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Abstract—Induction motors are widely used in industrial
plants for critical operations. Stator faults, bearing faults,
or rotor faults can lead to unplanned downtime with asso-
ciated cost and safety implications. Different sensors may
be used to monitor the health state of induction motors
with each sensor typically being better suited for diagnos-
ing different faults. Condition monitoring approaches that
fuse data from multiple sensors have the potential to di-
agnose a greater number of faults. In this paper, a sensor
fusion approach based on the combination of a two-stage
Bayesian method and principal component analysis (PCA)
is proposed for diagnosing both electrical and mechanical
faults in induction motors. Acoustic, electric, and vibration
signals are gathered from motors operating under differ-
ent loading conditions and health states. The inclusion of
the PCA step ensures robustness to varying loading con-
ditions. The obtained results highlight that the proposed
method performs better than the equivalent single-stage or
feature-based Bayesian methods.

Index Terms—Bayes methods, condition monitoring,
fault detection, induction motors, principal component
analysis (PCA), sensor fusion.

I. INTRODUCTION

INDUCTION motors are widely used in industrial plants for
critical operations, where a failure could result in a partial

or complete shutdown of the production process. Unplanned
maintenance, downtime, or replacements can result in high costs
and, furthermore, critical failures can have serious safety impli-
cations. Induction motor faults may be categorized as electrical
related, mechanical related, or environmental related [1]. The
range of possible faults is numerous, with stator, bearing, and
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rotor faults being the most prevalent [2]–[4]. These faults will
impact the mechanical, magnetic, and electrical characteristics
of the induction motor in different ways. As a result, the optimal
sensor type for diagnosing one type of fault mode may not be the
same as the optimal sensor to diagnose another fault mode. It has
previously been shown that specific induction motor faults can
be diagnosed using different sensors [5]–[8]. Vibration, acous-
tic, and electric signals are among the most commonly used
sensor types for rotor and stator faults detection, however some
sensors are more suitable for detecting specific faults than others
[7], [8]. Nandi [5] observed that acoustic and vibration signals
are the most sensitive for bearing fault detection, whereas elec-
tric signals are more sensitive to broken rotor bar faults. It has
recently been shown that acoustic signals are suitable for bear-
ing, stator, and rotor fault diagnostics of single-phase and three-
phase induction motors [9], [10]. Additionally, sensors that are
responsive to a specific fault can also provide information about
other faults [6]. Hence, a condition-monitoring system that fuses
information obtained from multiple sensor types can ensure
that a comprehensive range of fault modes may potentially be
detected quickly and accurately.

Various condition-monitoring methods that aim to increase
the accuracy and robustness of fault detection via sensor fusion
have been reported. In [11], neural networks were used to fuse
vibration and current signals in order to diagnose mechanical
and electrical faults. It was shown that these signal types are
complementary to one another and that their fusion using the
Dempster–Shafer theory at the decision level increases the ac-
curacy of the classification. A K-nearest neighbor classifier was
applied in [12] using an accelerometer and load signals in order
to diagnose bearing faults, showing that, whereas load signals
are more useful in distinguishing healthy bearings from faulty
ones and accelerometer signals are better at detecting the loca-
tion of the fault, the best performance was achieved when the
two signals were fused together. In [13], vibration and acoustic
signals were fused using the Dempster–Shafer theory at the de-
cision level to diagnose faults in planetary gearboxes, with the
fusion resulting in more precise diagnostics along with reduced
false and missed alarm rates. In [14], vibration, acoustic, and
oil debris signals were fused at the feature level to diagnose
faults in gears with principal component analysis (PCA) and
independent component analysis. In each aforementioned case,
the sensor fusion proved to increase the accuracy, robustness,
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and missed or false alarm rate of the system. Sensor fusion can
be implemented at the data level, the feature level, and at the
decision level. The decision on the abstraction level depends
on the information carried by the different signals. If the sig-
nal types are significantly different and carry complementary
information, it is advised to use decision-level fusion [11], [15].

A typical challenge encountered when creating decision-level
fusion algorithms is that there are often a large number of fea-
tures relative to the number of observations. These features
can be highly correlated, which ultimately can bias the results
of the fault detection algorithm. A common method to reduce
the correlation and the dimensionality of the features is PCA
[16], [17]. For example, in [18], the dimensionality of features
extracted from vibration and current signals was reduced by
PCA before applying genetic algorithms and an artificial neu-
ral network for classifying faults in an induction motor. It was
found that the performance of the fault classifier was improved
by adding PCA as a feature preprocessing step. In [19], sev-
eral feature reduction and transformation methods including
neighborhood component analysis, linear discriminant analysis
(LDA), locally linear coordination, and PCA were compared
with maximally collapsing metric learning for multiple bear-
ing fault diagnosis in induction motors with particular focus
given to the dimensionality reduction aspect. Feature reduction
is also found in multistage frameworks for the induction motor
diagnosis, for example, a recent work [20] applied PCA, LDA,
a genetic algorithm, and the Fisher score in a hybrid strategy
to obtain a reduced and optimized feature set from vibration
signals.

Another regularly observed fault detection problem is the
varying operating conditions of the machines, which can orig-
inate from a change in the load or environmental conditions.
In [21], it was concluded that the prediction performance of a
support vector machine (SVM) based fault detection algorithm
for mechanical and electrical fault detections in induction mo-
tors is load dependent. Different severities of stator faults were
monitored in induction motors under changing load torque and
supply voltage unbalances in [22], finding that the performance
of a multiagent system and neural estimator depends on the
severity of the fault. Diagnostics and prognostics methods of
rotating machinery were reviewed in [23], highlighting the op-
erating condition dependence of algorithms as an existing but
an understudied area.

Bayesian inference has been described as a suitable method
for fault detection and fault classification in condition-
monitoring systems [23], [24]. Recently, Jaramillo et al. [25]
proposed a two-stage Bayesian inference approach to monitor
the condition of a system composed of several subsystems. The
first stage of the sensor fusion takes place at the subsystem
level, whereas the second stage fuses the result of the first stage
at the decision level in order to determine the health state of the
whole system. The method was efficient in diagnosing faults in
complex systems composed of interacting components.

Existing two-stage Bayesian sensor fusion frameworks de-
scribed in the literature [25], [26] typically set alarm thresholds
according to the probability distributions of features and con-
trol limits. Properly tuning alarm thresholds can be challenging,

particularly when there are a large number of features in the
data set, or when the thresholds themselves might optimally
be described as a function of other parameters (e.g., operating
conditions).

This paper is an extension of the previous work in which a
two-stage Bayesian sensor fusion method was applied to the
diagnosis of mechanical faults in induction motors [26]. It was
shown that, by fusing independent diagnoses of different sensor
types at the decision level, the false and missed alarm rates of a
fault classification algorithm could be significantly reduced. In
[26], simple linear models of expected feature values relative to
load values were applied to account for the load dependence of
features. Such an approach limits the generality of the solution
as the loading of the system is also required as an input to the
algorithm during training and testing. It was also observed that
the features used for training the Naı̈ve Bayes classifier were
highly correlated. As previously noted, such correlations be-
tween features can potentially bias the fault detection algorithm
toward certain diagnoses.

In this paper, a two-stage (local and global) Bayesian method
combined with PCA is proposed as a method for diagnosing
not only mechanical but also electrical faults in induction mo-
tors operating under varying load and environmental conditions.
Stator, rotor, and bearing faults are all considered. Features are
extracted from acoustic, electric, and vibration signals recorded
from an experimental system. PCA is used to remove the cor-
relations that are present in the extracted features and reduce
the influence of load conditions. At the local Bayesian stage,
principal components of the features are fused with a Gaussian
Naı̈ve Bayes (GNB) classifier. At the global Bayesian stage, the
results of the local stages are fused in order to create a final
diagnosis. The generality of the algorithm is investigated by
omitting data recorded at selected operating and environmental
conditions from the training set and subsequently testing the
trained model using the omitted data.

The novelties of this paper are as follows.
1) A two-stage Bayesian sensor fusion approach is ex-

tended by integrating PCA and GNB classifiers into the
framework.

2) It is known that many fault indicators are dependent on
loading conditions. By incorporating a multivariate statis-
tical approach into the analysis, the correlations between
operating conditions and feature level are accounted for.
It is shown that the resulting method is able to accurately
diagnose faults even for loading conditions not present in
the training set.

3) In this paper, additional data addressing stator faults with
varying severity are included into the analysis. This data
is used to illustrate how, by fusing the different signals,
it is possible to achieve a holistic monitoring solution
that both provide greater coverage and greater moni-
toring accuracy compared to considering each sensor
independently.

4) Through the addition of PCA and the GNB classifier,
the approach introduced in this paper does not require
monitoring thresholds to be defined, as the posterior fault
class probabilities are directly calculated.
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This paper is organized as follows. In Section II, the meth-
ods are introduced. In Section III, the experimental data are
described, which were used for the validation of the methods.
Section IV describes the implementation of the methods using
the experimental data. The results of the proposed fault diag-
nosis method are presented in Section V with a discussion in
Section VI. Finally, in Section VII, conclusions are drawn, point-
ing out the advantages, limitations of the method, and possible
future work.

II. METHODS

A. Principal Component Analysis

PCA is a well-established method for feature extraction,
dimensionality reduction, data compression, and data visu-
alization [27]. It is a common problem in data analysis that
the features or attributes of the observation data are highly
correlated. PCA transforms the correlated features to a linear
space where the transformed features are uncorrelated and are
ordered in a way that the first features retain most of the vari-
ation in the data. Singular value decomposition or eigenvalue
decomposition (EIG) are popular algorithms for performing
PCA. Here, SVD is considered, as it is numerically more robust
when matrices are either singular or numerically very close
to singular. Furthermore, SVD directly provides the required
scores and loadings. If X is an n × m matrix with rank r, with
n observations and m features, SVD is defined as follows:

X = ULAT (1)

where U is an n × r orthonormal matrix, L is an r × r diagonal
matrix, and A is an m × r orthonormal matrix. UL is an n × r
matrix, containing the transformed uncorrelated features in the
principal component space, usually referenced as scores. A con-
tains the principal components, sometimes called loadings. For
further information on PCA and SVD, readers are guided to [27].

B. GNB Classifiers

A GNB classifier is a probabilistic classifier, which assumes
conditional independence between data that are distributed ac-
cording to a Gaussian distribution. The classifier uses the Bayes
theorem to calculate the posterior probabilities that an observa-
tion xt = {x1 , x2 , . . . , xm} belongs to class ci out of classes
C = {c1 , c2 , . . . , cp} in the following way:

P (ci |xt) =
P (ci) ·

∏m
j=1 P (xj |ci)

∑n
k=1 P (ck ) · ∏m

j=1 P (xj |ck )
(2)

where P (ci) is the prior probability of an observation belonging
to class ci . The classifier learns the P (xj |ci) conditional prob-
abilities that a given feature value xj belongs to class ci from
a training dataset. By assuming a Gaussian distribution of the
features, the conditional probabilities may be obtained using the
values of mean and standard deviation of the labeled training
data for each class as follows:

P (xj |ci(μi,j , σi,j )) =
1

σi,j

√
2π

· e
−(x j −μ i , j ) 2

2 σ i , j
2

. (3)

Once the posterior probabilities are calculated for all of the
classes, the observation xt will be classified into the class that
has the highest posterior probability. Equation (2) can be sim-
plified by omitting the normalization factor in the denominator,
as only the index of the maximum a posteriori (MAP) class is
important for the classification

P (ci |xt) ∝ P (ci) ·
m∏

j=1

P (xj |ci) (4)

cpredicted = arg max
{
P (C|xt)

}
. (5)

For further reference regarding GNB classifiers, readers are
guided to, for example, [28]–[30].

C. PCA and Two-Stage Bayesian Sensor Fusion

The proposed two-stage Bayesian sensor fusion method com-
bined with PCA is an extension of a previous work [26]. In this
paper, the algorithm is updated to include a preprocessing PCA
step. PCA was selected as it is able to mitigate feature cor-
relation that can bias the likelihood calculations. It is a linear
method that yields a reduced and uncorrelated feature set. In-
stead of the original features, uncorrelated principal components
are fused using a GNB classifier. The number of principal com-
ponents considered for each signal type is calculated using the
validation set in a way that the performance of the algorithm is
maximized while the false and missed alarm rates are reduced,
using the detection accuracy as an optimization parameter. The
method retains the structure of the global fusion stage on the
decision level, as described in [26]. The advantage of applying
the GNB classifier at the local stage is that there is no need
to determine alarm thresholds and confidence intervals, as the
GNB classifier calculates the fault class probabilities directly.

D. Description of the Local Stage

The proposed algorithm is suited for condition-monitoring
problems where N different sensors provide measurement data
for the determination of the health state of the system. For
training, the algorithm requires data that has been labeled with
M fault conditions. If there is a test set available, the data has
to be split into two separate datasets for training: the training
set and the validation set. The training set will be used for
the training of the GNB classifiers at the local stage, whereas
the validation set will produce the confusion matrices for the
different sensor types at the global fusion stage.

Once the data are cleaned and selected features are extracted,
the features are split by sensor type. At this stage, the training
set takes the form of an n × m matrix, where n is the number
of observations and m is the number of features. The μAi,S j

means and σAi,S j standard deviations are calculated for each
Ai feature and Sj sensor type. A normalization step transforms
the features such that the means are 0 and the standard deviations
are 1. PCA calculates the SCSj scores and LOSj loadings for
each sensor type. The scores, which might also be considered
as the new “features,” are uncorrelated. The LOSj loadings are
calculated using the whole training set containing both healthy
and faulty data. To calculate the conditional probabilities of
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the GNB according to (3), the μAi,S j,C k means and σAi,S j,C k

standard deviations of the principal components are calculated
for each Ck fault type in the labeled data.

Next, the validation set is used in both to find the optimal
number of principal components and to calculate the confusion
matrices using μAi,S j , σAi,S j , μAi,S j,C k , σAi,S j,C k , and LOSj

from the training data. The features in the validation set are
normalized using μAi,S j and σAi,S j . The normalized features
are transformed to the principal components space using the
LOSj loadings. To find the number of principal components for
each Sj sensor type, an iterative step is considered as follows.

1) The first i principal components are used as features, cal-
culating the posterior probabilities and class predictions
for each observation in the validation set using (3)–(5).

2) Count the correct predictions and save it for i.
Once the iteration has finished, the value of i resulting in the

highest number of correct predictions is chosen for the number
of principal components used to calculate the predictions for
each observation in the validation set.

E. Description of the Global Stage

The prediction counts for each fault type are organized in
an M × M global confusion matrix GSi for each sensor type
Si where the rows represent the actual condition, the columns
represent the diagnosed condition, and the prediction counts by
rows are divided by the total number of actual conditions for the
fault type. The matrix elements can be interpreted as P (Fi |Fj )
conditional probabilities; given that the algorithm predicted Fj ,
what is the probability that the actual fault condition is Fi?
The P (Fi |Fi) probabilities, located along the diagonal of the
confusion matrix for each sensor type, represent the probability
that the sensor diagnosed the corresponding fault correctly

GSi
=

⎡

⎢
⎣

P (F1 |F1) . . . P (F1 |FM )
. . . P (Fi |Fi) . . .

P (FM |F1) . . . P (FM |FM )

⎤

⎥
⎦ . (6)

The test set is separate from the training set and is divided by
sensor type into N sets, with observations in rows and features
in columns. The test set is normalized and the GNB classifier is
calculated with the optimized number of principal components.

The fault class predictions of the GNB classifier for an obser-
vation are fused by (7) and (8) using the appropriate columns
from the global confusion matrices for each sensor type. P (ci)
represents a priori knowledge; if no prior distribution is avail-
able, a uniform distribution is supposed. If the fault class pre-
dicted by S1 is Fi and fault class predicted by SM is Fj , then
columns have to be selected in the following way from the
corresponding confusion matrices:

GS1 , Fi
=

⎡

⎢
⎣

P (F1 |Fi)
. . .

P (FM |Fi)

⎤

⎥
⎦ , . . . ,GSM ,Fj

=

⎡

⎢
⎣

P (F1 |Fj )
. . .

P (FM |Fj )

⎤

⎥
⎦

(7)

cpredicted = arg max

⎧
⎨

⎩
P (ci) ·

M,N∏

i=1,j=1

GSi , Fj

⎫
⎬

⎭
. (8)

Fig. 1. Structure of the PCA and two-stage Bayesian algorithm.

Fig. 2. Schematic of the experimental system.

For each fault class, the output of the global fusion step is
a posterior probability giving the likelihood of that fault class
being present in the system. For the purposes of evaluating the
performance of the algorithm, we consider the final prediction
as being the fault class that has the highest posterior probability
after the global fusion step (8).

F. Testing an Observation

The overall flow diagram of the proposed two-stage Bayesian
sensor fusion method for testing an observation is shown in
Fig. 1. At the local stage, each type of sensor is handled sep-
arately. For a given sensor type, features are fused in order to
obtain a prediction of the most likely health state of the system,
given the data recorded by that sensor type. At the global stage,
the predictions of the most likely health state for each sensor
type are fused using the global confusion matrix to create the
global diagnosis result.

III. EXPERIMENTAL DATA

The measurement set up for the experiment is shown in Fig. 2.
Experimental data were collected from three identical induction
motors, differing only in terms of health state: one motor was
healthy, one had two broken rotor bars, and one had an outer
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raceway fault in a bearing. It was also possible to seed stator
faults into the nominally healthy motor, as described in [31].
The test motors were 0.8 kW, four-pole SZJKe 14a induction
motors manufactured by TAMEL with a nominal rotor speed of
1400 r/min. The nominal values of voltage, current, rated torque,
and power factor for these motors were 380 V, 2.2 A, 5.45 N·m,
and 0.74, respectively. The motor had a Y winding configuration
with 4 coils per phase, 22 rotor bars, and 24 stator slots. The rotor
inertia was 0.0025 kg·m2 and the motor bearings were SKF type
6304 ZZ CXSQ. An eddy current brake was used to load the
motor. The measurements were conducted at steady-state op-
eration under different loading conditions. For each fault case
between three and five loading conditions were tested, resulting
in stator currents of 68%, 81%, 90%, 100%, and 113% of nom-
inal values. Measurements were recorded both with and with-
out background noise generated by a separate shaker. Datasets
for eight different health conditions were recorded, denoted as
F0–F7 , as follows:

1) F0—Healthy motor;
2) F1—Stator fault: Phase one bypassed in the first phase;
3) F2—Stator fault: Phase one bypassed in half of the first

phase;
4) F3—Stator fault: Phase–phase short circuit;
5) F4—Stator fault: Phase–phase short circuit with an offset

point;
6) F5—Stator fault: Break of half of the phase one;
7) F6—Rotor fault: Two broken rotor bars;
8) F7—Bearing fault: Outer raceway defect.

The tested motor was rewound in such a way that instead of
coils for a given phase being directly connected to one another,
the individual coils were connected to a switchboard allowing
the winding configuration to be quickly changed. Furthermore,
in six coils, special taps were created in order to allow different
short circuits to be seeded. Such a configuration allows vari-
ous stator faults to be seeded, as was investigated in [29] for
the same SZJKe 14a induction motor. For F1 and F2 , the first
phase was bypassed by a 15 Ω resistance causing a short circuit
in the first phase winding. For F3 and F4 , a short circuit of two
stator phases in the taps connected in the middle of the first
coils was seeded by adding a 115 Ω resistance. In the case of
F5 , part of the coil was not connected causing asymmetry in the
winding, so that the current did not flow through a part of the
winding. The two broken rotor bars (F6) were located next to
one another. The bearing fault (F7) was caused by an incision
through the outer ring of the bearing.

Acoustic, electric, and vibration signals were collected using
five different sensor types. Three G.R.A.S. 46AE microphones
were used to measure the sound pressure levels. A Model USP
regular three-dimensional Sound Intensity Microflown probe
was also used to collect acoustic signals from the motors. The
probe provided four measurement signals, three particle veloc-
ity signals in three orthogonal directions and a sound pressure
signal. The vibration signals were measured by a three-axis PCB
ICP accelerometer Model No. 356B18 and a one-axis PCB ICP
accelerometer Model No. 353B32, providing four signals in to-
tal in unit g. The three phase voltages were measured by LV
25-P voltage transducers providing signals directly for analysis

Fig. 3. Relative rms values of 5 different signal types extracted
from 0.5-s measurement windows, for all observations through the 58
datasets.

of voltage characteristics. The motor currents were measured by
LTS-6NP and LEM HY 5-P current transducers. The following
signals were collected using a 16-channel LMS Scada Mobile
System: 4 microflown signals, 3 microphone signals, 2 current
signals, 4 vibration signals, and 3 voltage signals. Data were col-
lected with a 51.2-kHz sampling rate to capture all frequencies
of interest with 30 s of data being recorded for each config-
uration to capture a sufficiently long steady-state periods for
analysis. 58 datasets were obtained: one for each tested loading
condition, both with and without additional background noise.
The same background noise was applied over the tests. The
microflown axis X probe has measured an average 47.26 m/s
particle velocity with no noise, whereas it has measured an aver-
age 88.69 m/s particle velocity with noise for the healthy motor
under nominal load.

IV. IMPLEMENTATION OF THE METHOD

The 58 datasets were split into 0.5-s observations resulting
in 60 observations for 1 dataset and 3480 observations in total.
For each signal, and for each 0.5-s observation, the following
time-domain features were extracted: root mean square (rms),
skewness, kurtosis, maximum peak, peak-to-peak, and crest
factor.

Features were also extracted from both the amplitude spec-
trum and the envelope spectrum of the signal: the frequency
center, spectrum area, the amplitude of the components at the
first two harmonics of the supply frequency (50, 100), the first
three harmonics of the rotation speed (1×, 2×, 3×), the ampli-
tude ratios (2×/1×, 3×/1×), and the amplitude at the sidebands
of the supply frequency (50 Hz ± 2 × slip, 50 Hz ± rotation
speed). The 0.5-s window length provided a 2-Hz spectral reso-
lution. While no windowing functions were applied in the calcu-
lation of the spectra, edge effects were found to be minimal. In
total, 30 features were extracted for the 16 signals, resulting in
480 features in total. These time- and frequency-domain features
are standard metrics, commonly used for the condition moni-
toring of induction motors [11], [21], [32]. It should be noted
that for all signal types, all of the above-mentioned feature types
were extracted. No additional feature selection approaches were
applied.

Fig. 3 shows the relative rms values of five different signal
types extracted from 0.5-s measurement windows, for all ob-
servations through the 58 datasets. It may be observed that the
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TABLE I
TEST CASE A: RANDOM SPLIT

sensors reacted to the fault modes and loading conditions in
different ways. For example, the rms current is increased for
stator fault modes F3 and F4 , whereas the rms vibration did
not significantly react. Conversely, in the case of the rotor fault
F6 , the vibration signal exhibited increased rms values, whereas
the rms current did not show significant increases. This fur-
ther illustrates that different faults are more easily diagnosed
by different sensors. The 480 features of the 3480 observations
were grouped by signal types into five groups, namely vibra-
tion features, current features, microflown features, microphone
features, and voltage features. The data were then split into a
training set, a validation set, and a test set, in the same way for
the five signal types. The division is described in Section V. The
training sets were used to train the local stage, the validation
sets were used to calculate the global confusion matrices for the
global fusion stage, and finally, the test sets were used to test
the performance of the algorithm. All analyses were conducted
in MATLAB.

V. RESULTS

In order to illustrate the performance of the described algo-
rithm with respect to different loading and environmental noise
conditions, the experimental data were divided into different
training, validation, and test sets. In Test Case A, a random
split was applied. In Test Cases B and C, eight entire datasets
(one from each fault case) were included in the test set with
no datasets from experiments conducted at this loading con-
dition being considered in the training or validation sets. In
Test Case B, the lowest load datasets with no background noise
are the test set. In Test Case D, the highest load datasets with
background noise are the test set. The aim of testing different di-
visions for testing, validation, and training is to observe the per-
formance of the algorithm under different operating conditions,
particularly under loading conditions that were not considered
during model training.

A. Test Case A: Random Split

Test Case A was used to evaluate the overall performance of
the algorithm. The total 3480 observations were randomly split
into training set, validation set, and test set with a respective
ratio of 60-20-20%. The random split was applied 100 times
and the averaged results are shown in Table I. The columns
represent the conditions diagnosed by the algorithm, whereas
the rows represent the actual fault conditions of the motors.

TABLE II
TEST CASE B: LOWEST LOAD AND NO NOISE

The healthy motor was correctly diagnosed in 94% of the cases
with a 6% false alarm rate in case of F2 stator fault. Missed
alarms are present for F2 , however it is only 2%. F2 is the least
severe fault among the seven seeded faults, which explains this
behavior. The successful detection rate is above 98% for all fault
cases, with 100% success rate for F1 , F5 , F6 , and F7 . Among
the stator faults, the following scenario can be observed: F3 and
F4 are sometimes misdiagnosed as each other, as they are the
variations of the same fault: F3 is the phase–phase short-circuit,
whereas F4 is the phase–phase short circuit with an offset point.
To give an overall measure of the test accuracy, the F1 score is
calculated to be 99.32%.

B. Test Case B: Lowest Load and No Noise

In Test Case B, the test set was formed of data taken from
the lowest loading conditions, with no datasets from experi-
ments conducted at this loading condition being considered in
the training or validation sets. The aim was to test the perfor-
mance of the algorithm under load conditions that are lower
than those contained within the training and validation sets.
The results are shown in Table II. The accuracy of the algo-
rithm was 100% when diagnosing the healthy condition (F0);
there were no false alarms. When diagnosing broken rotor bars
and bearing faults (F6 and F7), the algorithm performed with
100% accuracy. However, the performance for the stator faults
needs further analysis: while faults F1 and F3 are diagnosed with
the success rates of 97% and 100%, faults F2 , F4 , and F5 were
identified less reliably. The algorithm was able to diagnose the
F2 stator fault in only 57% of the cases. In 43% of the cases,
the algorithm misdiagnosed F2 , either as healthy or as the other
similar stator faults F1 and F5 . This was because F2 , as the least
severe fault, was the most difficult to diagnose. The algorithm
was also unable to distinguish between fault modes F4 and F5 ,
in 20% and 13% of the cases, respectively. F5 was also mistak-
enly diagnosed as other stator faults phase one bypassed in 10%
of the cases. This result indicates that in the case of loading
conditions lower than those seen in the training datasets, the
algorithm can accurately determine the type of fault, however it
is unable to accurately ascertain the severity of the fault.

C. Test Case C: Highest Load With Noise

Test Case C used datasets recorded for the highest loading
conditions with background noise as the test set, with no data
from this loading condition being considered in the training.
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TABLE III
TEST CASE C: HIGHEST LOAD WITH NOISE

TABLE IV
NUMBER OF PRINCIPAL COMPONENTS AND VARIANCE EXPLAINED

This test case investigates the performance of the algorithm for
loading conditions exceeding those considered in the training set
and for unique environmental conditions, specifically when the
background noise is at increased levels. The results are shown in
Table III. The correct diagnosis of the healthy motor was 100%,
as well as the diagnosis for F1 , F4 , F5 , F6 , and F7 . In case of
stator fault F2 , there is a 2% missed alarm rate. In case of stator
fault F3 , the algorithm misdiagnoses F3 as F4 in 8% of the cases.
These phenomena are similar to those observed in Test Case A:
the stator faults are less severe and less easy to diagnose. Due
to fault similarities, the algorithm can sometimes misdiagnose
stator fault severities or confuse them with the healthy motor.
The F1 score is 99.88%, which is even higher than the random
split test case.

D. Principal Components

The number of principal components is shown in Table IV
for each signal type together with the variance explained to
complement the results in the above-presented test cases. In
case of the random split in Test Case A, the variance explained
by the chosen principal components is always above 90%. In
case of Test Case B and C, the number of chosen principal
components is less than for Test Case A. This is due to the
specific loading and noise conditions chosen for the test sets.

The first few principal components have been analyzed for all
signal types to determine if there is any feature that dominates
the principal component coefficients in the loading matrix. It
was found that there was no single feature that would stand
out for any signal type, therefore the importance of PCA for
correlation reduction is further confirmed.

Fig. 4 shows the first principal components of the five signal
types, for all observations through the 58 datasets. The principal
component values were obtained from the normalized feature
values as described in Section II-D. In comparison to Fig. 3,

Fig. 4. First principal components of the 5 different signal types, for all
observations through the 58 datasets, the rms of the current is given as
reference for the loading conditions.

Fig. 5. Histograms and underlying normal distributions of the first prin-
cipal component of the vibration signal by fault conditions.

where the rms of the five signal types are shown, it may be
observed that the load dependence of the signals is less evident
in the principal components. This further justifies the application
of PCA for problems where the analyzed problem contains data
from several loading conditions.

Fig. 5 presents the histograms and underlying Gaussian dis-
tributions of the first principal component of the vibration sig-
nal by fault conditions. The distributions for each fault types
have distinct mean and variance values and are not significantly
different from Gaussian distributions. It can be observed that
F6 and F7 are the most distinguishable from F0 , whereas the
other stator faults have overlaps with F0 . It should be noted
that F0 shows the evidence of multimodal behavior. This is due
to the additional background noise incorporated to investigate
the influence of different environmental conditions on the ac-
curacy of diagnosis. However, as shown in Sections V-A–V-C,
this noise did not significantly influence the resulting likelihood
calculations.

E. Single-Stage Data Fusion

A comparison of the performance of the two-stage approach
relative to a more standard single-stage approach, where sen-
sors are not separated according to type, but instead all fused
in a single stage, was performed. The total 3480 observations
were randomly split according to the conventional 70–30% par-
tition to training set and test set. The random split was applied
100 times to a single-stage approach and the averaged results
are shown in Table V. The results show that the performance of
the single-stage algorithm significantly drops compared to the
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TABLE V
SINGLE-STAGE DATA FUSION

TABLE VI
PROPORTION OF CORRECT DIAGNOSES FOR EACH FAULT TYPE WHEN

CONSIDERING EACH SIGNAL INDIVIDUALLY AND AFTER
TWO-STAGE FUSION

results of the two-stage method shown in Table I. The most sig-
nificant difference appears in the reduced successful detection
of the healthy motor, with the single-stage approach yielding
false alarms in 91% of test cases. The F1 score is 92%.

F. Comparison of Results With SVM

To provide a quantitative comparison with another classifier,
the proposed PCA and two-stage Bayesian method is compared
with the well-known SVM. Test Case A, B, and C are repeated
using the default fitcecoc MATLAB implementation of the SVM
for multiclass problems with one against one classification strat-
egy and a linear kernel function. The F1 scores are compared.
Similarly to the investigation described in Section V-F, the SVM
was applied in a single stage. A 70-30% data split was applied
and repeated 100 times resulting in a 99.96% F1 score for Test
Case A. This result is 0.64% better than that of the proposed
method. For Test Case B, the F1 score for the SVM was 96.15%,
which is 1.84% below than what was achieved with the newly
proposed method. For Test Case C, the F1 score for the SVM
was 97.8%, which is 2.08% below than what was achieved with
the newly proposed method. While the performance of the two
approaches is comparable, an advantage of PCA and two-stage
Bayesian method lies in its transparency and modularity. Fur-
thermore, the method also provided a marginally improved per-
formance in the case of environmental and loading conditions
not contained in the training set, as shown in Test Cases B and C.

G. Signal Types Separately Versus Two-Stage Fusion

Table VI shows the performance of only considering a single-
stage fusion of features from a single-signal type, for the random

split Test Case A. For comparison, the equivalent performance
from the two-stage approach, which fuses the data from all sen-
sors types in the global fusion stage, is also given. Results are
given in terms of proportion of correct diagnoses, which are
equivalent to the values on the diagonal of the previously pre-
sented results (see Tables I–III). It is evident that the two-stage
data fusion of multiple signal types outperforms the equivalent
results when only considering a single-signal type. This is due
to the fact that the different sensor types have different strengths
and weaknesses. For example, it may be observed that the anal-
ysis based only on vibration signals accurately diagnosed the
mechanical bearing fault F7 in 100% of test cases, but was only
able to diagnose an electrical stator fault, such as F1 , in 92%
of cases. In contrast, when only current signals were consid-
ered, stator fault F1 was diagnosed correctly in 98% of cases,
but bearing fault F7 was only diagnosed correctly in 96% of
cases. When the two signals are fused, the conditional proba-
bilities in the global confusion matrix effectively gives greater
weight to vibration signals and less weight to current signals
when diagnosing mechanical faults and vice versa in the case
of diagnosing electrical faults. This leverages the strengths of
each sensor type for fault monitoring and minimizes the impact
of the weaknesses.

VI. DISCUSSION

In this section, the results and the structure of the algorithm
are discussed further, highlighting the observed strengths and
weaknesses of the algorithm.

A. Implementation and Constraints

The training of the method takes place offline using historical
datasets containing healthy and faulty data. Once the model is
trained, diagnosis can be performed either online or offline. By
applying a sliding window of the same size as used for train-
ing, the new sensor measurements can be fed into the two-stage
Bayesian classifier online after the feature extraction and PCA
steps have been performed. The width of the window could
be different based on the nature of the monitored system, the
extracted features, and the data available. The computational
complexity of the classifier is proportional to the number of
principal components retained and the number of fault modes
monitored. The computational complexity of the feature extrac-
tion and PCA step depends on the number of features extracted
and the size of the sliding window. For a better representation
of the original feature space, nonlinear multivariate methods,
such as kernel PCA [33], could be explored in the future in-
stead of the currently used linear PCA. While it falls out of the
scope of this paper, it should also be noted that the features
used as inputs to the method may also be refined according to
state of the art signal processing and feature extraction methods
so that they may better discriminate between different health
states. Thus, the accuracy and reliability of the approach would
likely be improved further. In (4) and (8), the likelihoods might
result in very small values if the number of features m, the num-
ber of sensors N, or the number of fault cases M is large. To
avoid numerical problems, a logarithmic formulation might be
considered.
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B. Algorithm Validation

In Section V, three different algorithm validation test cases
were presented by splitting the data into different training sets,
test sets, and validation sets. It has been shown that for small
datasets, the simple split-sample estimates can be biased and
cross validation is more suitable for the prediction assessment
of the classifiers [34]. In the case of a two-stage method, cross
validation is unfeasible due to the increase in the number of
computational steps associated with the addition of the global
fusion stage and the use of a validation set. Specifically, relative
to a simple single-stage fusion, when implementing cross vali-
dation on a two-stage approach, the method becomes n2 more
computationally expensive, where n is the number of the ob-
servations, as both the local and the global stages have to be
trained using separate training sets. In this paper, a pragmatic
split-sample method was considered. It is also foreseen that such
an approach would be applicable for applications of the method
with larger volumes of datasets available. In the future, increases
in computing power might also allow the cross-validation
approach to be feasibly applied.

C. Naı̈ve Bayes Classifier Using Kernel Density Estimate
(KDE)

The GNB classifier is a parametric method that assumes a
normal distribution of the observation variables. The more the
distribution of the observation variables differs from the normal
distribution, the less accurate the method is. One possible way to
eliminate this Gaussian assumption is to use a naı̈ve Bayes clas-
sifier with KDE, where the probability density function of the
features are estimated using a nonparametric kernel distribution.
Such an approach can be used when there is no prior knowledge
regarding the distribution of the data, no assumptions are made,
or a parametric distribution cannot describe the data. Tests con-
ducted using such a naı̈ve Bayes classifier with KDE, with the
same random split as described in Test Case A, yielded compa-
rable results to the GNB classifier. The naı̈ve Bayes classifier
with KDE resulted in correct classification rates in the ±2%
range compared to the results in Table I, whereas the F1 score
is 99.64%, which is 0.32% better compared to the results in
Table I. However, when applying KDE, the computation time
was two magnitudes greater for the local stage than for the
case of the GNB classifier. It took 4.277 s for the original
method to train the local stage and obtain the confusion ma-
trixes for the vibration signals, whereas the same computation
took 351.78 s with KDE. The processing hardware was an Intel
Core i5-4300U, 1.9 GHz.

D. Two-Stage Data Fusion Without PCA

While not the primary focus of this paper, it is worth noting
that an investigation into the importance of incorporating the
PCA step into the algorithm was also performed. It was observed
that when the PCA step was omitted from the algorithm, all test
cases, including fault cases, were subsequently diagnosed as
being healthy (F0). This was due to the load dependence of the
features. This observation indicates that a PCA step, or similar,

ensures that the algorithm is robust against changing loading
and environmental conditions.

E. Advantages of the Method

The preceding sections provide quantifiable comparisons of
the performance of the algorithm when including the novel steps
of applying a GNB classifier and splitting the approach into two
stages, relative to the cases when the steps are omitted. Due
to the multitude of ways of properly designing and tuning var-
ious algorithms, it is unfeasible to perform similarly rigorous
quantitative comparisons to benchmark the method relative to
other data-driven fault detection methods. However, qualitative
comparisons, which can guide design decisions at an early stage
of the analytics development process, can be made. The main
advantages of the proposed method are its transparency and
modularity. In contrast to many other data-driven fault diagno-
sis methods, such as SVMs or neural networks, the decision-
making process of the algorithm is easily back traceable from
the global predictions to the inputs of the local stage to identify
how the different sensors reacted to a fault. Such transparency is
important for cases where the algorithm will be used to support
maintenance decisions. While in this paper, only MAP proba-
bilities were considered, in practice, the Bayesian sensor fusion
approach allows the results to be presented in the form of like-
lihoods, showing the probability of each fault condition being
present. Again, this additional insight can support maintenance
decisions.

The modularity of the approach, achieved by splitting the
data fusion into two stages, also offers further advantages when
considering practical implementation. In the case of a sensor
being removed from a system, there is no need to retrain the
whole model, as the removed sensor type can easily be omitted
from the decision-level fusion. This is not possible for other
fault diagnosis methods that only consider feature-level data fu-
sion. Similarly, additional sensor types may be readily incorpo-
rated into the analysis with limited requirements for retraining.
Recently, a trend of monitoring the health of components via
signals recorded from connected elements, for example, mon-
itoring gearboxes and bearings via electrical signals recorded
from connected electrical motors, has emerged [35], [36]. Such
emerging methods could also easily be incorporated into the
algorithm, serving as an additional source of information for
further improving the accuracy of diagnosis.

VII. CONCLUSION

In this paper, the performance of a newly proposed PCA and
two-stage Bayesian sensor fusion method was evaluated under
various test scenarios. The algorithm was shown to be able to di-
agnose stator faults, broken rotor bar faults, and bearing faults in
induction motors, with low false and missed alarm rates. The al-
gorithm also proved its ability to diagnose faults under different
loading and environmental conditions. In addition to discussing
the several advantages of the presented method, the limitations
of the method were also highlighted. For example, it was shown
that the method is capable of correctly distinguishing differ-
ent types of fault, however, to consistently distinguish between
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different fault severities, adequate training sets are required at
comparable loading conditions.

In the future, the algorithm can potentially be extended so that
it may be used not only with steady-state signals. Additionally,
the performance of the method may be refined by further tailor-
ing the extracted features to the monitored system. It was shown
that by fusing data recorded from different sensor types, the
proposed method is capable of diagnosing both mechanical and
electrical faults. In the future, the algorithm should also be tested
for other fault detection and condition-monitoring scenarios, for
example, in process-monitoring applications.
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