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Abstract—In recent years, machine learning techniques
have been applied to test the fault type in high-voltage cir-
cuit breakers (HVCBs). Most related research involves in
improving the classification method for higher precision.
Nevertheless, as an important part of the diagnosis, the
feature information description of the vibration signal of
an HVCB has been neglected; in particular, its diversity
and significance are rarely considered in many real-world
fault-diagnosis applications. Therefore, in this paper, a hy-
brid feature transformation is proposed to optimize the di-
agnosis performance for HVCB faults. First, we introduce
a nonlinear feature mapping in the wavelet package time–
frequency energy rate feature space based on random forest
binary coding to extend the feature width. Then, a stacked
autoencoder neural network is used for compressing the
feature depth. Finally, five typical classifiers are applied in
the hybrid feature space based on the experimental dataset.
The superiority of the proposed feature optimal approach is
verified by comparing the results in the three abovemen-
tioned feature spaces.

Index Terms—Fault diagnosis, feature transformation,
high-voltage circuit breaker (HVCB), random forest (RF),
stacked autoencoder (SAE), wavelet packet decomposition.

I. INTRODUCTION

H IGH-VOLTAGE circuit breaker (HVCB) faults can lead
to significant physical harm as well as considerable eco-

nomic loss for the power grid [1], [2]. Therefore, several experts
and scholars have focused their research efforts on HVCB fault-
diagnosis technology. In addition, intelligent mechanical fault-
diagnosis technologies based on machine learning have been
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successfully applied for various machines, including gearboxes
and wind turbines, among others. Therefore, establishing a re-
liable, precise, and intelligent identification model for HVCB
faults has become a hot topic.

A. Previous Work

1) HVCB Diagnosis: In recent times, the vibration charac-
teristics during the closing or opening process of an HVCB has
replaced the contact displacement [3], [4] and electromagnet coil
current information [5], [6] as the distinguishing method for the
operational condition of an HVCB; for example, an intelligent
method based on density peaks clustering algorithm fused kernel
fuzzy c-means and support vector machine (SVM) was proposed
for HVCB mechanical fault diagnosis, which considerably im-
proved the accuracy of fault diagnosis [7]. In another study, a
genetic algorithm (GA) was utilized to optimize the radial basis
function parameters of the SVM; the experimental results of this
study indicate that the classification accuracy of the GA-SVM
approach is higher than those of the artificial neural network and
traditional SVM approaches [8]. Furthermore, a hybrid classi-
fier based on support vector data description and fuzzy c-means
was designed to improve the identification accuracy of HVCB
faults; in this case, the experiments were performed on a real
SF6 HVCB and validated [9]. However, in turn, these research
works indicate that it is difficult to analyze the vibration charac-
teristics of HVCBs owing to their nonstationary and nonlinear
peculiarities.

2) Time–Frequency Analysis-Based Approaches and
Feature Extraction: As an important part of the HVCB
fault analysis methodology, feature extraction can consider-
ably restrict HVCB diagnosis accuracy. Considering this, time–
frequency analysis tools have been widely used to extract fault
feature vectors of the HVCB vibration signals. In general, there
are two methods based on the intrinsic model function of the
HVCB original signal, including empirical mode decomposition
(EMD) [10] and its improved approaches [11], [12] as well as
those involving some basis functions, such as short-time Fourier
transform (STFT) [13] and wavelet transform (WT) [14]. EMD
involves decomposing complicated signals into several intrin-
sic mode functions containing local characteristic timescale
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information of the HVCB original signal [10]; however, it suf-
fers from disadvantages, such as the end effect, high computa-
tional complexity, and nonconformity of decomposition among
different signals, spectrum overlapping, and chaotic boundary
frequency among different intrinsic modes. Although some sub-
sequent studies do propose improved methods [11], [12] to solve
these abovementioned fractional problems, the other disadvan-
tages still limit their application. In contrast to the EMD ap-
proach, STFT was proposed as an adjustable windowed Fourier
transform to represent a signal’s spectral variations during a
particular interval of time, such as during the vibration signal
[13]. However, the different window length parameters of STFT
significantly affect the time–frequency spectrum result; in addi-
tion, the basis function for STFT is still a sin (cos) function with
infinite energy for the entire time domain, which is not suitable
for representing a local pulsing signal. To overcome this prob-
lem, the Haar wavelets family, proposed by Alfred Haar in 1909,
was used to analyze a given signal in terms of functions that are
more localized in time than the harmonic functions used in the
Fourier analysis [14]. Later, wavelet and wavelet packet trans-
form (WPT) theory rapidly developed and was applied in many
fields [15]–[18]. For example, in [15], the authors proposed a
different frequency band signal fusion method based on binary
WPT to form the waveform feature space. In particular, the use
of continuous WT, discrete WT, as well as WPT and second-
generation WTs has been studied for fault diagnosis in rotary
machines [16]. Kumar and Kumar [17] processed the vibra-
tion signal using WT, and then extracted prominent features as
well as constructed the scale marginal integration graph, which
shows multiscale energy distribution and can be used to identify
the defective condition of a centrifugal pump. In another study,
dynamically weighted wavelet coefficients for fault diagnosis of
planetary gearboxes are applied to deep residual networks [18].

3) Machine Learning-Based Approaches: Many re-
searchers and scholars have also developed machine learning-
based approaches for fault identification and diagnosis to im-
prove classification technology. Rennie [19] proposed a logistic
regression (LR) model for a classification task and explained
that a multiclass generalization of LR, which is commonly re-
ferred to as Softmax. Decision tree (DT) classifier can be used
for motor fault-diagnosis tasks or to detect breast cancer based
on medical data [20], [21]. In contrast, Vernekar adopted a naive
Bayes algorithm as a fault classifier to investigate the status of
a monoblock centrifugal pump or engine [22]. Although a back
propagation neural network (BPNN) was successfully adopted
for fault detection based on extracted time–frequency features
[23] and 15 calculated time-domain statistical parameters [24], a
good BPNN for diagnosis relies heavily on a large-scale dataset.
However, in the case of a small sample, SVM and its improved
variants, one class support vector machine (OCSVM), have been
applied for identifying mechanical faults in HVCBs; such meth-
ods have achieved satisfactory diagnostic performance [25],
[26]. The above methods are effectively verified in their re-
spective application scenarios. Furthermore, it has been noted
that the training process of a single classifier is affected by
the global error rate. Therefore, the models might be biased to-
ward the majority class and ignore the minority class. Moreover,

incorrectly collected samples or dispersion in the dataset might
potentially cause overfitting. However, as proposed by Breiman
[27] and studied by Biau et al. [28], a random forest (RF) is an
improved machine learning algorithm based on a random sub-
space and ensemble learning, which involves the construction
of a set of individual and weak classifiers and subsequently their
combination is used to classify new data [29]. And an improved
RF algorithm has successfully been applied to identifying the
HVBC’s mechanical faults [30]. In real industrial environments,
it is difficult to acquire a large number of samples for classifier
training and estimate the significance of feature candidates for
fault diagnosis; considering this, RF-based models have a better
performance rate than other classical classifiers [31], [32].

B. Contribution

The analysis of most previous works indicates that they in-
volve designing more powerful detectors for diagnosis. But
when there is a problem of singular value and large noise in
the sample data, a single strong classifier, such as SVM or
DT, may show an overfitting problem. And a depth learning
network generally requires a large amount of data during the
training process; a small amount of data may cause the deep
network to appear as an underfitting problem. In the applica-
tion scenarios of this paper, the HVCB vibration data have large
noise and strong dispersibility. It is very difficult to measure,
because a large number of separation processes will affect the
life and structure of the circuit breaker. In order to enhance
fault feature variability, solve small sample problems, reduce
dispersion and noise effects, a novel hybrid feature transforma-
tion method is proposed by considering the characteristics of
the HVCB fault-diagnosis problem such that the transferable
features could be learned from feature width and depth. Then,
five standard machine learning classifiers, namely Softmax, DT,
One-Class SVM, BPNN, and RF, are constructed to compare the
diagnosis results in various feature spaces. To the best of our
knowledge, this is the first attempt for solving feature signifi-
cance issues in fault diagnosis by transforming and compressing
features of the HVCB vibration based on RF coding and stacked
autoencoder (SAE) neural network, respectively. The primary
contributions of this paper can be summarized as follows.

1) The feature for the representation of various failures typ-
ically includes various vibration information with clear
differences among the various faults; thus, to enhance
characteristic description of the HVCB vibration infor-
mation, a binary coding feature transformation based on
RF is proposed. With ensemble learning and random sub-
space technology, the RF model is regarded as a nonlinear
feature mapping model rather than a classifier. In sum-
mary, the original and continuous feature is transferred
into a discrete binary coding feature string.

2) Because the characteristic diversity will lead to the inclu-
sion of considerable superfluous information that might
affect the diagnosis result, an SAE neural network is
used to reduce the dimensionality of the feature space by
deeply fusing some most prominent features from the bin
coding feature space.
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Fig. 1. Experimental acquisition system with HVCB.

3) The hybrid RF binary coding (RFBC)+SAE feature
transformation can notably improve the accuracy of di-
agnosis of HVCB faults for a single classifier based on
the experimental results in this paper. In particular, our
proposed method presents a novel way to diagnose fault
types in other applications as well, including planetary
gearboxes, wind turbines, rolling element bearings, and
centrifugal pumps.

C. Work Organization

The remainder of this paper is organized as follows.
Section II introduces the acquisition system based on the vi-
bration of HVCBs as well as the experimental datasets under
variable operating conditions. Then, the procedure for vibration
feature information extraction, transformation, and compres-
sion is briefly described in Section III. In Section IV, we present
the improved results provided by our proposed hybrid feature
transformation method by showing the feature significance in
the feature evolution process and comparing the diagnosis ac-
curacy with those of other classifiers in different feature spaces.
Finally, Section V provides our conclusions.

II. EXPERIMENTAL SETUP AND INSPECTION

For the experiments in this paper, we used an LW30-252 type
SF6 HVCB (Shandong TaiKai High Voltage Switchgear Co,
Ltd., Shandong, China), control box for opening (closing) of
the HVCB, and vibration signal acquisition system consisting of
an acceleration sensor YD-111T, charge-amplifier TS5863, vi-
brating trigger circuit, and data acquisition card EM9118B; this
experimental setup is shown in Fig. 1. The acquisition system
has a measuring range, sensitivity, natural frequency, frequency
response, sampling rate, and sampling period of ±10 000 g
(where g = 9.8 m·s–2), 0.5 mV·g–1, 45 kHz, 15 kHz, 300 kHz,
and 120 (60) ms in the close (open) state, respectively.

In particular, the vibration information is collected using this
acquisition system; when vibration occurs, the piezoelectric
accelerometer YD-111T produces charge accumulation. The

TABLE I
SUMMARY OF STATES FOR HVCB CONSIDERED IN THIS PAPER

Fig. 2. Vibration signals under normal condition during the opening
and closing processes.

charge amplifier converts these accumulated charges into a volt-
age signal; if the voltage amplitude is greater than a certain
threshold, a trigger circuit causes the acquisition card to obtain
these voltage values for the time period representing the vibra-
tion acceleration. Then, this vibration information is stored in a
PC. In Fig. 1, the yellow-dotted lines represent the acquisition
flow of vibration signals. It is important to note that previous
studies have reported that the accuracy of vibration feature-
based fault-diagnosis method is affected by the installation site
and method of the acceleration sensor. In this paper, the acceler-
ation sensor was installed using the threaded fastening method;
in addition, based on measuring the vibration signals at multiple
sites, the final installation site shown in Fig. 1 was selected as
the optimal installation site.

To verify the efficacy of the proposed fault-diagnosis method,
six states of the HVCB are considered for diagnosis; these
are listed and described in Table I. In particular, we measured
50 vibration signals per state; then, we randomly selected 35
samples for training and the remainder were used for testing.
The HVCB’s vibration signal under normal condition is shown
in Fig. 2.

As shown in Fig. 2, the closing process of an HVCB involves
a multistage impact and attenuation process, with the maximum
vibration acceleration of approximately 4000 g. In contrast, the
opening process can only be represented by a trumpet-type enve-
lope, with a maximum vibration acceleration of approximately
10 000 g.

Considering the operation mechanism of an HVCB, it is
known that some components of HVCB, such as the clos-
ing spring and oil damper, only affect the closing process.
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Fig. 3. Comparison of vibration signals under different cases. (a) Vibra-
tion signals in time domain. (b) Wavelet package spectrum of vibration
signals.

Therefore, in this paper, the vibration signal during the clos-
ing process is adopted for HVCB fault diagnosis.

III. PROPOSED METHOD

In HVCB diagnosis, feature extraction is a key procedure
that can strongly affect diagnosis precision. First, based on the
time–frequency energy ratio with the WPT, an original feature
space can be described, as discussed in Section III-A. Then,
our novel hybrid feature transform method based on RFBC
and SAE networks is implemented that can effectively improve
the diagnose accuracy of various faults; this is discussed in
Section III-B and C. Lastly, the general procedure of our pro-
posed method is described in Section III-D.

A. Feature Extraction Based on WPT

As already stated in the previous section, the spectral varia-
tions in the vibration signal constantly change during this inter-
val of time. As a well-developed time–frequency analysis tech-
nology, the WT has been applied to extract the HVCB vibration
information in various fields; WT allows the use of long time in-
tervals to obtain precise low-frequency information and shorter
regions where high-frequency information is required; however,
WT cannot effectively split the high-frequency bands containing
rich fault modulation information. Therefore, a better represen-
tation of the vibration signal can be obtained by extending WT
to WPT, which can simultaneously split the detailed and approx-
imation versions of the vibration signal. Analysis of vibration
signal difference of HVCB under different working conditions
is based on wavelet packet analysis theory. The vibration signal
in time domain and the wavelet package spectrum are shown in
Fig. 3.

It can be seen from the figure that the energy distribution
of different faults in time–frequency spectrum has significant
difference compared to the normal situation. Taking closing
spring fatigue as an example, during the closing process, the
closing spring will cause the closing ability to decrease due

Fig. 4. WPT and feature extraction. (a) WPT time–frequency analysis.
(b) Feature extraction.

to fatigue, the closing speed will be slower, and the closing
buckle impact (maximum vibration peak) will lag behind, and its
vibration capacity will decrease. The energy in each frequency
band is more dispersed. Therefore, it is feasible to describe the
performance of vibration information under different faults by
the change of energy in the time–frequency spectrum.

The binary tree framework of the WPT algorithm divided
into seven resolution levels for an origin vibration signal is
shown in Fig. 4(a). The jth level and nth sub-band of the re-
constructed wavelet coefficients Wn

j represent 1/2n of the fre-
quency information. In this paper, each vibration signal was
subjected to a seven-level binary wavelet packet decomposition
and wavelet coefficient reconstruction using the db3 wavelet
basis. The system sampling frequency was set to 300 kHz; in
addition, the width of each of the generated 27 frequency bands
was 1.17 kHz. Considering that the acquisition system had a fre-
quency response range from 0 to 15 kHz, the No. 0–12 wavelet
coefficients at the seventh level wavelet packet were employed to
characterize the time–frequency characteristics of the vibration
signal. Then, the vibration signal during the closing process
was split into 13 × 12 signal segments; in addition, the en-
ergy of each signal segment was calculated using the equation

E =
√∑tN

t=t0
x2(t). This is shown in Fig. 4(b).

Moreover, considering the dispersity of the vibration signal
energy of the HVCB and corresponding normalization process-
ing, the proportion of each signal segment in the time–frequency
direction was calculated using (1), where Pi,j and Qi,j represent
the proportion of the jth signal in the frequency direction within
the ith time period as well as the proportion of the ith signal in



MA et al.: HIGH-VOLTAGE CIRCUIT BREAKER FAULT DIAGNOSIS USING A HYBRID FEATURE TRANSFORMATION APPROACH 9781

Fig. 5. Feature space transformation based on RF. (a) CART, (b) Random Forest Classification, (c) Feature space transform based on Random
Forest.

the time direction within the jth frequency band, respectively
[30] ⎧⎪⎪⎨

⎪⎪⎩

Pi,j = Ei,j /
13∑

k=1
Ek,j

Qi,j = Ei,j /
12∑

k=1
Ei,k

. (1)

For the feature extraction process, the difference in the
distribution order of sequence was considered and wavelet
packet analysis-based time–frequency energy was regarded as
a HVCB vibration signal feature to form the original feature
space wavelet package time-frequency energy rate (WTFER),
as shown in

WTFER = [WTFERt ,WTFERf ]

= [P1,1 , P1,2 , . . . P1,12 , P2,1 , . . . ,

P13,12 , Q1,1 , . . . , Q13,12 ]. (2)

B. Feature Space Transform With RF

In general, two methods are available to transform the feature
space to improve diagnosis accuracy. The first such transfor-
mation is based on matrix theory. In particular, we can con-
sider that the value of a categorical feature is equivalent to that
of the coordinate and categorical feature and can be construed
as the basis. Then, a transformation matrix that maps the orig-
inal coordinate to a new coordinate is designed for more clear
characterization. Another simple but effective method to learn
nonlinear transformations is to bin the feature and treat the bin
index as a categorical feature; for classification, this means that
each categorical feature has only two solutions, 0 or 1.

As previously mentioned, RF is a novel, ensemble machine-
learning algorithm, which combines the bagging integrated
learning technology with the random subspace theory. The struc-
ture of RF for classification is shown in Fig. 5(b); the steps of
the general process for RF generation are as follows.

Fig. 6. Feature compression based on AE and SAE. (a) AE. (b) SAE.

Step 1: The training set S is generated from the original
training set using the bootstrap resampling method; S =
{(Ci, Li), i = 1, 2, . . . n}, (Ci, Li) ∈ Rd × R, (Ci, Li)
represent feature set and label of the ith sampling.

Step 2: A DT is generated using the classification and regression
tree (CART) algorithm based on the Gini index; the structure
of the CART algorithm is shown in Fig. 5(a). It should be
noted that the DT in the RF model is different from that in
the CART algorithm where m characteristic attribute values
are randomly selected from d characteristic attribute values
for each node.

Step 3: Repeat Step 1 until the number of DTs reaches the set
threshold value.

As already stated in the previous literature, the output of each
tree is a certain label or class in the traditional RF model and
the majority voting rule is defined by [29]–[32]

L = argmax
L

N t r e e∑
j=1

I(CARTj (Ci) = Lk ) (3)

where I(Ci) is an indication function, and arg() is a value
function representing the number of trees that classify the test
sample as the classification vector Lk .
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Fig. 7. Framework of the proposed method.

In this paper, we show that RF is a powerful and conve-
nient method to implement nonlinear transformations to map
the original feature to a binary coding space, rather than per-
form a classification. Each individual tree in RF is treated as
a categorical feature that takes the index of the leaf at which
the instance is present. In particular, we use 1-of-K coding for
these types of features. The last binary coding feature space is
expanded by combining the coding of every tree in the RF; for
example, consider the RF model in Fig. 5(c) with three DTs,
where the first, second, and third trees have five, seven, and
eight leaves, respectively. If an instance ends up in leaf 2 in the
first tree, leaf 3 in second tree, and leaf 5 in the last tree, the last
binary coding feature space will be the following binary vector:
[0; 1; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0;].

C. Feature Compression With SAE

It is evident that the number of bits in a binary coding is large
and sparse based on the RF considering that there are many
CARTs in the RF and nodes on each CART. This indicates that
it is important to use high-dimensional binary coding space com-
pression and fusion. Therefore, the autoencoder (AE), which is
a typical unsupervised feature learning neural network, might be
an effective solution for fault diagnosis. If a single AE is unduly
used for compression, the result might be worse than without
using it because there might be a considerable loss of productive
information. Therefore, in this paper, we design multiple AEs,
stack them sequentially, and optimize them layer by layer to
achieve a better compression feature; this is depicted in Fig. 6.

In particular, Fig. 6(a) presents a basic AE neural network that
consists of an encoder and decoder. If the number of neurons
in a hidden layer is less than the dimensionality of the input
data and the output data of decoder are approximately equal to
the input, we can assume that the input data are compressed
by the encoder. In other words, the output of the hidden layer
represents input information. Consider a training sample x =
[x1 , x2 , . . . xn ]T ∈ �n , the encoder maps the input vector x to

TABLE II
PARAMETERS USED IN OUR EXPERIMENTS

a hidden representation y = [y1 , y2 , . . . ym ]T ∈ �m using the
sigmoid function [33]–[35] as follows:

y = fθ (x) = sf (Wx + b) (4)

where sf (α) = 1/(1 + e−α ) is the activation function of the
encoder, and θ = {W , b} is the parameter of the encoder. In
addition, W ∈ �m×n is the weight matrix, and b ∈ �m is a
bias vector.

Then, the hidden vector y is transformed back into a recon-
struction vector x̃ = [x̃1 , x̃2 , . . . , x̃n ]T ∈ �n using the decoder,
which decodes the vector as follows:

x̃ = rθ (y) = sg (W̃y + b̃) (5)

where sg (α) = cα is the activation function of the decoder, and
θ̃ = {W̃ , b̃} is the parameter of decoder. As in the previous
case, W̃ ∈ �m×n is the weight matrix, and b̃ ∈ �m is a bias
vector.

The parameter set {θ, θ̃}= {W , b, W̃ , b̃} of the basic AE is
optimized using the gradient descent method to minimize the
average reconstruction error [33]–[35] as follows:

JAE (θ, θ̃) = −
n∑

i=1

[xi log(x̃i) + (1 − xi) log(1 − x̃i)] (6)
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Fig. 8. Features distribution in the WTFER based on WPT.

where JAE (θ) is the cross entropy regarded as the loss function,
which measures the difference between x and x̃.

The topological graph of the SAE is shown in Fig. 6(b). First, a
basic encoder is trained as the first layer of the SAE, and the input
data are the binary coding features, wherein each xi is the bit
of the binary coding. Then, the hidden output [c1 , c2 , . . . , cm ]
of the first layer is regarded as the input data of the second
layer for training the second AE. It is important to note that the
weight of the first layer does not change owing to the training
process in the second AE. Thus, a deep SAE neural network is
generated. The output of the SAE represents the binary coding
feature based on the RF and serves as the input for the classifier
for the fault diagnosis of HVCBs.

D. General Procedure of the Proposed Method

In this paper, a novel feature transform and compression
method for HVCB fault diagnosis is developed. The frame-
work of our proposed method is shown in Fig. 7 and the general
steps are summarized as follows.

Step 1: Under various fault scenarios, the vibration data of the
HVCB are collected using the acquisition system.

Step 2: WPT is used to obtain the information of the vibration
signals and create a feature space using WTFER.

Step 3: Based on the RF algorithm, a binary coding feature space
is used to abstract the original feature description.

Step 4: The SAE is adopted to reduce the dimensionality of the
coding feature space; then, the compressed feature space is
obtained.

Fig. 9. Feature description based on RF transformation. (a) Goal
graph. (b) Local graph. (c) Curve at 201st bit for all training datasets.
(d) Bits 200–220th of the bin coding for the 110th sample of the training
dataset.

Step 5: The compressed, clustering features are inputted into a
Softmax algorithm for fault classification.

Step 6: A network combining SAE with the Softmax algorithm
is retrained for fine tuning the weights of the network for fault
classification.

Step 7: The performance of the proposed method is validated
using the testing samples.

IV. EXPERIMENTAL VERIFICATION

Our proposed method was implemented using MATLAB
and applied for fault diagnosis of HVCBs. As mentioned in
Section II, 35 samples that are randomly selected for each class
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Fig. 10. Feature compression process based on SAE.

are applied to train the proposed model. Then, the model was
tested using the remaining samples. The parameters used in our
experiments are listed in Table II. The diagnosis performance of
the proposed method is discussed in Section IV-A. Furthermore,
in Section IV-B, the use of various approaches (Softmax, DT,
OCSVM, BPNN, and RF) under different feature spaces (WT-
FER, RFBC, and RFBC+SAE) are discussed and compared
to highlight the improvement results provided by our proposed
method.

A. Performance of the Proposed Method

In order to evaluate the performance of the proposed ap-
proach, the evolution process of the feature space in the case
of the WTFER space, bin coding space based on the RF, and
compression space-based SAE are evaluated; these are shown in
Figs. 8–10, respectively. In addition, the diagnosis results with
the training and test datasets are shown in Fig. 11.

In particular, Fig. 8 shows the training data distribution for six
classes in the case of the six-dimensional WTFER feature space.
It can be distinctly seen that most samples are clustered together
except in the case of Classes 2 and 4. However, it is difficult
to build a better classifier to realize satisfactory identification
precision in such feature spaces, especially using some linear
classifiers.

In Fig. 9(a), the bin coding feature space and feature transfor-
mation based on the RF are shown. The horizontal axis repre-
sents the sample number, i.e., 1–35th, 36–70th, 71–105th, 106–
140th, 141–175th, and 176–210th belonging to Classes 1–6,
respectively, whereas the vertical axis describes the bits of the

bin coding or node ranking in the RF. In this paper, we assume
that the scale of the DT is 100, which indicates that 100 bits of
the bin coding are 1, whereas the others are 0. In Fig. 9(b)–(d),
the coding result using RF derived from the local region of the
bin coding is displayed. For example, the 201st bit of Class 4
samples (106–140th) is 1, whereas others are 0 [see Fig. 9(c)].
Similarly, the 209th, 216th, 210th, 204th, and 206th bits can
primarily be used for distinguishing other classes, as depicted
in Fig. 9(b). Fig. 9(d) lists the output of the 200–220th bits for
the 110th sample (which belongs to Class 4) and shows that the
201st and 212th bits of the coding feature being 1 indicate that
they belong to Class 4 with high probability. In particular, if the
201st or 210th bits of a sample are 1, the sample may be defined
as Class 4. Considering Fig. 9(b) and (c), we found the 201st bit
is a better feature for differentiating Class 4 samples compared
with the 212th bit. This indicates that although bin coding-based
RF successfully establishes some useful features for HVCB di-
agnosis, superfluous dimensionality also exists in feature space.
Thus, it is crucial to eliminate redundant information to further
improve diagnostic accuracy.

The bin coding features are imported into the SAE. The
output of SAE will span the proposed hybrid feature space
and be applied to a classifier, as shown in Fig. 10. In partic-
ular, Fig. 10 shows the three-dimensional representations of
high-dimensional feature maps at different layers in the SAE.
Although a comparison between the feature maps involves
unavoidable errors due to the loss of information during dimen-
sionality reduction, it is obvious that diverse classes are heavily
overlapped at the input layer, whereas they become more sep-
arable at deeper layers. Furthermore, specifically, the last layer
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Fig. 11. Diagnosis results of using the proposed method.

feature can completely identify the various classes from at least
one dimensionality of the SAE feature space, i.e., the diagnosis
precision will be higher compared to without the use of SAE.

Fig. 11 shows the multiclass confusion matrix of the proposed
method with a Softmax classifier. The multiclass confusion ma-
trix records the classification results of all the conditions in a
detailed manner, including both classification information and
misclassification information. The horizontal axis of the confu-
sion matrix represents actual label of classification, whereas the
vertical axis represents the predicted label; the element value
Ni,j of the confusion matrix represents the matching or mis-
matching sample number between ith target class and predicted
label. It should be noted that the elements on the main diagonal
are the same, whereas others are not. In addition, the element in
the last row of the confusion matrix represents the classification
accuracy of each condition. In the case shown in Fig. 11, we
can observe that the lowest precision is 93.3% which occurs
for Conditions 3 and 4. Furthermore, for all test samples, the
accuracy of the proposed method is 97.8%, which indicates that
the proposed method has a better performance rate for HVCB
fault diagnosis.

B. Comparison With Traditional Methods

Five classification methods (Softmax, DT, OCSVM, BPNN,
and RF) for three feature spaces (WTFER, RFBC, and
RFBC+SAE) are applied to diagnose the test dataset. In the
evaluation system of classifiers, classification accuracy rate is
taken as the key performance metric in this work [8]. For com-
pleteness, and to ensure that the accuracy values are a reliable
indicator of overall performance, the precision and recall of all
classifiers are also investigated. Furthermore, F-measure is an-
other widely used criterion, which contains both the precision
rate and recall rate [36]. Therefore, the accuracy rate and F-
measure are applied to evaluate the performance of different
feature spaces with various classifiers in this paper, as shown in
Fig. 12.

Based on these results, the following inferences can be drawn.
1) After the RFBC, RFBC+SAE diagnostic process, the F

value of the SoftMax method is continuously increased
substantially under the six classes, and the F values of
most other methods are also increased, which indicates

Fig. 12. Comparison results. (a) Accuracy for different feature spaces
with various classifiers. (b) F-measure for different feature spaces with
various classifiers.

that the feature transformation method described in this
paper is conducive to diagnosis.

2) The highest accuracy of 97.8% is obtained using the pro-
posed method (Softmax+RFBC+SAE), which is signif-
icantly higher than the accuracy rates of 87.8%, 91.1%,
94.4%, and 93.3%, using the DT, OCSVM, BPNN, and
RF+RFBC+SAE methods, respectively.

3) After feature transformation with RF, the accuracy of the
single classification is considerably improved; however,
the ensemble learning RF is only slightly enhanced. This
can be attributed to the fact that the ensemble learning was
performed using the RF feature transformation. Based on
the RFBC feature space, an RF model is an iterative
method of classification.

4) Based on the SAE, feature compression can deeply fuse
the effective information for diagnosis, reasonably re-
ducing the unfavorable effect owing to ensemble feature
transformation (i.e., RFBC) and further improving the
classification performance.

In order to avoid a perceived bias based on the experiment, ten
trials were conducted to compare the diagnosis performance in
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Fig. 13. Comparison results of ten trials using different methods.
(a) Diagnosis accuracy of ten trials using different methods. (b) Aver-
age accuracy and standard deviation curves of ten trials using different
methods.

TABLE III
AVERAGE ACCURACY AND STANDARD DEVIATION VALUES OF VARIOUS
CLASSIFICATIONS WITH DIFFERENT FEATURE SPACES FOR TEN TRIALS

various feature spaces using different classification approaches.
In each trial, we randomly select training and test data from
the raw dataset in a ratio of 7:3. Fig. 13(a) shows the detailed
diagnosis results for each trial; in addition, the average accuracy
and standard deviation of the five classification methods with
three feature spaces in all the trials are listed in Table III and
shown graphically in Fig. 13(b). It is clear that the accuracy
of the Softmax+RFBC+SAE method is the highest in the case

of most trials; in particular, its average accuracy is the highest,
standard deviation is the least, and performance is best than the
other approaches.

V. CONCLUSION

It is important to develop a good set of features for fault di-
agnosis of HVCBs. Thus, in this paper, a feature transformation
and compression method was proposed. First, using the tradi-
tional WPT time–frequency analysis, we developed the basic
characteristic description. Then, based on ensemble learning
and random subspace technology, a RF was applied to coding a
binary feature vector to extend the feature width. In addition, the
SAE neural network was used to compress the binary feature us-
ing feature depth. Finally, an optimal feature space represented
the information of HVCB under various fault types.

The usefulness of feature learning was verified by a com-
parison among five machine learning methods in a series
of experiments. Experimental results indicated that the av-
erage accuracy in ten trials for the hybrid feature space
(Softmax+RFBC+SAE) performed better than the other clas-
sification methods in WTFER, RFBC, and other hybrid feature
spaces. In addition, the optimal feature could more effectively
reduce a classifier’s burden and improve the diagnosis result of
HVCB.

Although the method proposed in this paper involved a reli-
able feature transformation approach and was verified against an
entire set of diagnosis technology approaches for HVCB fault
diagnosis, the proposed method’s parameters will further be dis-
cussed. Furthermore, the proposed method was established on
manual feature extraction. In a future work, typical fault feature
automatic extraction will also be considered.
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