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A Monocular Vision Sensor-Based Efficient
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Abstract—This paper presents a new implementation
method for efficient simultaneous localization and mapping
using a forward-viewing monocular vision sensor. The
method is developed to be applicable in real time on a low-
cost embedded system for indoor service robots. In this
paper, the orientation of a robot is directly estimated using
the direction of the vanishing point. Then, the estimation
models for the robot position and the line landmark are
derived as simple linear equations. Using these models, the
camera poses and landmark positions are efficiently cor-
rected by a local map correction method. The performance
of the proposed method is demonstrated under various
challenging environments using dataset-based experi-
ments using a desktop computer and real-time experiments
using a low-cost embedded system. The experimental envi-
ronments include a real home-like setting. These conditions
contain low-textured areas, moving people, or changing en-
vironments. The proposed method is also tested using the
robotics advancement through web publishing of sensorial
and elaborated extensive datasets benchmark dataset.

Index Terms—Efficient simultaneous localization and
mapping (SLAM), embedded system, indoor service robot,
monocular vision.

I. INTRODUCTION

ONE of the goals in robotics is to develop a mobile robot
that can act autonomously in the real world. Localization

is the most important prerequisite for this goal. Without using
a global positioning system or preconstructed ad-hoc infras-
tructures, localization can be performed using the sensors on
board the robot [1], [2]. Among the various methods, the simul-
taneous localization and mapping (SLAM) technique provides
an attractive solution because it does not need user-built maps.
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Within various sensors for SLAM, monocular vision is highly
attractive because of its low cost, lightweight, and low power
consumption, especially for resource-constrained robotic plat-
forms. In addition, it can capture rich visual information from
the environment.

During the last two decades, the vision-based SLAM prob-
lem has been intensively researched. However, in order for these
SLAM solutions to be practical for real applications such as
consumer robots, some important factors need to be considered.
First, the computational requirement of the SLAM algorithm
should be low enough to be executed on a low-cost micropro-
cessor. A microprocessor on a robot should execute SLAM in
parallel with other algorithms such as path and motion planning
in real time to conduct various missions. The computational re-
quirements of conventional SLAM algorithms are too high to be
used on a low-cost processor. Second, the environment where a
robot is used should be considered in developing and applying
a SLAM method.

From the perspective of vision-based SLAM, the home envi-
ronment is quite challenging. It contains plenty of less-textured
areas. When the robot with a camera moves close to the ob-
stacles or objects, all tracked features are easily lost because
of occlusion and severe scale changes in the image domain.
This situation occurs frequently for home-service robots, such
as robotic vacuums, because they must move through every inch
of the environment. Input images from robotic vacuums with a
forward-viewing monocamera that moves through every inch
of the house contain only an average of 151 corner features at
320 × 240 image resolution per image (see Section IV-A for
a detailed explanation of the home dataset). When compared
with popular benchmark datasets, this is a very challenging sit-
uation for SLAM. Kitti (outdoor, sequence 00) [3] and robotics
advancement through web publishing of sensorial and elabo-
rated extensive datasets (RAWSEEDS) (indoor, sequence 25 b
frontal) [4], which are popular benchmark datasets, contain an
average of 4443 corners at 1241 × 376 image resolution per
image (731 for 320 × 240 image size ratio) and 657 corners at
320 × 240 image resolution per image, respectively. For corner
detection, the algorithm [5] with the threshold 20 is used. An-
other challenge is that the home environment is highly dynamic
because of human activities. There are moving people and ob-
jects that affect the performance of the SLAM. In addition, the
environment can be changed during the SLAM process. For ex-
ample, the locations of the objects or the illumination can be
changed. Fig. 1 shows these challenging situations, which are
present in the home dataset in this study.
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Fig. 1. Challenging situations from the home dataset in this work. Im-
ages are captured from a robotic vacuum with a forward-viewing monoc-
ular vision sensor. (a) and (b) Less-textured areas. (c) and (d) Moving
people and object. (e) Moving person who hang out the wash. (f) Chang-
ing illumination when a person turns off the light. (g) Changing environ-
ment where a person pull down a roller blind. (h) No visual information
when robot is too close to a wall. (i) No visual information when robot
moved under a sofa.

This paper presents an efficient implementation method for
forward-viewing monocular vision-based SLAM. The method
is applicable on a low-cost embedded system for indoor ser-
vice robots, such as home service robots. We have assumed
that the robotic motions are planar, and the images captured
by a forward-viewing monocamera and odometer are used as
sensory inputs. The proposed method is quite robust in chal-
lenging indoor environments, which contain low-textured ar-
eas, moving people, or changing environments. For robust per-
formance in challenging indoor environments, the proposed
method adopts the vanishing point (VP) and orthogonal struc-
ture assumptions, which are mainly inspired by the work of
Zhou et al. [6].

The main contribution of this paper is proposing a new im-
plementation method using line features and VP for efficient
SLAM. The details of the contribution are as follows. First,
VP is utilized in both line landmark parametrization and di-
rect estimation of the robot orientation which improves the ac-
curacy. Second, new estimation models for robot’s translation
and landmarks are newly derived in a simple form for efficient
implementation. Finally, using these models, robot poses and
landmarks are separately corrected during the local map cor-
rection process, which significantly reduces the computational
requirement of the proposed method such that it can be installed
on a low-cost embedded system and integrated in a real-time
autonomous robot navigation system.

The rest of this paper is organized as follows. In Section II,
we present studies related to this topic. The proposed method is
described in Section III. In Section IV, we present the experi-
mental result. This is followed by conducting remarks and plans
for future research in Section V.

II. RELATED WORKS

In the fields of robotics and computer vision, visual SLAM has
been studied intensively. Researchers have mainly used feature
points as a landmark for SLAM. Current SLAM methods can
be classified into two categories: filtering-based methods [7],
[8] and optimization-based methods [9], [10]. In filtering-based
methods, every frame is processed by the filter to jointly esti-
mate the camera pose and landmark positions in a probabilistic
way. On the other hand, optimization-based methods estimate
the camera pose and landmark positions in a deterministic way,
usually through numerical optimizations, called bundle adjust-
ments. The representative work of this kind is parallel tracking
and mapping (PTAM) [9]. The PTAM method proposed the
concept of tracking the camera pose and mapping the envi-
ronment in two simultaneous threads. Recently, Mur-Artal et
al. [10] proposed an oriented FAST and rotated BRIEF (ORB)
point-feature-based monocular SLAM called ORB-SLAM. This
method used the same ORB features for all SLAM tasks: track-
ing, mapping, relocalization, and loop closing.

Various graph optimization methods in the least-square sense
for optimization-based SLAM methods are proposed. The
g2o or iSAM2 are widely used methods [11], [12]. Recently,
Khosoussi et al. [13] proposed an efficient graph optimization
algorithm that takes advantage of the separable structure of
SLAM for reliable and faster convergence. To deal with false
constraints problem from loop closure detections or data associ-
ation in graph optimization Vertigo, dynamic covariance scaling
(DCS) and Max-mixture methods were proposed [14]–[16].

Several studies have been presented to cope with a dynamic
environment. To deal with moving objects while performing
SLAM, simultaneous localization, mapping and moving object
tracking was proposed [17]. The method distinguishes station-
ary and moving points based on the difference of hypotheses
and augments those points into SLAM state vector. Tan et al.
[18] proposed a monocular vision sensor-based online keyframe
representation and updating method to adaptively model the dy-
namic environments, where the appearance or structure changes
can be effectively detected. Lee and Myung [19] proposed an
error metric and node grouping rules to detect low dynamic sit-
uations for RGB-D SLAM. Li and Lee [20] proposed a static
weighting method for edge points in RGB-D SLAM to reduce
the influence of dynamic objects. Apart from these point meth-
ods, line feature-based SLAM is generally more robust for dy-
namic environments, because they are not steadily extracted in
moving people or objects [6]. Several studies about image anal-
ysis can be used to remove the moving objects from images in a
dynamic environment. Li et al. [21] proposed a foreground ex-
traction algorithm by using superpixels. Li et al. [22] proposed a
foreground extraction algorithm by using path alignment mani-
fold matting. Moving objects can be excluded by removing the
extracted foreground from the images.

Numerous studies have been presented on arbitrary three-
dimensional (3-D) line feature-based SLAM [23]–[25]. These
methods used the filtering method to formulate the SLAM prob-
lem where line segments are parameterized with two endpoints
[23] or as an infinite line [24] in a small 3-D space. Recently,
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Zhang et al. [25] proposed a 3-D line-based stereo SLAM sys-
tem. The method used the Plücker line coordinates for line
parameterization.

In the indoor environment, several studies have used ceiling
line features as landmarks for SLAM. They usually require a
upward-viewing camera because data association, geometrical
modeling, and implementation are much easier. In addition, they
use corner features as additional landmarks for SLAM [26], [27].
On the other hand, the proposed method uses a forward-viewing
camera, which has much technical difficulties in feature extrac-
tion and tracking. Nevertheless, a forward-viewing method has
significant commercial advantages in that the same camera can
be used for obstacle avoidance, home monitoring, or as a user
interface.

Several studies have applied VP information to attitude esti-
mation and SLAM as is done in this study. These studies usually
used the orthogonal structure assumption. Huttunen and Robert
[28] proposed a monocular camera-based orientation estimation
method using the VPs. The method detects orthogonal VPs and
estimates the three-axis orientation of the camera by using the
assumption of structural regularity. Camposeco and Marc [29]
proposed a visual-inertial odometry method that used VPs to
reduce angular drift in camera pose estimations. The method
used direction of VP observations to update the orientation of
the camera and the directions of the VP. Zhou et al. [6] proposed
visual SLAM using building structure lines called StructSLAM.
In this method, the orthogonal structures and the directions of
VPs are used for parameterizing the line landmarks. Ji et al.
[30] proposed an RGB-D SLAM using VP and door plate in
an indoor environment. The method used VP and door plate as
landmarks to increase the stability of the SLAM process. Lee
et al. [31] proposed an algorithmic compass which uses VP to
estimate the heading information of a mobile robot in an indoor
environment. Zhang et al. [32] proposed a VP-based loop clo-
sure method in line-based mono-SLAM. The method used VP
to correct the heading angle and line landmark to correct poses.

In this study, we have utilized the VP to reduce the orientation
error by assuming the structural regularity of the indoor environ-
ment. In addition, line landmarks are aligned with the directions
of the VPs as in [6]. Unlike the previous studies, the robot poses
and landmarks are separately corrected during the local map
correction process. In order to implement this method, the esti-
mation model for the robot’s orientation, robot’s translation, and
landmarks are newly derived in a simple form. In addition, the
robot angle measurements which are directly calculated from
the VP are utilized in the local map correction method.

III. METHODOLOGY

In this work, the robot is assumed to move around the flat
ground. As sensory inputs, images captured from a forward-
viewing monocamera and odometry are used. The camera is
slightly tilted 8.7° upward to provide various consumer ser-
vices. The overall architecture of the proposed SLAM algorithm
is shown in Fig. 2. The proposed method runs three threads in
parallel as in [10] (i.e., tracking, mapping, and loop closing).
To avoid redundant computation, new images are only cap-

Fig. 2. Flowchart of the proposed SLAM algorithm.

tured when the robot moved more than a predefined distance or
rotated more than a predefined angle from the previous frame
based on the odometry data. The tracking thread extracts lines
and VPs and estimates the robot’s orientation from the VPs.
From the data association of lines, line landmark observations
are made, and the position of new landmarks are estimated. By
using the VP and line landmarks, the proposed method can be
made more robust for dynamic environments, because they are
not steadily extracted in moving people or objects. The mapping
thread creates new line landmarks using the estimated positions
in the tracking thread and inserts them in a map database. Af-
terward, local map correction is conducted on an active window
of selected frames. The loop-closing thread finds large loops
for every input frame. After a loop is detected, a pose graph is
optimized using relative pose constraints between frames.

A. Manhattan Frame and System Initialization

Most indoor environments can be abstracted as blocks that are
stacked together in three dominant directions, which are referred
to as a Manhattan grid [33]. This grid gives a natural reference
frame for the viewer. The advantage of adopting the Manhattan
world assumption is that both the robot’s orientation error and
the line landmark’s orientation error can be eliminated. Under
this assumption, the extracted VPs in the image plane correspond
to the three dominant directions of the Manhattan grid.

From the first pose of the robot, the world frame is set accord-
ing to the initial pose of the robot. At the system initialization
step, the orientation of the Manhattan frame with respect to the
world frame is estimated. To do this, the estimated angle of the
Manhattan frame with respect to the world frame is averaged
up to some predefined number. The initialization is conducted
only when the variance of the orientation of the Manhattan
frame with respect to the world frame is smaller than some
predefined angle. In the initialization step, the robot poses are
estimated using the odometry data only. The detailed method
for estimating the angle between the robot and the Manhattan
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Fig. 3. Examples of VP extraction results in a typical home environ-
ment. The images of the third row are failure cases (no visual information
when the robot moved under a sofa or the robot is too close to a wall).

frame is explained in the next section. Usually, typical indoor
environments can be modeled using one Manhattan frame, but
sometimes multiple Manhattan frames are required (known as
“Atlanta world”). The proposed method resolves this situation
by setting up several Manhattan frames. The additional Man-
hattan frame is configured when a dominant direction of the VP
is changed in a partitioned grid area.

B. VP-Based Robot Orientation Estimation

To extract a VP, we extract the line segments using the line
segment detector [34]. For a robust estimation of the VP, we
eliminate line segments with lengths less than 15 pixels because
short line segments tend to be noisy observations. Then, we ex-
tract the VP using the algorithm proposed by Zhang et al. [35].
Examples of VP extraction results in a typical home environ-
ment are illustrated in Fig. 3. The images shown in the third
row are failure cases when the robot moved under a sofa or the
robot is too close to a wall. Although the VP extraction fails in
these situations, the local map correction method automatically
handles the situation (detailed explanation in Section III-E). In
this study, VPs of horizontal lines in the image are used to esti-
mate the orientation between the robot and the Manhattan frame.
These VPs are reliable when there are several lines appearing
at the top of the image. Hence, images without any horizontal
lines at the top region of the image are skipped.

From the VP extraction, we obtain three dominant orthogonal
line direction vectors with respect to the camera frame. Then,
the three direction vectors are transformed with respect to the
robot frame. The robot rotates only with respect to its z-axis;
therefore, the orientation of the robot with respect to the Man-
hattan frame can be calculated using the estimated VP direction
vectors. First, from the three VP direction vectors, we find the
one VP whose direction is closest to the y-axis of the robot
frame. We call this Rvpy ′ , which is shown by a red arrow in
Fig. 4. The direction vector Rvpy ′ is parallel or orthogonal to
the Manhattan frame, which can be considered as a wall in front
of the robot. Second, we compute the robot’s orientation with
respect to the Manhattan frame structure by projecting the direc-
tion vector Rvpy ′ to the xy plane of the robot frame. Finally, we
calculate the robot’s orientation with respect to the world frame.

Fig. 4. Schematic diagram of the mobile robot coordinate system in a
Manhattan grid.

The angle between the Manhattan frame and the world frame is
known from the initialization; therefore, this angle is added to
the robot’s orientation in the Manhattan frame, resulting in the
robot’s orientation in the world frame.

C. Line Landmark Estimation

Considering the tilting angle θt of the camera, the camera
matrix for point projection can be expressed as follows:

P =

⎛
⎜⎝

fx 0 cx

0 fy cy

0 0 1

⎞
⎟⎠

·

⎛
⎜⎝
− sin θc cos θc 0 xc sin θc−yc cos θc

−ct cos θc −ct sin θc st ctxc cos θc +ctyc sin θc

st cos θc st sin θc ct −stxc cos θc−styc sin θc

⎞
⎟⎠

(1)

where (fx, fy ), (cx, cy ), (xc, yc), θc , st , and ct are focal length
of the camera, principal point of the camera in image domain,
the x–y position of the camera, the orientation of the camera,
sin θt , and cos θt , respectively. Using the camera matrix, the line
projection model can be expressed as follows [36]:

l̃ =

⎛
⎜⎝

l1

l2

l3

⎞
⎟⎠ =

⎛
⎜⎝

(p2T · ã) · (p3T · b̃) − (p2T · b̃)(p2T · ã)

(p3T · ã) · (p1T · b̃) − (p3T · b̃)(p1T · ã)

(p1T · ã) · (p2T · b̃) − (p1T · b̃)(p2T · ã)

⎞
⎟⎠

(2)

where l̃ is the projected line in an image plane, ã, b̃ ∈ R4 are
the two endpoints of the line, and piT is the ith row vector of
camera matrix P ∈ R3×4 . As landmarks for SLAM, three types
of line features are used in this work. These are composed of the
vertical line, the x-axis horizontal line, and the y-axis horizontal
line with respect to the Manhattan frame. To parameterize the
line landmarks, both endpoints are used. For the vertical line,
the endpoints ãv and b̃v can be expressed as follows:

ãv =
(
xv yv z1 1

)T and b̃v =
(
xv yv z2 1

)T
(3)
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where xv and yv are variables that we estimate during the
SLAM. Variables z1 and z2 are calculated using the pin-hole
camera model, and the observed line endpoints in the image
plane after xv and yv are estimated. For the x-axis horizontal
line, the endpoints ãhx and b̃hx can be expressed as follows:

ãhx =
(
x1 yhx zhx 1

)T and b̃hx =
(
x2 yhx zhx 1

)T
(4)

where yhx and zhx are variables that we estimate during the
SLAM. Similarly, the endpoints ãhy and b̃hy of the y-axis hor-
izontal line can be expressed as follows:

ãhy =
(
xhy y1 zhy 1

)T and b̃hy =
(
xhy y2 zhy 1

)T
(5)

where xhy and zhy are variables that we estimate during the
SLAM.

Using the line projection model of (2) and the previously
defined landmark parameterization from (3) to (5), the equation
for the position estimation of landmarks can be derived as a
simple linear model. The projection equation of a vertical line
is as follows:

(l1av,1 − l3av,2)xv + (l1bv,1 − l3bv,2)yv = (l3cv,1 − l1cv,2)
(6)

where

av,1 = P11P23 − P13P21

av,2 = P21P33 − P23P31

bv,1 = P12P23 − P13P22

bv,2 = P22P33 − P23P32

cv,1 = P24P33 − P23P34

cv,2 = P14P23 − P13P24 . (7)

Similarly, the projection equation of the x-axis horizontal line
is as follows:

(l2ahx,1 − l3ahx,2)yhx + (l2bhx,1 − l3bhx,2)zhx

= (l3chx,1 − l2chx,2) (8)

where

ahx,1 = P12P21 − P11P22

ahx,2 = P11P32 − P12P31

bhx,1 = P13P21 − P11P23

bhx,2 = P11P33 − P13P31

chx,1 = P11P34 − P14P31

chx,2 = P14P21 − P11P24 . (9)

Finally, the projection equation of the y-axis horizontal line
is as follows:

(l2ahy,1 − l3ahy,2)xhy + (l2bhy ,1 − l3bhy ,2)zhy

= (l3chy ,1 − l2chy ,2) (10)

where

ahy,1 = P11P22 − P12P21

ahy,2 = P12P31 − P11P32

bhy ,1 = P13P22 − P12P23

bhy ,2 = P12P33 − P13P32

chy ,1 = P12P34 − P14P32

chy ,2 = P14P22 − P12P24 . (11)

The position of the landmarks can be easily estimated from
the line matching results obtained from different locations of the
robot because (6), (8), and (10) are linear. For data association
of line features, the normalized image patch of size 11 × 11
pixels around the midpoint of the extracted line is used for
computational efficiency. When the same line is matched over
several images, the position of the line can be calculated using
the linear least-squares method.

D. Camera Position Estimation

From the extracted line landmark with a known position, the
camera position x = (xc y

c
)T can be estimated. These esti-

mates of the camera x–y positions are used in the local map
correction step in the mapping thread. Using the previously de-
fined landmark parameterization and the line projection model,
we can obtain the equations for estimating the camera position.
Using the vertical line projection, the camera position can be
expressed as follows:

(av · l1 − bv · l3)xc + (cv · l1 − dv · l3)yc = ev · l3 − fv · l1
(12)

where

av = fxfy st sin θc + fxcy ct sin θc − fy cx cos θc

bv = fy cos θc

cv = − fxfy st cos θc − fy cy ct cos θc − fy cx sin θc

dv = fy sin θc

ev = − fy (xv cos θc + yv sin θc)

fv = (fxfy styv + fxcy ctyv + fy cxxv ) cos θc

+ (fy cxyv − fxfy s2xv − fxcy ctxv ) sin θc . (13)

Similarly, using the x-axis horizontal line projection, the cam-
era position can be expressed as follows:

(ahx · l3 − bhx · l2)yc = chx · l2 − dhx · l3 (14)

where

ahx = fxst

bhx = fxfy ct − fxcy st

chx = (fxcy st − fxfy ct)yhx

+ (fxfy st sin θc + fxcy ct sin θc − fy cx cos θc)zhx

dhx = − fxstyhx − fxct sin θczhx . (15)
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Fig. 5. Flowchart of the proposed local map correction process.

Finally, using the y-axis horizontal line projection, the camera
position can be expressed as follows:

(ahy · l3 − bhy · l2)xc = chy · l2 − dhy · l3 (16)

where

ahy = − fxst

bhy = fxcy st − fxfy ct

chy = (fxfy ct − fxcy st)xhy − (fy cx cos θc

+ fxfy st cos θc + fxcy ct cos θc)zhy

dhy = fxstxhy + fxct cos θczhy . (17)

Using these three types of extracted line landmarks, the cam-
era position can be estimated using the linear least-squares
method.

E. Local Map Correction

The local map correction process corrects the estimates of
a bundle of camera poses and landmark positions. It is only
conducted for the recent N frames and the observed line land-
marks at the corresponding frames. When measurements from
the camera (i.e., robot orientation from the VP and robot x–y
position measurement) are not valid because of low-textured
areas, occlusions, or changing environments, the local map cor-
rection is skipped. Subsequently, when valid measurements are
available, local map correction is conducted, which includes
the skipped frames. The flowchart of the local map correction
process is shown in Fig. 5.

The motion-only bundle adjustment 1 corrects the camera
poses using the odometry measurements and the VP-based ori-
entation measurements obtained in the tracking thread. The cost
function to be minimized is formulated as follows:

E(xc,s , . . . ,xc,k ) =
∑

i

||(zo,i − (xc,i � xc,i−1))||2Σo d o

+
∑

i

Ri(zVP ,s,i − (θi − θs))
2 (18)

where xc,s ∈ R3 is the sth 2-D camera poses; xc,k ∈ R3 is the
current camera pose; zo,i ∈ R3 is the odometry measurements

which is the relative pose between the (i–1)th camera pose and
ith camera pose; � is the inverse pose composition operator;
zV P,s,i is the VP-based orientation measurements with respect
to the sth camera orientation; θi is the ith camera orientation
estimation; Σodo is the covariance matrix of odometry mea-
surement; and Ri is the covariance of VP-based orientation
measurement. The variable s indicates the start index of the lo-
cal map correction. The covariance of the VP-based orientation
is inversely proportional to the ratio of inliers in estimating the
VPs. The inverse pose composition operator is a relative trans-
formation between the two camera poses xi and xj defined as
follows:

zij = xi � xj =

⎡
⎢⎣

(xi − xj ) cos θj + (yi − yj ) sin θj

−(xi − xj ) sin θj + (yi − yj ) cos θj

θi − θj

⎤
⎥⎦ .

(19)

The Levenberg–Marquart algorithm using a g2o framework
[11] is executed to minimize (18). We can obtain the estimates
of the bundle of camera poses from the motion-only bundle ad-
justment 1 step; therefore, the accuracy of the corresponding
landmark position estimation can be improved. In this regard,
line position is reestimated using the method proposed in Sec-
tion III-C. The next step is to calculate the x–y position of
cameras using the method given in Section III-D followed by
the motion-only bundle adjustment 2. The cost function to be
minimized is formulated as follows:

E(xc,s , . . . ,xc,k ) =
∑

i

||(zo,i − (xc,i � xc,i−1))||2Σo d o

+
∑

i

Ri(zVP ,s,i − (θi − θs))
2

+
∑

i

||(zxy ,i − xxy ,i)||2Σx y
(20)

where zxy ,i ∈ R3 is the x–y position measurement at the ith
camera obtained from the line matching results, xxy ,i ∈ R3 is
the current estimation of the x–y position at ith camera, and∑

xy is the covariance matrix of the x–y position measurement.∑
xy is determined proportional to the inverse of the residual

error for estimating the x–y position. Finally, the line position is
again estimated using the method proposed in Section III-C.

F. Whole Image Descriptor-Based Loop Detection

The loop-closing thread finds large loops for every in-
put frame. The state-of-the-art SLAM methods usually adopt
the loop-detection technique based on bag-of-visual-words
(BoVW) [10], [25]. To convert an input image into BoVW rep-
resentations for loop detection, the system has to load a huge
vocabulary tree (e.g., 250-Mb memory for DBoW2 [37]). As
an alternative, the BRIEF-Gist [38] method is used in this work
considering the applicability to a low-cost embedded system.
To robustly detect the revisited place even under the viewpoint
change, we extract three BRIEF-Gist descriptors from a single
image, that is, the left 80% of the image, the right 80% of the
image, and the original image as in [39]. When comparing two
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Fig. 6. Blueprint of home environment and example images.

TABLE I
HOME DATASET CHARACTERISTICS

Fig. 7. Robot platform for acquiring home environment dataset.

images captured from the two places, three descriptors are com-
pared with one another. For fast comparison, we also adopt data
structure as proposed in [39].

G. Global Pose Correction

To close the loop, a pose graph optimization is performed after
the loop detection. Before the pose optimization, the relative
position is computed between the matched frame from the loop
detection and the current frame using the method proposed in
Section III-D. The pose graph optimization is conducted for

Fig. 8. Result of the proposed SLAM using home dataset 3 (dynamic).
Purple lines represent reconstructed line landmarks, and yellow line
represents the SLAM-based robot trajectory.

all poses between the matched frame from the loop detection
and the current frame. The cost function to be minimized is as
follows:

E(xmatched , . . . , xcurr) =
curr∑

i=matched

||(zincre,i−(xi � xi−1))||2Σin c r e

+ ||(zmatched,curr

− (xmatched � xcurr))||2ΣL D
(21)

where zincre,i ∈ R3 is the relative incremental pose of xi with
respect to the xi−1 frame, zmatched,curr ∈ R3 is the relative pose
of xcurr with respect to xmatched , Σincre is the covariance matrix
of the incremental pose estimation, and

∑
LD is the covariance

matrix of the relative pose from the loop detection. The covari-
ance matrices are determined proportional to the inverse of the
covisibility of line landmarks. In case, there is low covisibility
between incremental poses, we set the upper bound to determine
the covariance matrix. After the optimization, each map line is
transformed according to the correction of each corresponding
frame that observes it.

IV. EXPERIMENTS

Datasets-based experiments on a desktop computer and real-
time experiments on an embedded system are performed. Ex-
periments are conducted using the home datasets which we
acquired and the public RAWSEEDS benchmark dataset [4].
For real-time embedded experiments, the proposed algorithm
is implemented in NXP4330Q embedded board (NEXELL Co.,
Republic of Korea), and experiments are conducted in a home
environment. In our comparative experiments, we compare the
proposed method with three approaches as given below.

First, a two-dimensional (2-D) version of the ORB-SLAM
[10] method is implemented. There are several differences be-
tween the original ORB-SLAM and the implemented 2-D ver-
sion of ORB-SLAM. First, the camera poses are parameterized
in the 2-D space. Second, the odometry data are used to calculate
the initial pose of the robot in the tracking thread. The odometry
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Fig. 9. Estimated robot trajectories of various methods using the home dataset 3.

data are used as an edge in the local bundle adjustment step.
This algorithm is denoted as ORB-SLAM 2D in the following.

Second, the VP-based line SLAM with the standard bundle
adjustment method is implemented. The overall algorithm is
very similar to the proposed method. The line extraction, VP
extraction, data association, line parameterization, line observa-
tion model, line initialization, and loop closing methods are the
same as those in the proposed method. In the tracking thread,
the VP-based robot orientation estimation procedure is skipped.
In the mapping thread, the standard local bundle adjustment is
conducted. The cost function to be minimized is formulated as
follows:

E(xc,s , . . . , ll , . . .) =
∑

i

||(zo,i − (xi � xi−1))||2Σo d o

+
∑

i

∑
j

‖zi,j − h(xi , lj )‖2
Σlin e

(22)

where lj ∈ R3 is the position of the landmark, which is one
of the three lines (i.e., the vertical line, the x-axis horizontal
line, or the y-axis horizontal line); zi,j ∈ R3 is the measure-
ment of line landmark in the image plane; and h(·) is the line
projection model. This version of implementation is intended to
examine the effect of the proposed estimation method for VP-
based robot orientation and the local map correction method
compared with the standard optimization-based method. This
algorithm is denoted as VP standard BA in the following. Third,
the VP-based orientation correction method without any other
process is implemented. This version estimates VP-based robot
orientation only in the tracking thread and conducts motion-only
bundle adjustment 1 in the mapping thread with no loop-closing
thread. This version is intended to examine the performance
of the proposed VP-based orientation estimation method only.
This method is denoted as VP only in the following.

A. Home Dataset

Home datasets are acquired in a typical home environment,
as shown in Fig. 6. The robot explored the experimental en-
vironment in a trajectory greater than 400 m while collecting
images from a forward-viewing monocamera, along with the
robot odometry data. These steps are performed four times with
different conditions. The characteristics of each home datasets
are summarized in Table I. The sample images of the dy-
namic environment situations are illustrated in Figs. 1(c)–(g).
For our robotic platform, a robotic vacuum is used as shown in
Fig. 7. An upward-viewing monocamera is used for autonomous

Fig. 10. Examples of matched frames from loop closure in home
dataset 3.

navigation [27] while acquiring the datasets. As a path-planning
strategy, the Boustrophedon method [40] is used to cover the
whole environment, and ultrasonic sensors are used to avoid
obstacles. At the end of the drive, we manually returned the
robot to the starting point using the remote controller. Ideally,
the estimated final pose of the robot must be the origin, that
is, (0, 0, 0◦)T . We use the distance between the estimated final
position and the origin to quantitatively measure the accuracy
of the SLAM algorithm, and we call this error as a closed-loop
error.

The algorithms are tested on a desktop computer with Intel
Core i7-2600. Fig. 8 shows the result of the proposed SLAM
from the home dataset 3 (dynamic environment). Fig. 9 shows
the estimated robot trajectories for various methods for the home
dataset 3. For the ORB-SLAM 2D case, a large error drift oc-
curred. This is mainly due to the error drift in the low-textured
areas of the environment and the difficulty in feature tracking.
Furthermore, no large loop closure between the early stage and
the last stage occurred. The loop closure occurred only twice
between the 1035 frame and the 1206 frame, and between the
3060 frame and the 6320 frame. On the other hand, in the
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TABLE II
CLOSED-LOOP ERROR OF VARIOUS METHODS IN HOME DATASET

The best results are denoted in bold type.

TABLE III
TIMING RESULTS OF VARIOUS METHODS PER EACH THREADS

The best results are denoted in bold type.

proposed method, the loop closure occurred six times. The ex-
amples of the matched frames from the loop closure detection
are illustrated in Fig. 10. Clearly, the orientation estimation of
the proposed method is more accurate than that of the VP Stan-
dard BA method. The difference lies in the fact that the robot’s
orientation is corrected directly from the VP in the proposed
method. The robot’s orientation is corrected by extracting the
landmarks in the VP Standard BA method. Although the orien-
tation error in the line landmark estimation can be eliminated,
the accuracy of the VP Standard BA method reduces when the
extraction of the line landmark is limited in low-textured areas.
In case of VP only, the orientation error is effectively elimi-
nated, but the integrated translation error exists. Table II shows
the measured closed-loop error of the various methods for the
four home datasets. The proposed method shows the lowest
closed-loop error compared with other methods. Especially, the
average of the closed-loop errors of the proposed method is 6.1
times lower than that of the VP Standard BA method.

With respect to the computational speed, the average running
time for processing a single frame of each thread is measured
and summarized in Table III. The difference between the pro-
posed method and VP Standard BA is mainly in the mapping
thread. The proposed local map correction method is 3.6 times
faster than the standard bundle adjustment while showing better
accuracy. The ORB-SLAM 2-D shows the slowest result.

After finishing the SLAM, the total memory usages are mea-
sured. The average memory usages are summarized in Table
IV for the four methods. The memory usage for the VP-only

TABLE IV
AVERAGE MEMORY USAGE OF VARIOUS METHODS IN HOME DATASET

The best results are denoted in bold type.

TABLE V
ABSOLUTE POSITION ERROR OF VARIOUS METHODS IN

RAWSEEDS DATASET

The best results are denoted in bold type.

method is the lowest because it does not estimate the landmark.
For ORB-SLAM 2-D case, it requires more than 250 MB to
load the vocabulary tree at the start of the SLAM. In the ex-
periments, the ORB-SLAM 2-D method has reconstructed an
average of 25 892 point features, whereas the proposed method
has reconstructed an average of 1072 line features.

B. RAWSEEDS Benchmark Dataset

To evaluate the accuracy in large-scale indoor environments,
experiments are conducted using the RAWSEEDS benchmark
dataset (Biccoca25b) [4]. The dataset is collected in an office
building by a wheeled robot with multiple sensors, including
laser range finders, cameras, an inertial measurement unit, and
wheel encoders. The dataset also provides ground truth data of
the robot’s pose for evaluation. In this experiment, the image
sequences from the frontal camera and odometry data are used.
The dataset consists of 52 695 images, and the whole path is
approximately 774 m long. Even though this dataset contains
low-textured areas and dark corridors in some areas, it has suffi-
cient features in comparison with the home dataset. In addition,
the path contains several loops and revisited regions. Abso-
lute position errors for whole robot trajectories are compared
in Table V. The average of the absolute position error for the
whole trajectory of the proposed method ORB-SLAM 2-D, VP
Standard BA, and VP only are 0.71, 2.51, 0.88, and 2.43 m,
respectively. Interestingly, the VP-only method is quite accu-
rate with no effort required to execute complicated landmark
estimation procedures.

C. Embedded Real-Time SLAM in a Home Environment

The proposed SLAM algorithm is implemented in a low-cost
embedded board of NXP4330Q, which is equipped with a Cor-
tex A9 processor and a 512-MB memory. Fig. 11 illustrates
the robot platform equipped with the NXP4330Q board. The
proposed method is integrated in an autonomous robot navi-
gation system. When the robot explores the environment, the
obstacle grid map is constructed using the localization result
from the proposed SLAM and the detected obstacles from the
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Fig. 11. Robot platform equipped with NXP4330Q board for real-time
SLAM experiment.

Fig. 12. Generated obstacle grid map for autonomous navigation us-
ing the proposed SLAM on NXP4330Q board in a home environment
(sequence 3).

ultrasonic sensor. This obstacle grid map is used in path and
motion planning for autonomous robot navigation. The Bous-
trophedon method [40] is used for the path planning strategy.
All services, including data acquisition, the proposed SLAM,
navigation, and motion planning are simultaneously executed
in the NXP4330Q board in real time. Considering the limited
computational resources, images are captured when the robot is
moved more than 30 cm or rotated more than 30° compared with
the previous frame based on the odometry data. The driving and
rotation velocities of the mobile robot are 0.35 m/s and 30°/s,
respectively. At the end of the drive, we manually returned the
robot to the starting point along with the remote controller for
measuring the closed-loop error. Similar to the home dataset-
based experiments in the previous section, we have performed
real-time SLAM experiments four times. The scenarios of the
experiments are the same as those for acquiring home datasets.
Fig. 12 illustrates the generated obstacle grid map in the real-
time experiment sequence 3, which is a dynamic environment.
The yellow grid indicates the area where the robot has driven.
The blue and pink grids indicate the detected wall and obsta-
cle from the ultrasonic sensor, respectively. Compared with the
blueprint of the environment in Fig. 6, the map is accurately
built using the proposed method. Table VI shows the measured
closed-loop error of the real-time SLAM experiments for the
four sequences. The accuracy is similar to the dataset-based ex-
perimental results where the algorithm is executed in the desktop
PC. For the computation time, the average time for the embed-

TABLE VI
CLOSED-LOOP ERROR OF REAL-TIME SLAM EXPERIMENTS ON THE

EMBEDDED SYSTEM IN A HOME ENVIRONMENT

The best results are denoted in bold type.

ded processor to process one frame for tracking, mapping, and
loop-closing thread is 243.2, 211.8, and 138.1 ms, respectively.

V. CONCLUSION

This paper presented a new implementation method for effi-
cient SLAM for low-cost indoor service robots. The estimation
model for the robot’s orientation and translation were separately
derived in simple equations using VP and the line landmark, re-
spectively. Using these models, the camera poses and landmark
positions can be efficiently corrected by a local map correction
process. When the robot revisits the previously mapped areas,
a loop-detection procedure and a pose correction procedure are
performed to obtain more accurate SLAM results. The perfor-
mance of the proposed method was demonstrated under various
challenging environments, which contained low-textured areas,
moving people, and changing environments.

Although the proposed method was demonstrated using a pro-
duction home service robot in various environments, additional
studies may be necessary for actual implementation. First, we
plan to investigate the case where the three dominant directions
are not perpendicular to one another. Second, we also plan to
conduct research on the applicability of the developed method
to large-scale indoor environments such as hospitals, schools,
or museums.
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