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Detection of Grid Voltage Fundamental and
Harmonic Components Using Kalman Filter

Based on Dynamic Tracking Model
Xiaohua Nie , Member, IEEE

Abstract—The Kalman filter (KF) algorithms based on
traditional models, which, applied in real-time detection of
grid voltage, have the margin to improve tracking accuracy.
Their tracking models do not specify the covariance ma-
trix of state noise in theoretical derivation. They can only
be taken as a unit matrix. In this paper, a dynamic track-
ing model (DTM) is proposed. Further, a linear KF algorithm
based on DTM model (DTM-KF) is presented. The proposed
DTM-KF algorithm gives the covariance matrix of state noise
and overcomes the defects of the traditional models based
KF algorithms. It is compared with two traditional models–
based KF algorithms by simulation and experimentation.
The tracking accuracy of the fundamental component and
the estimation accuracy of the harmonic components are
analyzed and compared. The results show that the proposed
DTM-KF algorithm has high tracking accuracy.

Index Terms—Detection of grid voltage, dynamic track-
ing model (DTM), fundamental waveform tracking, harmonic
estimation, Kalman filter (KF), covariance matrix of state
noise.

I. INTRODUCTION

THE Kalman filter (KF), which is widely used in some
industrial fields, represents its advantages such as zero

steady-state error, high real-time performance, better division
of signal state and noise, etc. [1]. It plays an increasingly impor-
tant role in the real-time detection of power quality disturbances.
For example, it applies to the following fields such as harmonic
estimation and control [2]–[17], frequency estimation [18]–[25],
phase-locked loop synchronization [20]–[25], phase estimation
[26]–[31], voltage flicker estimation [32]–[35], power quality
disturbance detection and classification [36]–[38], waveform
envelope detection of ac signals for power quality control equip-
ment [39]–[44], voltage sags detection for dynamic voltage
restorers [45]–[48] and islanding detection in new energy gen-
eration system [49], [50], and so on.
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Existing KF-based power quality disturbance real-time de-
tection methods include linear and nonlinear methods. Either
linear or nonlinear KF method needs to be based on an accurate
model description for distorted ac signal. However, the nonlin-
ear KF methods use several approximate linearization tracking
models, such as Taylor expansion approximation, probability
density approximation, and so on [4], [6], [9], [20], [38]. The
existing linear KF methods based on traditional tracking mod-
els yet have limitation to improve tracking accuracy that their
covariance matrices of state noise cannot be clearly given. They
can only be taken as a unit matrix [3], [21]–[24], resulting in
a lack of correlation between the estimated vectors. However,
the association is inevitable from the theoretical analysis of
stochastic process [51].

This paper contributes to a new linear KF method based on
dynamic tracking model (DTM) for real-time detection of grid
voltage fundamental and harmonic components. This method
theoretically gives the covariance matrices of state noise. So,
it clearly correlates with the state noise between the estimated
vectors.

The rest of this paper is organized as follows. In Section II,
the related work is reviewed. In Section III, the DTM model is
proposed in detail. The state space of the DTM is extended. A
new KF algorithm based on the proposed DTM model (DTM-
KF) is presented. In Section IV, the performances of DTM-KF
algorithm are evaluated and compared with the two traditional
algorithms by simulation. In Section V, the effectiveness of
DTM-KF algorithm is analyzed and compared through the ex-
perimental sampling data. Section VI concludes this paper.

II. RELATED WORK

In this section, the existing KF methods are reviewed briefly.
Two traditional models of the phase angle vector (PAV) and
the orthogonal vector (OV) model are introduced. The KF al-
gorithms based on PAV and OV models are widely used in the
phase-locked loop synchronization, power quality disturbance
detection, harmonic estimation, etc. [2], [3], [21]–[25].

A. Brief Review on Existing KF Method

Dr. A. A. Girgis took the lead in applying the KF to the
power signal processing fields in 1981 [2], [3]. Existing KF-
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TABLE I
KF-BASED POWER QUALITY DISTURBANCE DETECTION METHODS

based power quality disturbance detection methods are shown
in Table I.

So far, there are two kinds of tracking models for linear
KF algorithm. The one is the PAV model–based KF algorithm
(PAV-KF) [2], [3]. The other is the OV model–based KF
algorithm (OV-KF) [3], [21], [22]. Moreover, the subop-
timal linear and nonlinear KF algorithms are generally
used to improve the estimation results. The suboptimal lin-
ear KF algorithms include H�KF [19], [38], strong track-
ing KF (STF) [28], [45], and Ensemble KF (EnKF) [15].
The nonlinear KF algorithms include extended KF (EKF)
[6], [20], unscented KF (UKF) [9], [38], and cubature KF
(CKF) [4].

The KF-based power quality disturbance detection methods
required the dimension expansion of the state space. Owing to
the low-order harmonics components existing in the distorted
ac signals [16], [17], [41], [46], the energy distribution between
low-order harmonics and random signals has a huge difference.
The waveform of the distorted ac signal sampled at time t can
be expressed as

x(t) =
N∑

i=1

Ai(t) sin[iω0T + θi(t)] +
N∑

i=1

wi(t) (1)

where i = 1, 2, 3, . . . , N and T is the sampling cycle.
For the fundamental frequency of 50 Hz, ω0 = 100π.∑N

i=1 Ai(t) sin[iω0T + θi(t)] is the fundamental and harmonic
components.

∑N
i=1 wi(t) is the state noise of fundamental and

harmonic components.

B. PAV Model

The PAV model uses the phase angle as a vector to establish
a state space model through cosine expansion [2], [3]. The vec-
tor of fundamental and harmonic components is expressed as
Xk = [x1 x2 · · · x2n−1 x2n ]T , where x1 = A1 cos θ1 , x2 =
A1 sin θ1 , x2n−1 = An cos θn , and x2n = An sin θn .

The measurement equation of PAV model is expressed as

zk = HkXk + Vk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

cos(ω0kT )
− sin(ω0kT )

...

cos(ω0kT

− sin(ω0kT )

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

x2n−1

x2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

k

+ Vk . (2)

The state equation of PAV model is expressed as

Xk+1 = ΦkXk + Wk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

x2n−1

x2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

k k+1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

x2n−1

x2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

k

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

W1

W2

...

W2n−1

W2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

k

. (3)

The covariance matrix of state noise Wk for PAV model can
be expressed as

Qk = E
[
WkWT

k

]
= σ2

PAVI2n×2n . (4)

In [2] and [3], σ2
PAV is selected as 0.05. I2n×2n is unit matrix.

C. OV Model

The OV model uses the measured signal and its orthogonal
quantity as vectors to establish a state space [3], [21], [22]. The
vectors are expressed as Xk = [x1 x2 · · · x2n−1 x2n ]T , where
x1 = Ak sin(ωktk + θ1 k

), x2 = Ak cos(ωktk + θ1k
), x2n−1 =

Ak sin(nωk tk + θnk
), and x2n = Ak cos(nωk tk + θn k

).
The measurement equation of OV model is expressed as

zk =
[
1 0 · · · 1 0

]
Xk + Vk . (5)

The state equation of OV model is expressed as

Xk+1 =

⎡

⎢⎢⎣

Φ1 · · · 0
... · · · ...

0 · · · Φn

⎤

⎥⎥⎦Xk + Wk (6)

where the state transition matrixes Φi are shown in the
following:

Φi =

[
cos(iωkT ) sin(iωkT )
− sin(iωkT ) cos(iωkT )

]
. (7)

The covariance matrix of state noise Wk for OV model can
be expressed as

Qk = E
[
WkWT

k

]
= σ2

OVI2n×2n . (8)

In [3], [21], and [22], σ2
OV is selected as 0.05. I2n×2n is unit

matrix.

III. DTM-KF ALGORITHM

In this section, the principle of DTM model is presented
according to the theory of signal systems and stochastic process
[51]–[53]. The covariance matrix of state noise for DTM model
is defined according to the characteristics of ac signal. The state
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Fig. 1. Autocorrelation function and power spectral density of sinu-
soidal signal.

space dimension of DTM is expanded for the distorted ac signal,
then DTM-KF algorithm is proposed.

A. Principle of DTM Model

The autocorrelation function and power spectral density of
the pure sinusoidal signal x(t) = Am sin(ω0t + θ) are shown
in Fig. 1.

The correlation function of the pure sinusoidal signal can be
expressed as

Rx(τ) =
A2

m

T

∫ T

0
sin(ω0t) sin(ω0t + τ)dt =

A2
m

2
cos(ω0τ).

(9)
The power spectral density of the pure sinusoidal signal can

be expressed as

Sx =
∫ +∞

−∞
Rx(τ) cos ωτdτ =

A2
m

2

∫ +∞

−∞
cos ω0τ cos ωτdτ

=
πA2

m

2
[δ(ω + ω0) + δ(ω − ω0)]. (10)

Since the power spectral density (10) contains an impulse
function δ(ω + ω0), the shaping filter cannot be directly deter-
mined [51]–[53]. The following function is considered:

H(ω) = π [δ(ω + ω0) + δ(ω − ω0)] . (11)

The white noise w(t) with a variance of A 2
m

2π is output through
H(ω). Equation (12) can be obtained as follows:

C(ω) =
A2

m

2π

{
π2 [δ2(ω + ω0) + δ2(ω − ω0)]

}
(12)

where δ(ω + ω0) is an impulse function and δ2(ω + ω0) ≈
δ(ω + ω0). When comparing (10) and (12), their spectral char-
acteristics and structure are very close. Equation (12) can be
written as the following, when H(ω) is considered as a shaping
filter:

Sx = W (ω)H(ω)H∗(ω)

=
A2

m

2π

{
π2 [δ2(ω + ω0) + δ2(ω − ω0)]

}
. (13)

Since the second derivative of a pure sinusoidal signal can be
expressed as

ẍ(t) = −ω2
0x(t) + w(t) (14)

where w(t) is the input white noise w(t) ∼ (0, σ2
w ), the variance

of state noise σ2
w can be expressed as follows by contrasting (12):

σ2
w =

A2
m

2π
. (15)

Let X(t) = [x(t) ẋ(t) ]T and the following equation can be
obtained according to (14):

dX(t)
dt

=

[
ẋ(t)
ẍ(t)

]
= AX(t) + Bw(t)

=

[
0 1

−ω2
0 0

][
x(t)
ẋ(t)

]
+

[
0
1

]
w(t). (16)

Equation (16) is discretized, and the state equation can be
obtained as follows:

Xk+1 =

[
x

ẋ

]

k+1

= ΦkXk + Wk

=

[
cos(ωkT ) sin(ωkT )/ωk

−ωk sin(ωkT ) cos(ωkT )

]⎡

⎣
x

ẋ

⎤

⎦

k

+
∫ (k+1)T

kT

⎡

⎣
1
ω0

sin(ω0T )

cos(ω0T )

⎤

⎦w(τ)dτ.

(17)

The covariance matrix of state noise Wk can be expressed as

Qk = E
[
WkWT

k

]

= σ2
w

⎡

⎢⎢⎢⎣

2ωkT − sin(2ωkT )
4ω3

k

sin2(ωkT )
2ω2

k

sin2(ωkT )
2ω2

k

T

2
+

sin(2ωkT )
4ωk

⎤

⎥⎥⎥⎦ . (18)

Equations (15), (17), and (18) are the discretization DTM
model. The discretization process of the DTM model can be
referred to Appendix A.

B. Dimension Expansion of DTM Model

The state space dimension of the distorted ac signal is ex-
tended under the consideration of fundamental and low-order
harmonic components. The vector is expressed as X(t) =
[x1(t) ẋ1(t) x2(t) ẋ2(t) · · · xn (t) ẋn (t) ]T , where ẋi(t) is the
first derivative of xi(t). The state space expression of continuous
time is established as follows:

dX(t)
dt

=

⎡

⎢⎢⎢⎢⎢⎣

M1 0 · · · 0

0 M2 0
...

... 0
. . . 0

0 · · · 0 Mn

⎤

⎥⎥⎥⎥⎥⎦
X(t) +

⎡

⎢⎢⎢⎢⎣

w1(t)
w2(t)

...

wn (t)

⎤

⎥⎥⎥⎥⎦
(19)

where [w1(t) w2(t) · · · wn (t) ]T is the state noise vector and
M1 = [ 0

−ω 2
0

1
0 ],M2 = [ 0

−(3×ω0 )2
1
0 ], and Mn = [ 0

−(iω0 )2
1
0 ].

The measurement equation can be expressed as

z(t) =
[
1 0 1 0 · · · 1 0

]
X(t) + v(t) (20)

where v(t) is the measurement noise vector.
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Equations (19) and (20) are discretized according to the prin-
ciple of DTM model. Then,

Xk+1 = ΦkXk + Wk =

⎡

⎢⎢⎢⎢⎣

Φ1 0 · · · 0
0 Φ2 · · · 0
...

...
. . .

...

0 0 · · · Φn

⎤

⎥⎥⎥⎥⎦

k

Xk

+

⎡

⎢⎢⎢⎢⎣

W1

W2

...

Wn

⎤

⎥⎥⎥⎥⎦

k

(21)

where Xk = [x1k ẋ1k x2k ẋ2k · · · ẋnk ẋnk ]T and Φk is the
state transition matrix. [W1 W2 · · · Wn ]Tk is the state noise.

zk = HkXk + Vk =
[
1 1 0 1 0 · · · 1 0

]
Xk + Vk (22)

where Hk is the measurement transfer matrix and Vk is the
measurement noise. The covariance of Vk can be expressed as
Rk = E[VkV T

k ].
The state transition matrices of the fundamental and harmonic

components can be expressed as

Φ1k
=

⎡

⎣ cos(ωkT )
sin(ωkT )

ωk

−ωk sin(ωkT ) cos(ωkT )

⎤

⎦ (23)

Φnk
=

⎡

⎣ cos(iωkT )
sin(iωkT )

iωk

−iωk sin(iωkT ) cos(iωkT )

⎤

⎦ . (24)

The covariance matrices of state noise can be obtained as
follows:

Q1k
= σ2

w 1

⎡

⎢⎢⎢⎣

2ωkT − sin(2ωkT )
4ω3

k

sin2(ωkT )
2ω2

k

sin2(ωkT )
2ω2

k

T

2
+

sin(2ωkT )
4ωk

⎤

⎥⎥⎥⎦ (25)

Qik = σ2
wi

⎡

⎢⎢⎢⎣

2iωkT − sin(2iωkT )
4i3ω3

k

sin2(iωkT )
2i2ω2

k

sin2(iωkT )
2i2ω2

k

T

2
+

sin(2iωkT )
4iωk

⎤

⎥⎥⎥⎦ .

(26)

Equations (19) and (20) are the discretization DTM models.
By comparing state space expression of the DTM model (19)
with that of the OV model (6), it can be found that the state
transition expressions of these two tracking models are the same
regardless of the state noise. However, the difference between
the two models is that the DTM model can obtain the state
noise covariance matrix by (15), (25), and (26). The covariance
matrices of state noise for the PAV and OV models are all unit
matrices in (4) and (8). The DTM model clearly shows the in-
terrelationship of the state noise between the estimated vectors.
So, it is theoretically superior to the PAV and OV model [51].

C. DTM-KF Algorithm

The linear discrete DTM-KF algorithm can be expressed as
follows by combining DTM model [51]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

X̂k+1/k = Φk X̂k/k

Pk+1/k = ΦkPk/kΦT
k + Qk

Kk+1 = Pk+1/kHT
k

(
HkPk+1/kHT

k + Rk

)−1

X̂k+1/k+1 = X̂k+1/k + Kk+1

(
Zk+1 − HkX̂k+1/k

)

Pk+1/k+1 = Pk+1/k − Kk+1HkPk+1/k .
(27)

In the second step of (27) Pk+1/k = ΦkPk/kΦT
k + Qk , where

Pk/k = E[X̃k/k X̃T
k/k ] and X̃k/k is the error between the true

value Xk and the estimated value X̂k/k , that is X̃k/k = Xk −
X̂k/k . The role of Qk = E[wkwT

k ] is to compensate for the
precision of Pk/k , which ultimately determines the accuracy of
Pk+1/k . If Qk is only the unit matrix, then the cross-correlated

elements of X̂k/k cannot be effectively compensated. It causes
a loss of precision. Therefore, the importance of Qk derived in
this paper is theoretically verified.

From state estimation value of the first derivative ˆ̇xik + 1 for
the fundamental and harmonic components, the orthogonal es-
timation value ŷik + 1 (ωk �= 0) of x̂ik + 1 is obtained.

ŷik + 1 =

(
ˆ̇xik + 1

ωk

)
. (28)

Further, the amplitude and the phase angle for the fundamen-
tal and harmonic components can be calculated as follows:

Aik + 1 =
√

x̂2
ik + 1

+ ŷ2
ik + 1

(29)

φik + 1 = arctan
(

x̂ik + 1

ŷik + 1

)
. (30)

When the KF algorithm is tracking, it mainly involves the
selection of the measurement noise R and covariance matrices
of state noise Qik

. R can be selected according to the sen-
sor error. The typical sensor error is ±1% of the range. Qik

can be obtained according to (26). Taking the ac voltage as
an example, the maximum amplitude of the voltage is selected
as Am 1 in the fundamental component Q1k

, and the low-order
harmonic contents are 20–40% of the fundamental component,
that is, Ami

= (0.2–0.4) × Am 1 in Qik
. Furthermore, the filter

coefficient λ of Q = λ × Qik
is selected according to require-

ment of the project tracking. If high dynamic response speed is
demanded, λ = 0.1–1. If high tracking accuracy is demanded,
λ < 0.1. In this paper, λ is selected as 0.05.

IV. SIMULATION AND EVALUATION

In this section, three algorithms of proposed DTM-KF, OV-
KF, and PAV-KF are evaluated and compared by simulation. The
root mean squared error (RMSE) values are used as statistical
indicators for evaluation. The harmonics ratio for voltage (HRU)
is used as a statistical indicator for harmonics evaluation. First of
all, the formula of digital simulation and the state noise variance
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Fig. 2. Simulation data and spectrogram. (a) Simulation data.
(b) Spectrogram of simulation data.

selection of algorithms are given. Then, the tracking comparison
results of fundamental and harmonics component are evaluated
and compared by RMSE and HRU values.

A. Simulation Settings

The formula of digital simulation for distorted ac voltage
signal with harmonics components is as follows:

u(t) = 220
√

2 × [1.0 sin(ωt) + 0.15 sin(3ωt) + 0.1 sin(5ωt)

+0.08 sin(7ωt) + 0.05 sin(9ωt)] + 3.11v(t) .
(31)

The amplitude of the fundamental component is 220
√

2V.
The harmonic components are set as percentages of fundamen-
tal component: 15% of 3rd, 10% of 5th, 8% of 7th, and 5% of
9th. σv = 3.11V of the measurement white noise is superim-
posed, that is, σv = 0.01 × 220

√
2 = 3.11V. ω = 2 × π × 50,

The sampling frequency is selected to be 2000 × 50 Hz. The
simulation data are shown in Fig. 2(a). The spectrogram of sim-
ulation data is shown in Fig. 2(b).

R of three algorithms is selected as 3. 11 V. The covariance
matrices of state noise are selected as follows:

1) DTM-KF algorithm: The covariance of the fundamental com-
ponent is Qi = 0.05 × Qik

. The amplitudes Ami
of third

harmonics are Am 3 = 0.4 × Am 1 V, owing to the content
of third harmonics generally higher in distorted ac signal.
The amplitudes Ami

of other harmonics components are
Ami

= 0.2 × Am 1 V. The amplitude Am 1 of the fundamen-
tal component is Am 1 = 220

√
2 V.

2) OVKF and PAV-KF algorithms: The covariance of fundamen-
tal and harmonics components are all Qi = 0.05 × I10×10 .
These parameters are the same as in the literature [2], [3],
[21], [22].

The initial covariance matrices of three algorithms in (27) are
selected as P0/0 = 1000 × I10×10 .

B. Comparison Results of Fundamental Component

The tracking results of the fundamental component are shown
in Fig. 3. The RMSE results of the fundamental component
evaluated by 100 times Monte Carlo simulations are shown in
Fig. 4(a). From Figs. 3 and 4(a), it can be seen that the tracking
results of the three algorithms are smooth only after the first
cycle. So, the RMSE results for 20–100 ms are evaluated and
shown in Fig. 4(b) and Table II.

Fig. 3. Tracking results of the fundamental component.

Fig. 4. RMSE results of the fundamental component. (a) RMSE results
for all time. (b) RMSE results for 20–100 ms.

TABLE II
FUNDAMENTAL TRACKING COMPARISON RESULTS

RMSE is defined as follows:

RMSE =

√
1
N

∑N

k=1
(xij − x̂k

ij )
2

(32)

where N is number of simulations, N = 100; xij and x̂ij are
j-sampled values of xi and x̂i , respectively.



1196 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 67, NO. 2, FEBRUARY 2020

Fig. 5. Tracking comparison results of harmonics components.
(a) Tracking results for all time. (b) Tracking results for 20–100 ms.

Fig. 6. RMSE comparison results of harmonics components. (a) RMSE
results for all time. (b) RMSE results for 20–100 ms.

As shown in Fig. 4(b) and Table II, all three algorithms accu-
rately track the values of signal, amplitude, and phase. The
RMSE results of the DTM-KF are minimal. It proves that
the proposed DTM-KF is accurate and effective for tracking
the fundamental component.

C. Comparison Results of Harmonics Component

The tracking comparison results of harmonics components
are shown in Fig. 5. The RMSE comparison results of harmon-
ics components for all time are shown in Fig. 6(a). The third,
fifth, seventh, and ninth harmonic components are expressed
as H3, H5, H7, and H9, respectively. The RMSE comparison
results for 20–100 ms are shown in Fig. 6(b) and Table III. As
shown in Fig. 6(b) and Table III, it can be seen that the RMSE
results of the DTM-KF are minimal. It verifies that the proposed

TABLE III
RMSE COMPARISON RESULTS HARMONICS ESTIMATION

Fig. 7. HRU tracking comparison results of harmonics components.
(a) HRU tracking results for all time. (b) HRU tracking results for
20–100 ms.

DTM-KF is accurate and effective for the estimation of harmon-
ics components.

The HRU statistical evaluation are carried out for quantita-
tively instructing harmonics components. HRU is defined as
follows:

HRUn =
Un

U1
× 100% (33)

where U1 is the voltage rms value of fundamental component
and Un is the voltage rms value of nth harmonic components.

The HRU tracking comparison results of harmonics compo-
nents are shown in Fig. 7. From the HRU tracking results for
20–100 ms in Fig. 7(b), it can be obviously seen that estimation
results of the DTM-KF are minimal. The comparison results
of HRU RMSE for all time are shown in Fig. 8(a). The HRU
RMSE comparison results for 20–100 ms are shown in Fig. 8(b)
and Table IV.

From Fig. 8(b) and Table IV, it can be obviously seen that the
accuracy of the DTM-KF algorithm is higher than that of the
OV-KF and PAV-KF algorithms.

V. EXPERIMENTAL AND EVALUATION

In this paper, the sampling data of distorted ac signals
through the experimental platform are used for the evaluation of
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Fig. 8. HRU RMSE comparison results of harmonics components.
(a) HRU RMSE results for all time. (b) HRU RMSE results for 20–100 ms.

TABLE IV
HRU RMSE COMPARISON RESULTS FOR HARMONICS

three algorithms. The tracking results of DTM-KF, OV-KF, and
PAV-KF are compared, respectively. First, there is a brief in-
troduction to the experimental settings. Second, the tracking
comparison results of the fundamental component are obtained.
Third, the tracking comparison results of harmonics components
are presented.

A. Experimental Settings

The experimental platform and data sampling are shown in
Fig. 9(a). The experimental platform includes devices such as
programmable power supply, programmable line configuration,
and programmable RLC load.

The experimental platform can simulate faults such as the grid
power, transmission line, and load according to user’s needs. The
experiment of superimposing harmonics in fundamental voltage
is carried out through programmable power supply device. The
HRU of harmonic components are set as follows: 10% of third,
3% of fifth, and 10% of seventh. The principle diagram of the
programmable power supply is shown as Fig. 9(b). The sampling
data are shown in Fig. 9(c). The spectrogram of sampling data
is shown in Fig. 9(d). In the experimental data sampling, the
voltage signals are sampled by the oscilloscope of Tektronix
GDS-2102. The sampling frequency is selected to be 2000 ×
50 Hz.

Fig. 9. Experiment platform and experiment data sampling.
(a) Experiment platform and data sampling. (b) Principle diagram of
the programmable power supply. (c) Sampling data. (d) Spectrogram of
sampling data.

Fig. 10. Tracking comparison results of fundamental component.

B. Comparison Results of Fundamental Component

The model parameters of the three algorithms still adopt the
values of the simulation evaluation in Section IV. The tracking
comparison results of the signal, amplitude, and phase for the
three algorithms are shown in Fig. 10. It can be seen from Fig. 10
that the tracking results of the three algorithms are smooth after
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Fig. 11. Tracking comparison results of harmonics components.
(a) Tracking results for all time. (b) Tracking results for 20–100 ms.

Fig. 12. HRU tracking comparison results of harmonics components.
(a) HRU results for all time. (b) HRU results for 20–100 ms.

the first signal cycle. It is difficult to distinguish the advantages
and disadvantages of three algorithms from the fundamental
waveform tracking. So, the tracking comparisons of harmonics
components are carried out.

C. Comparison Results of Harmonics Components

The tracking comparison results of harmonics components
for all time are shown in Fig. 11(a). The tracking results for 20–
100 ms are shown in Fig. 11(b). It can be seen from Fig. 11(b)
that the tracking error of DTM-KF is small, especially the track-
ing error of the third and fifth harmonics components is obvi-
ously small.

The HRU tracking comparison results of harmonics compo-
nents for all time are shown in Fig. 12(a). The HRU tracking
results for 20–100 ms are shown in Fig. 12(b).

It can be seen from Fig. 12(b) that the tracking results of the
DTM-KF algorithm are closest to the HRU values of harmonic
components for experimental setting. That is, the DTM-KF al-
gorithm tracking error is the smallest and obviously superior to
the OV-KF and PAV-KF algorithms. It shows that the proposed
DTM-KF algorithm is effective and has the highest tracking
accuracy.

VI. CONCLUSION

This paper presented a new DTM-based linear KF (DTM-KF)
algorithm for the real-time detection of grid voltage fundamental
and harmonic components. The DTM model had a clear physi-
cal meaning for the covariance matrix of state noise. It clearly
depicted the interrelationship between the estimated vectors for
distorted ac signal. The following conclusion could be drawn
through a lot of simulations and experiments: For both the fun-
damental and harmonic components, the tracking accuracy of
the proposed DTM-KF algorithm is higher than the traditional
models–based KF algorithms.

APPENDIX

A. Discretization of DTM Model

The two order derivative of x(t) = sin(ω0t + θ) can be
expressed as

ẍ(t) = −ω2
0x(t) + w(t) (A1)

where w(t) is white noise with a mean value of 0 and a variance
of σ2

ω .
Equation (A2) can be obtained for X(t) = [x(t) ẋ(t) ]T as

follows:

Ẋ(t) = AX(t) + Bw(t) (A2)

where A = [ 0
−ω 2

0

1
0 ] and B = [0

1 ].
Equation (A2) is integrated for the time interval T. Equation

(A3) can be obtained as

X(t + T ) = eAT X(t) +
∫ t+T

t

eA(t+T −τ )Bw(τ)dτ (A3)

where

{
Φk = eAT

Wk =
∫ (k+1)T

kT eA [(k+1)T −τ ]Bw(τ)dτ
. (A4)

The state transition matrix Φk can be expressed as

Φk = eAT = L−1([sI − A]−1)

=

⎡

⎣ cos(ω0T )
1
ω0

sin(ω0T )

−ω0 sin(ω0T ) cos(ω0T )

⎤

⎦ . (A5)
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The state noise Wk satisfies (A6) as follows:

Wk =
∫ (k+1)T

kT

eA [(k+1)T −τ ]

[
0

1

]
w(τ)dτ

=
∫ (k+1)T

kT

⎡

⎢⎣

1
ω0

sin(ω0T )

cos(ω0T )

⎤

⎥⎦w(τ)dτ. (A6)

The covariance matrix of the state noise Wk can be expressed
as

Q(k) = E
[
WkWT

k

]

= σ2
ω

⎡

⎢⎢⎢⎣

2ω0T − sin(2ω0T )
4ω3

0

sin2(ω0T )
2ω2

0

sin2(ω0T )
2ω2

0

T

2
+

sin(2ω0T )
4ω0

⎤

⎥⎥⎥⎦ .

(A7)
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