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Advanced Control Methods for Power
Converters in Distributed Generation

Systems and Microgrids

F LEXIBLE control of power converters, which serve as
interfaces between the distributed generation (DG) units

and the legacy alternating current (ac) grid or the ac or direct
current (dc) microgrid (MG), is the key to realization of high
penetration of renewable energy in a safe and stable fashion.
When connected to the ac legacy grid, these power converters
need to provide ancillary services such as frequency and voltage
support, harmonic compensation, as well as synthetic inertia
emulation. Another emerging solution is to interface the DG
units with the ac legacy grid through an intermediate entity
called an MG. MG can be based either on ac and dc architecture
and can work in both stand-alone and grid-connected modes.
Since it is responsible for multiple power converters, an MG
has higher operational flexibility than individual units. However,
due to a lack of stiff voltage reference source and natural inertia,
control of MGs is generally more challenging than control of
individual grid-connected power converters.

In both grid-connected and stand-alone applications, most
power converters used in modern DG technologies rely on cas-
caded linear control, mostly because it allows analytical design
and guaranteed performance. However, such control also in-
evitably leads to severe performance limitations, most notably
high sensitivity, inflexibility, and limited bandwidth. Therefore,
the design of advanced control strategies has been and continues
to be one of the main drivers of the research community in the
power electronics control area. In particular, several types of
linear, nonlinear, and adaptive control techniques have shown
promise to significantly improve the robustness, flexibility, and
dynamic performance of the state-of-the-art cascaded linear
control methods. The motivation for this special section has
been precisely in this area, i.e., to collect the latest achievements
on advanced control strategies for power electronic converters.

This special section has received a total of 67 papers, 22 out
of which were accepted. Accepted papers can be divided into
three basic categories, as follows.

First category [items 1)–7) in the Appendix] focuses on devel-
oping new and improving known advanced control techniques
for grid-tied power converters aiming to achieve better transient
performance compared to conventional controllers. In [item 1)
in the Appendix], a new method based on artificial neural net-
works is proposed to design the weighting factors for the cost
function of finite-set model predictive controller, thereby
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proposing a solution to a long-standing research challenge. In
[item 2) in the Appendix], an adaptive cascaded delayed signal
cancelation technique for accurate phase estimation of distorted
three-phase grid voltages including unbalanced amplitudes
and/or phase angles is proposed. Method also includes an
algorithm for removing the phase angle deviations from the
three-phase voltages including unbalanced phase angles. In
[item 3) in the Appendix], an adaptive quasi-proportional–
resonant (AQ-PR) controller for the grid current is adopted
in combination with equivalent inductance identification
algorithm, which assures that the parameters of the AQ-PR
controller can be online calibrated to attain accurate current
regulation under ac side inductance uncertainties. On the other
hand, a super-twisting sliding mode controller for the dc-link
voltage is proposed to enhance system behavior under both
internal and external disturbances. In [item 4) in the Appendix],
a new algorithm for estimation of the magnitude of voltage sag
(MoVS) is proposed. Interesting novel feature is that the exis-
tence of correlation between magnitudes of a set of low-order
harmonics during transient of voltage power quality events with
MoVS is for the first time determined and statistically proved.
In [item 5) in the Appendix], an extended Kalman filter based
control strategy for fault ride-through operation in two-stage
grid-connected photovoltaic (PV) system is proposed. The
proposed strategy does not compromise with power quality
improvement features in the system while enabling ride-through
operation. In [item 6) in the Appendix], an innovative design and
experimental validation of disturbance-observer-based control
for grid-tied PV inverters fed by a dc–dc boost converter con-
sidering unbalanced grid voltages is developed. A disturbance
observer is designed to estimate the unknown perturbation,
which is then canceled by a feedback-linearizing control.
Finally, Agrawal et al. [item 7) in the Appendix] capitalize on
the fact that islanding or nonislanding events in grid-connected
DG bring along a typical distinguishable transient signature in
its frequency profile and propose a new islanding protection ap-
proach, which is based on the estimation of frequency waveform
parameter (transient’s frequency) by matrix-pencil method.

Second category [items 8)–17) in the Appendix] focuses
on developing new and improving known advanced control
techniques for grid-tied power converters aiming to achieve
better steady-state performance compared to conventional con-
trollers. In [item 8) in the Appendix], a two-degrees-of-freedom
control algorithm based on uncertainty and disturbance
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estimator (UDE), aimed to minimize the total harmonic
distortion of inverter output voltage, is proposed. A multiple-
time-delay action is combined with a commonly utilized
low-pass UDE filter to increase the range of output impedance
magnitude minimization around odd multiples of base fre-
quency for enhanced rejection of typical single-phase nonlinear
loads harmonics. In [item 9) in the Appendix], a new active
damping method based on a robust disturbances observer
is proposed. The proposed method is designed to mitigate
resonance issues encountered in islanded MGs with multiple
electronically interfaced DGs and loads. The main merit of the
proposed approach is to calculate the appropriate resonances
compensating signal without prior knowledge of the system
parameters and without affecting the control bandwidth. In
[item 10) in the Appendix], earlier findings about the need
to have passive input admittance of grid tied converters is
extended in the sense that passivity indices are used to quantify
the required degree of input admittance. In [item 11) in the
Appendix], a new method to compensate multiple harmonics
based on a down-sampled multirate resonant controllers
(MRRSCs) scheme is proposed. The proposed control scheme
is composed of an inner control loop with a fast sampling rate,
which is identical to the switching frequency, and an array of
paralleled MRRSCs-based external control loop with a reduced
sampling rate. Yang et al. [item 12) in the Appendix] capitalize
on the fact that submodule capacitors in modular multilevel
converters can be used as energy storage to provide a degree
of synthetic inertia for system frequency support. To exploit
it, an modular multilevel converter (MMC) synthetic inertia
concept is proposed, where corresponding analysis shows that a
substantial portion of system inertia can be provided by MMCs.
In [item 13) in the Appendix], new leaky least logarithmic abso-
lute difference algorithm based maximum power point tracking
algorithm, for grid-integrated solar PV system, is proposed.
It is actually an improved form of incremental conductance
(InC) algorithm, where inherent problems of traditional InC
techniques, such as steady-state oscillations, slow dynamic
responses, and fixed step size issues, are successfully mitigated.
Similarly, Kumar et al. [item 14) in the Appendix] propose
an improved version of the perturb and observe algorithm.
It uses a maximize-M Kalman filter to mitigate problems of
traditional perturb and observe such as steady-state oscillation,
slow dynamic responses, and fixed step size issues. Giri et al.
[item 15) in the Appendix] propose to use adaptive theory
based momentum least mean square algorithm to operate the
power converter with enhanced power quality. This control is
also responsible for keeping constant frequency and voltage at
the point of common coupling under mechanical and electrical
transients. Zhou et al. [item 16) in the Appendix] propose a
harmonic voltage distortion damping method, which includes a
direct output voltage control and the parallel virtual-admittance
control. Finally, Rodriguez-Cabero et al. [item 17) in the
Appendix] present a differential and common-current (power)
based state-feedback control for back-to-back converters. This
controller features a fast control of active and reactive powers,
and a stiff regulation of the dc-link voltage.

The third category [items 18)–22) in the Appendix] focuses
on developing new advanced control techniques for power

converters that are operated within the dc subgrids. These sub-
grids can be operated either in completely isolated mode or be a
part of the overall energy conversion process of a grid-tied power
electronics system. Wang et al. [item 18) in the Appendix] look
at the dual-active-bridge (DAB) converter connected to a dc
link that is tied to an ac grid via single-phase inverter. It pro-
poses a method to reduce the second harmonic current caused
by the pulsating power of the downstream single-phase inverter,
which may increase the battery’s degradation and the compo-
nent stress of the front-end converter. Method uses a load current
feedforward control. The proposed idea is to incorporate virtual
impedance to the output impedance of the front-end converter.
In [item 19) in the Appendix], an application of the interconnec-
tion and damping assignment passivity based control approach
to the port-controlled Hamiltonian model of DAB source-side
converters in an medium voltage DC MG is proposed. Its ef-
fectiveness is demonstrated when stabilizing constant power
loads. In [item 20) in the Appendix], a coordinated droop con-
trol method through virtual voltage axis is proposed for volt-
age restoration and energy management of dc MGs. To solve
the problems of conventional droops, the voltage compensation
term is defined as the virtual axis voltage value. In [item 21)
in the Appendix], decentralized nonlinear model and intelligent
control are proposed using adaptive output-feedback controller
to stabilize the dc MGs burdened by constant power loads. Fi-
nally, in [item 22) in the Appendix], a new control strategy for
the dual active bridge is proposed, i.e., it is modified for zero
circulating power flow operation. Power management and co-
ordination control used in this paper ensures the power supply
reliability of the zonal hybrid dc–ac MG integrated through the
solid-state transformer.

We hope this special section serves as a reference and update
for academics, researchers, and practicing engineers in order to
inspire new research and developments that can pave the way
for the next generation of advanced control strategies for power
electronic converters.
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