expressed as follows [21]:

∂

∂t
X(n, t) =

∂

∂n

[
c(n, t) · ∂

∂n
X(n, t)

]
(4)

with an initial conditionX(n, 0) = X(n), n = 1, . . ., N . c(n, t)
indicates the diffusion function, which controls the diffusion
strength and denoising strength, andX(n, t) is the current signal
intensity. The variable t is the process ordering parameter.

The diffusion function c(n, t) varies with the magnitude of
the gradient of the signal intensity X(n, t), which is a monoton-
ically decreasing function c(n, t) = f( ∂

∂nX(n, t)). In general,
c(0, t) = 1 and c(n, t) > 0 for n tending to infinity. The diffu-
sion function is expressed in the following:

c(n, t) = exp

(
−
(∣∣∣∣

∂

∂n
X(n, t)

∣∣∣∣
/

κ

)2
)

(5)

where the parameter κ is the noise threshold. If ∂
∂nX(n, t)

is large, c(n, t) becomes small, which indicates the diffusion
is weak and the spikes can be prevented. On the contrary, if
∂
∂nX(n, t) is small, c(n, t) is large; therefore, the diffusion is
strong, which can smooth the signal waveform.

In order to find the solution for the nonlinear diffusion equa-
tion, the discrete approximation is considered. For one iteration
step of (4), the expression of ∂

∂tX(n, t) and ∂
∂nX(n, t) are,

respectively, approximated as [22]

∂

∂t
X(n, t) ≈ X (n, t+Δt)−X(n, t)

Δt
(6)

and

∂

∂n
X(n, t) ≈ X (n+Δn/2, t)−X (n−Δn/2, t)

Δn
. (7)

Moreover, the discrete approximation of ∂
∂n [c(n, t) ·

∂
∂nX(n, t)] is [26]

∂

∂n

[
c(n, t) · ∂

∂n
X(n, t)

]

≈ ∂

∂n

[
c(n, t)· 1

Δn

(
X

(
n+

Δn

2
, t

)
−X

(
n−Δn

2
, t

))]

≈ 1

Δn2

[
c

(
n+

Δn

2
, t

)
· (X(n+Δn, t)−X(n, t))

− c

(
n−Δn

2
, t

)
·(X(n, t)−X (n−Δn, t))

]

= Φr−Φl (8)
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Fig. 2. (a) Enlarged raw vibration signal within 0.1 s. (b) Nonlinear
diffusion filtered signal after the first iteration.

where Φr = 1
Δn2 · c(n+ Δn

2 , t) · (X(n+Δn, t)−X(n, t))

and Φl =
1

Δn2 · c(n− Δn
2 , t) · (X(n, t)−X(n−Δn, t)).

Substituting (6) and (8) into (4), yields

X(n, t+Δt)−X(n, t) = (Φr − Φl) ·Δt. (9)

For convenience, denoting Xk+1(n) and Xk(n) to X(n, t+
Δt) and X(n, t), respectively, therefore, the next iteration can
be expressed as:

Xk+1(n) = Xk(n) + Δt · (Φr − Φt) (10)

where Xk(n) indicates the nonlinear diffusion filtered signal at
the kth iteration.

For example, Fig. 2(a) shows an enlarged raw vibration signal
within 0.1 s. After the first iteration shown in Fig. 2(b), the edge
of the signal waveform has been smoothed and the potential fault
signal is preserved; therefore, the contrast between weak fault
signals and the signal waveform is increased so that the defect
signal-to-noise ratio is increased.

2) Noise Cancellation Process: After the signal waveform
is smoothed via the nonlinear diffusion filter, the next step of
INF is to eliminate periodic noise via the noise cancellation
process. As mentioned in the introduction part, fault signals
and noise components are often two uncorrelated parts, so the
expression of the nonlinear diffusion filtered signalXk(n) at the
kth iteration can be expressed as Xk(n) = pk(n) + rk(n), n =
1, . . ., N where pk(n) represents a periodic process, including
noise components and rk(n) represents a stochastic process
containing bearing faults [17]. rk(n) and pk(n) are independent
with each other. Based on the prediction theory, the periodic
process can be predicted using past values, while the stochastic
part cannot be predicted from its previous values, which is
estimated from the prediction error [17].

More specifically, from [17], define X̂k(n) as the predictor
of Xk(n) from a finite number of past values Xk(n− Λ− i),
where i = 0, . . .,M − 1 with Λ satisfies the autocorrelation
equation E[rk(n)rk(n− λ)] = 0 for all |λ| > Λ. The notation
E[.] is the expectation operator. The expression of X̂k(n) is
given by a linear regressor of the form

X̂k(n) =

M−1∑
i=0

hk
iX

k (n− Λ− i). (11)

Therefore, from the abovementioned discussion, the estimator of
the periodic process is p̂ k(n) = X̂k(n); and the prediction error,
which is the estimator of the stochastic process is expressed as
r̂ k(n) = X̂k(n)−Xk(n). In order to find the best X̂k(n) that
can minimize the prediction error r̂ k(n), the following mean

squared error σ2
e is used:

σ2
e =

1

N

N∑
n=1

[
X̂k(n)−Xk(n)

]2
. (12)

To find out the minimum σ2
e , we can compute the gradient of

(12)

M−1∑
i=1

∂
(
σ2
e

)

∂hk
i

=
2

N

N∑
n=1

[
M−1∑
i=0

hk
i r

k(n, i)− rk(n)

]
(13)

where rk(n, i) =
∑M−1

j=0 Xk(n− Λ− j)Xk(n− Λ− i) and

rk(n) =
∑M−1

j=0 Xk(n− Λ− j)Xk(n). Then, at the minimum,

the condition that should hold is
∑M−1

i=0 hk
i r

k(n, i)− rk(n) =
0. Finally, the optimal set of weights hk

i , i = 0, . . .,M − 1
verifies the Wiener–Hopf equations

rk(n) =
M−1∑
i=0

hk
i r

k(n, i), n = 1, . . ., N. (14)

Antoni et al. [18] proposed a faster approach DRS to process
(14) in the frequency domain

F
[
rk(n)

]
= Rk

1(f) = F

[
M−1∑
i=0

hk
i r

k(n, i)

]

=

N∑
n=1

rk(n, i)e−jω(n−i)
M−1∑
i=0

hk
i e

−jωi = Rk
2(f)H

k(f) (15)

where F [.] corresponds to the discrete Fourier transform (DFT).
As can be seen in (15), the Wiener–Hopf equation is simpli-
fied into the product and the filter Hk(f) can be solved via
a current signal block Rk

1(f) and a past signal block Rk
2(f).

Assuming Rk
1(f) = F [Xk(n− ξ)] and Rk

2(f) = F [Xk(n−
Δ− ξ)] where ξ = 0, . . .,Ξ− 1 and Δ > 0. Labeling r̂ k

Φ(f)

and R̂k,Δ
Φ (f) are the estimators of Rk

1(f) and Rk
2(f), respec-

tively, which are the Φ-long (Φ = 2Ξ due to possible zero
padding) DFT of the two blocks at frequency f , the estimator
of Hk(f) is given by [18]

Ĥk(f) = R̂k,Δ
Φ (f) · R̂k

Φ(f)
∗
/∣∣∣R̂k,Δ

Φ (f)
∣∣∣
2

. (16)

The estimator Ĥk(f) is a Φ-long noise cancellation filter, which
can be used directly on thekth iteration signal denoising. Finally,
the INF filtered signal Xk

D(n) at kth iteration can be expressed
as

Xk
D(n) = Xk(n) ∗ ĥk(φ), φ = 1, . . .,Φ (17)

where ĥk(φ) = F−1(Ĥk(f)) and F−1[.] corresponds to the
inverse DFT, and ∗ indicates the convolution.

If the noise reduction of Xk
D(n) is unsatisfactory, it can be

substituted into (10) for the next iteration of denoising. Fig. 3
shows a real example to illustrate the INF denoising procedure.
In Fig. 3(b), there is remarkable noise after the first INF iteration
and the kurtosis is only 69.28. After nine iterations shown in
Fig. 3(c), the noise level has been reduced gradually with the
kurtosis varying from 69.28 to 1076.61.
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Fig. 3. (a) Raw vibration signal, and INF denoised signals after the
(b) first INF iteration and (c) ninth INF iteration.

C. Morphological Analysis

The vibration signals are characterized by the presence of
impulsive-type fault signals modulated by high-frequency har-
monic components [24]. However, for bearing fault characteris-
tic analysis, the useful information is only the repetition rate of
these impulsive-type fault signals (this is also referred to as the
defect frequency), rather than detailed frequency contents of the
full signal. To extract this repetition rate, morphological analysis
is employed in this article as it can extract impulsive-type fault
signals and eliminate the impact of background noise. The im-
plementation of morphological analysis is based on two basic set
operations: Minkowski set addition [also termed dilation shown
in (18)] and Minkowski set subtraction [also termed erosion
shown in (19)] [24].

(
Xk

D ⊕ S
)
(n) = max

[
Xk

D(n− τ) + S(τ)
]

(18)
(
Xk

D � S
)
(n) = min

[
Xk

D(n+ τ)− S(τ)
]

(19)

where � indicates the operation of erosion and ⊕ represents the
operation of dilation. Xk

D(n) is the INF denoised signal after
kth iteration with n = 1, . . ., N ; and the discrete function S(τ)
is the structuring element (SE) over a domain τ = 1, . . .,T with
T < N.

The combinations of the aforementioned two operations can
demodulate two other signal envelopes: Closing and opening.
For example, to get the morphological closing envelope, the
vibration signal is first added with the SE through the operation
of Minkowski set addition and then subtracted with the SE
through Minkowski set subtraction [24]. As for the operation
of opening, the order of the set addition and set subtraction is
reversed. The equations are as follows:

(
Xk

D • S) (n) = (
Xk

D ⊕ S � S
)
(n) (20)

(
Xk

D ◦ S) (n) = (
Xk

D � S ⊕ S
)
(n) (21)

where ◦ and • indicates the operation of opening and closing.
Equations (18)–(21) can plot four types of envelopes, and

here we will demonstrate dilation and closing as examples.
The INF denoised signal [shown in Fig. 4(a)] can be further

Fig. 4. (a) INF denoised signal, and different kinds of morphological
envelopes. (b) Dilation. (c) Closing.

Fig. 5. Flowchart of the proposed method.

processed via dilation and closing presented in Fig. 4(b) and (c).
As can be seen, the morphological transform can further reduce
the residual noise leaked from the INF processing. Comparing
dilation and closing, it is observed that the closing of the signal
presents a better visual inspection, whose shape is more close to
the bearing fault signals. With respect to erosion and opening,
they can only demonstrate negative impulses; for our research,
we prefer to use the positive envelope. Therefore, in this article,
we employ the closing of the signal as the morphological closing
envelope, which is used for fault characteristics analysis. Finally,
the frequency spectrum of the morphological closing envelope
F [(Xk

D • S)(n)] is calculated to identify the bearing defect
frequencies.

D. Summary of the Algorithm and Parameter Tuning

As can be seen in the flowchart (see Fig. 5), the procedure of
the blade bearing fault detection is conducted in two stages:
The INF denoising stage and the fault diagnosis stage. The
INF denoising stage produces an iterated processing scheme to
gradually denoise the raw vibration signal until noise reduction
reaches a satisfactory level. The morphological analysis is then
used to detect bearing defect frequencies.

For the INF denoising stage shown in Fig. 5, each iteration
consists of two steps: smoothing via a nonlinear diffusion pro-
cess and periodic noise elimination via a noise cancellation
process. With respect to the nonlinear diffusion process, the
integration constant Δt is the first parameter that has to be
determined. For the 1-D case, Gerig et al. [26] derived the
upper bound of Δt up to 1

3 ; therefore, in this article, Δt = 1
3

is used. The other important parameter is the noise threshold κ,
which controls the amount of diffusion applied in the gradient
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Fig. 6. Kurtosis versus iteration k.

Fig. 7. High-speed bearing (a1) raw vibration signal, (a2) INF de-
noised signal, and (b) frequency spectrum processed by morphological
envelope method.

direction [27]. The selection of κ is based on trial and error. To
obtain a better denoising performance, a test series with different
κ must be generated and compared. Concerning the DRS noise
cancellation process, the filter length Φ can influence the quality
of the denoised signal and it should exceed a potential fault signal
length. The second parameter of DRS is to choose a suitable time
delay Δ. The optimal value of Δ can enable the constructed
filter to minimize the mean squared error shown in (12). The
value of Δ can be incrementally increased and the one with the
least mean squared error is chosen. The last parameter for INF
denoising is the number of iterations k. To evaluate the denoising
performance for each iteration, the kurtosis is preferred as an
indicator. The iteration continues until the maximal kurtosis
value is found. For example, as can be seen in Fig. 6, the highest
kurtosis is 1077 at Iteration 9. Therefore, we can repeat nine
times to denoise the raw vibration signal.

With respect to the fault diagnosis stage in Fig. 5, flat SEs
(e.g., amplitude = 0) are utilized in this article. Therefore, the
length of the SE is the only tunable factor for morphological
analysis. Generally speaking, a shorter SE can extract more
signal impulses enhancing higher frequency components. On
the contrary, a longer SE can extract a smaller number of spikes
enhancing lower frequency components. A proper SE can help
produce defect frequency accurately in terms of both frequency
components and amplitude. When changing the length of SE,
each extracted defect frequency can be compared with the theo-
retical defect frequency. The SE value that produces the distinct
defect frequency will be used.

E. Validation on a Small-Scale Bearing

In this subsection, we aim to evaluate the effectiveness of the
INF and morphological analysis on a widely used small-scale
bearing with a seeded inner race fault from the SpectraQuest
Machinery Fault Simulator test rig [28]. The theoretical inner
race defect frequency is 157.4 Hz. After applying INF to the
raw vibration signal [see Fig. 7(a1)], the denoised signal shown
in Fig. 7(a2) can clearly present the submerged bearing fault

TABLE I
BEARING DEFECT FREQUENCIES

Fig. 8. Wind turbine blade bearing test rig.

signals. Furthermore, morphological envelope analysis is uti-
lized in order to present the bearing defect frequency. It can be
found in Fig. 7(b), the dominant frequency component is 156 Hz,
which corresponds to the bearing inner race fault frequency. As a
result, this validation experiment demonstrates that our proposed
method is effective and accurate.

III. EXPERIMENT AND RESULTS

The test wind turbine blade bearing was manufactured by
Rollix, and was operational on a wind farm for over 15 years.
The defects of the bearing were therefore naturally damaged
under real wind turbine working conditions. The weight of this
bearing is 261 kg and its pitch diameter, ball diameter, ball
numbers, and contact angle are 1000 mm, 54 mm, 60 and 50◦,
respectively. Based on these geometric parameters, the bearing
defect frequencies are calculated using (1)–(3), and are listed in
Table I.

In order to diagnose the failure type of this blade bearing, the
bearing test rig is designed, as shown in Fig. 8. The outer ring of
the bearing is vertically connected to the test rig; therefore, the
bearing inner ring can be rotated. The kinematic components of
the test rig contain the three-phase induction motor, gearbox,
chain, and blade bearing. During the experiment, the motor
can drive the bearing to rotate via the chain drive system; and
the bearing rotation speed is controllable via a motor inverter.
Finally, a tachometer is used to measure the rotating speed of
the gearbox. According to the teeth ratio of the driven sprocket
connected to the bearing and the driving sprocket connected to
the gearbox, the bearing rotation speed can be calculated.

For real-world blade bearing operations, shown in Fig. 9, the
bearing can slowly swing back and forth within 100o; and rota-
tion speeds can be controlled from 1 to 2.5 r/min. The launching
and ending periods are inconstant, and only the middle period,
e.g., 90o, is constant or quasi-constant. In order to simulate
real-world blade bearing working conditions, the test bearing
is designed to swing back and forth within 100o as shown
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Fig. 9. Schematics of wind turbine blade bearing field operation.

in Fig. 9; and we only use a part of the data per revolution
[see Fig. 9(a4)]. These same constant speed short parts can be
recombined to increase the data length in order to improve the
diagnostic accuracy [see Fig. 9(a3)–(a5)].

Vibration signals of the blade bearing shown in Fig. 8 are
collected from accelerometers installed on the bearing outer
ring surface. The accelerometers are Hansford HS-100-type
sensors with 1000 mV/g sensitivity and constant frequency gain
between 2 to 10 kHz. Based on the schematic shown in Fig. 9,
Fig. 10(a) shows Test 1 raw vibration data at a sampling rate
of 100 kS/s. The bearing rotating process includes accelerat-
ing, constant speed, and decelerating within 100o. Fig. 10(b)
shows the recombined signals with four 90o portions of vibra-
tion data. Each part is extracted from each revolution and the
extracted parts have similar vibration characteristics with the
rotation speed of 2.13 r/min. As can be seen, the kurtosis of
the recombined raw signal is only 125.46. The new INF is a
combination of the nonlinear diffusion filter and DRS method.
To demonstrate its performance, only the nonlinear diffusion
filter is first utilized to denoise the recombined signal. After
carefully tuning the parameters, the kurtosis of the nonlinear
diffusion denoised signal decreases to 124.28 [see Fig. 10(c)].

Fig. 10. Test 1. (a) Raw vibration signal collected under the re-
ciprocating operation condition. (b) Recombined signal at 2.13 r/min.
(c) Nonlinear diffusion denoised signal. (d) DRS denoised signal.
(e) INF denoised signal.

Fig. 11. Test 2. (a) Raw vibration signal collected under the re-
ciprocating operation condition. (b) Recombined signal at 1.27 r/min.
(c)Nonlinear diffusion denoised signal. (d) DRS denoised signal. (e) INF
denoised signal.
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Fig. 12. Test 1 at 2.13 r/min, frequency spectrums processed by (a) INF/morphological closing envelope method, (b) INF/Hilbert envelope method,
and (c) fast kurtogram/Hilbert envelope method.

Fig. 13. Test 2 at 1.27 r/min, frequency spectrums processed by (a) INF/morphological closing envelope method, (b) INF/Hilbert envelope method,
and (c) fast kurtogram/Hilbert envelope method.

Then, we utilize DRS to denoise the recombined signal. As
can be seen in Fig. 10(d), the kurtosis of the DRS denoised
signal improves to 397.95. However, some weak fault signals
are still corrupted by noise. In order to overcome this issue, the
proposed INF method is then used, with the denoised signal
shown in Fig. 10(e). Compared with the DRS denoised signal,
Fig. 10(e) shows very low noise interference, with the kurtosis
of the filtered signal improving to 1492.08. In order to show the
effectiveness of the INF method, some enlarged signals from
22 to 22.5 s are shown in Fig. 10(b)–(e). It can be clearly seen
that the new INF method can produce better filtering results with
clearer defect signals than the nonlinear diffusion filter and DRS
method.

With regard to Test 2, Fig. 11(a) shows the raw vibration sig-
nal, where the constant part has a speed of 1.27 r/min. Fig. 11(b)
shows the recombined signal. As can be seen in Fig. 11(b),
the kurtosis of the recombined raw signal is 317.34. Then,
we utilize nonlinear diffusion filter to denoise the recombined
signal and the kurtosis value decreases to around 315.44 [see
Fig. 11(c)]. After applying DRS to filter the recombined signal,
the kurtosis value improves to 687.09 [see Fig. 11(d)]. In order
to further denoise the recombined signal and extract weak fault
signals, the novel INF is utilized. As shown in Fig. 11(e), the
compounded fault signals are clearly presented with minimal
noise interference and the kurtosis value improves from 317.34
to 1124.23.

The second stage is to extract morphological closing en-
velopes with the aim of finding defect frequencies in the fre-
quency domain. The morphological closing envelope modifies
the geometrical characteristics by morphologically processing
the signal which can further extract impulsive-type fault signals.

After applying FFT to the morphological closing envelopes, the
dominant frequencies are 1.102 Hz for 2.13 r/min and 0.657 Hz
for 1.27 r/min shown in Figs. 12(a) and 13(a), respectively.

As our proposed blade bearing diagnostic method has two
parts containing INF filtering and morphological envelope
analysis, in order to evaluate the performance of the pro-
posed method, some comparisons with Hilbert envelope method
and conventional band-pass filtering method are carried out.
Figs. 12(b) and 13(b) show the combination of INF and the
Hilbert envelope method. Although this method can show de-
fect frequencies, some other unknown frequency components
are also presented, meaning that the defect frequencies are
disturbed.

Figs. 12(c) and 13(c) demonstrate the frequency spectrum
processed by the fast kurtogram analysis [16]. As can be seen, the
defect frequencies are relatively weaker and harder to distinguish
when compared with the results produced by the new method.

The following equation is used to evaluate the defect fre-
quency matching error (DFME), which is the ratio between
the identified dominant frequency and the theoretical defect
frequency:

Error = (|frotation − ffault| /ffault)× 100% (22)

where frotation indicates the dominant frequencies for each test
and ffault can be chosen as fi, fo, and fb shown in Table I. Table II
lists the DFME of Test 1 and Test 2. It is found that the bearing
most likely has an inner race fault with an average matching error
of 0.05%. To further evaluate our proposed method, the authors
conduct extensive experiments to simulate different slow-speed
and limited angle cases. As shown in Table III, the bearing defect
frequencies can be identified and they all match the theoretical
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TABLE II
DFME OF TEST 1 AND TEST 2

TABLE III
DFME OF EXTENSIVE EXPERIMENTS

The bold font indicates that the identified defect frequencies match the theoretical inner
race defect frequencies with smallest matching errors.

Fig. 14. Visible inner race defects. (a) First position. (b) Second
position.

inner race defect frequencies with smallest defect frequency
matching errors.

Finally, endoscope inspection is used to collect the evidence
of bearing damages. Two pictures have been taken in order to
indicate the presence of some cracks in the inner race. Fig. 14(a)
shows the first position, which has a large crack, with dimensions
of over 9 mm long and 5 mm wide. From Fig. 14(b), the
second position presents some smaller cracks, which are less
than 4 mm. Therefore, the inner race damage evidences verify
that the proposed methods are capable of detecting blade bearing
damages. However, it is worth mentioning that when a bearing
inner race is severely damaged, the balls and outer race may
not be in perfect condition. In this article, the endoscope also
checks the outer race and balls, where no obvious damage is
found except for some tiny dents. Compared with the visible
damage to the inner race, the damage to the balls and the outer
race is insignificant.

IV. CONCLUSION

This article diagnosed a naturally damaged wind turbine blade
bearing. The blade bearing pitch processes include launching
periods, constant speeds and ending periods. To avoid the non-
stationary signals caused by launching and ending periods, the
work of this article was to diagnose the blade bearing fault
types when the signals generated from launching and ending
periods are abandoned, and only constant rotation parts are
utilized. As blade bearings rotate at very slow speeds within
small angles, vibration signals are short and weak. To improve
the diagnostic accuracy, we first recombined the segmented

constant speed short parts to extend the data length. Then, a
novel INF was proposed to iteratively and gradually smooth
the signal waveform and extract weak fault signals. Finally, the
morphological closing envelope method was used to diagnose
the bearing fault in the frequency domain. The proposed method
was successfully applied to diagnose a naturally damaged blade
bearing under different slow-speed conditions and it was effec-
tive and superior to other conventional filtering methods or the
Hilbert envelope method. In future research activities, we will
research the blade bearing fault detection under variable speed
conditions and loading conditions.

ACKNOWLEDGMENTS

The authors would like to thank Acciona for providing the
bearings for the work. The authors would like to thank the Editor
and anonymous reviewers for their constructive comments to
improve the quality of this article.

REFERENCES

[1] B. Yang, R. Liu, and X. Chen, “Fault diagnosis for a wind turbine generator
bearing via sparse representation and shift-invariant K-SVD,” IEEE Trans.
Ind. Inform., vol. 13, no. 3, pp. 1321–1331, Jun. 2017.

[2] Y. Xiao, N. Kang, Y. Hong, and G. Zhang, “Misalignment fault diagnosis of
DFWT based on IEMD energy entropy and PSO-SVM,” Entropy, vol. 19,
no. 1, pp. 6–12, 2017.

[3] Z. Liu and L. Zhang, “A review of failure modes, condition monitoring
and fault diagnosis methods for large-scale wind turbine bearings,” Mea-
surement, vol. 149, p. 107002, 2019.

[4] L. Chen, Y. Zhang, and X. Xia, “Contact stress and deformation of
blade bearing in wind turbine,” in Proc. Int. Conf. Measuring Technol.
Mechatronics Autom., vol. 1, Mar. 2010, pp. 833–836.

[5] M. H. Larsen, A. V. Nielsen, and S. F. Poulsen, “Pitch bearing for wind
turbine rotor blades,” U.S. Patent 8,322,928, Dec. 4, 2012.

[6] Z. Liu, L. Zhang, and J. Carrasco, “Vibration analysis for large-scale
wind turbine blade bearing fault detection with an empirical wavelet
thresholding method,” Renewable Energy, vol. 146, pp. 99–110, 2020.

[7] J. Wang, Y. Peng, and W. Qiao, “Current-aided order tracking of vibration
signals for bearing fault diagnosis of direct-drive wind turbines,” IEEE
Trans. Ind. Electron., vol. 63, no. 10, pp. 6336–6346, Oct. 2016.

[8] L. Zhang, Z. Q. Lang, and M. Papaelias, “Generalized transmissibility
damage indicator with application to wind turbine component condition
monitoring,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6347–6359,
Oct. 2016.

[9] J. W. Han, J. S. Nam, Y. J. Park, G. H. Lee, and Y. Y. Nam, “An experimental
study on the performance and fatigue life of pitch bearing for wind turbine,”
J. Mech. Sci. Technol., vol. 29, no. 5, pp. 1963–1971, 2015.

[10] Y. Wang and Q. Yuan, “Static load-carrying capacity and fatigue life of a
double row pitch bearing with radial interference,” Proc. Institution Mech.
Engineers, Part C: J. Mech. Eng. Sci., vol. 228, no. 2, 2014, pp. 307–316.

[11] Y. Wang, X. Yang, and H. Yan, “Reliable fuzzy tracking control of near-
space hypersonic vehicle using aperiodic measurement information,” IEEE
Trans. Ind. Electron., vol. 66, no. 12, pp. 9439–9447, Dec. 2019.

[12] Y. Wang, P. Shi, and H. Yan, “Reliable control of fuzzy singularly perturbed
systems and its application to electronic circuits,” IEEE Trans. Circuits
Syst. I: Regular Papers, vol. 65, no. 10, pp. 3519–3528, Oct. 2018.

[13] Y. Xiao, T. Zhang, Z. Ding, and C. Li, “The study of fuzzy proportional
integral controllers based on improved particle swarm optimization for
permanent magnet direct drive wind turbine converters,” Energies, vol. 9,
no. 5, p. 343, 2016.

[14] B. Yang, R. Liu, and E. Zio, “Remaining useful life prediction based
on a double-convolutional neural network architecture,” IEEE Trans. Ind.
Electron., vol. 66, no. 12, pp. 9521–9530, Dec. 2019.

[15] W. Zhou, T. G. Habetler, and R. G. Harley, “Bearing fault detection via
stator current noise cancellation and statistical control,” IEEE Trans. Ind.
Electron., vol. 55, no. 12, pp. 4260–4269, Dec. 2008.

[16] J. Antoni, “Fast computation of the kurtogram for the detection of transient
faults,” Mech. Syst. Signal Process., vol. 21, no. 1, pp. 108–124, 2007.



8722 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 67, NO. 10, OCTOBER 2020

[17] J. Antoni and R. Randall, “Unsupervised noise cancellation for vibration
signals: Part I—Evaluation of adaptive algorithms,” Mech. Syst. Signal
Process., vol. 18, no. 1, pp. 89–101, 2004.

[18] J. Antoni and R. Randall, “Unsupervised noise cancellation for vibration
signals: Part II—A novel frequency-domain algorithm,” Mech. Syst. Signal
Process., vol. 18, no. 1, pp. 103–117, 2004.

[19] H. Ocak and K. A. Loparo, “Estimation of the running speed and bearing
defect frequencies of an induction motor from vibration data,” Mech. Syst.
Signal Process., vol. 18, no. 3, pp. 515–533, 2004.

[20] J. Wang, L. Qiao, Y. Ye, and Y. Chen, “Fractional envelope analysis
for rolling element bearing weak fault feature extraction,” IEEE/CAA J.
Automatica Sinica, vol. 4, no. 2, pp. 353–360, Apr. 2017.

[21] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic
diffusion,” IEEE Trans. Pattern Anal.Mach. Intell., vol. 12, no. 7, pp. 629–
639, Jul. 1990.

[22] Y. Li, Y. Ding, and T. Li, “Nonlinear diffusion filtering for peak-preserving
smoothing of a spectrum signal,” Chemometrics Intell. Laboratory Syst.,
vol. 156, pp. 157–165, 2016.

[23] A. S. Raj and N. Murali, “Early classification of bearing faults using
morphological operators and fuzzy inference,” IEEE Trans. Ind. Electron.,
vol. 60, no. 2, pp. 567–574, Feb. 2013.

[24] N. Nikolaou and I. Antoniadis, “Application of morphological operators
as envelope extractors for impulsive-type periodic signals,” Mech. Syst.
Signal Process., vol. 17, no. 6, pp. 1147–1162, 2003.

[25] W. Qiao and D. Lu, “A survey on wind turbine condition monitoring and
fault diagnosis—Part I: Components and subsystems,” IEEE Trans. Ind.
Electron., vol. 62, no. 10, pp. 6536–6545, Oct. 2015.

[26] G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, “Nonlinear anisotropic
filtering of MRI data,” IEEE Trans. Med. Imag., vol. 11, no. 2, pp. 221–232,
Jun. 1992.

[27] E. Michel-González, M. H. Cho, and S. Y. Lee, “Geometric nonlinear
diffusion filter and its application to X-ray imaging,” BioMedical Eng.
OnLine, vol. 10, no. 1, Jun. 2011, Art. no. 47.

[28] Acoustics and vibration database. Accessed: Feb. 2, 2019. [Online]. Avail-
able: http://data-acoustics.com/measurements/bearing-faults/bearing-1/

Zepeng Liu (S’18) received the B.Eng. degree
in electrical engineering and electronics from
the University of Liverpool, Liverpool, U.K., in
2015, and the M.S. degree in power systems
engineering from University College London
(UCL), London, U.K., in 2016. He is currently
working toward the Ph.D. degree in electrical
and electronic engineering with the University of
Manchester, Manchester, U.K.

His research interests include wind turbine
condition monitoring and fault diagnosis, time-

frequency representation, sparse representation, and data-driven
analysis.

Long Zhang (M’13) received the B.Eng. and
the M.Eng. degrees in electrical engineering
and automation from the Harbin Institute of
Technology, Harbin, China, in 2008 and 2010,
respectively, and the Ph.D. degree in electron-
ics, electrical engineering and computer science
from Queen’s University, Belfast, U.K., in 2013.

He was a Research Associate with the De-
partment of Automatic Control and Systems En-
gineering, the University of Sheffield, Sheffield,
U.K., from 2014 to 2015. He joined the De-

partment of Electrical and Electronic Engineering, the University of
Manchester, Manchester, U.K., as a Lecturer, in 2015. His research
interests include machine and statistical learning, neural networks, sys-
tem identification, frequency analysis, intelligent control and their ap-
plications to complex systems modeling, analysis, prediction, control,
and fault diagnosis, and wind turbine condition monitoring and fault
diagnosis.

http://data-acoustics.com/measurements/bearing-faults/bearing-1/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


