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Abstract—Electric vehicles (EVs) with four individu-
ally controlled drivetrains are over-actuated systems, and
therefore, the total wheel torque and yaw moment demands
can be realized through an infinite number of feasible wheel
torque combinations. Hence, an energy-efficient torque dis-
tribution among the four drivetrains is crucial for reducing
the drivetrain power losses and extending driving range. In
this paper, the optimal torque distribution is formulated as
the solution of a parametric optimization problem, depend-
ing on the vehicle speed. An analytical solution is provided
for the case of equal drivetrains, under the experimentally
confirmed hypothesis that the drivetrain power losses are
strictly monotonically increasing with the torque demand.
The easily implementable and computationally fast wheel
torque distribution algorithm is validated by simulations
and experiments on an EV demonstrator, along driving
cycles and cornering maneuvers. The results show con-
siderable energy savings compared to alternative torque
distribution strategies.

Index Terms—Control allocation (CA), electric vehicle
(EV), experiments, power loss, torque distribution.

I. INTRODUCTION

NE of the main obstacles to the success of electric vehi-

cles (EVs) in the automotive market is their limited driv-
ing range. This issue is addressed by research in novel battery
technologies to increase energy density and, hence, to pro-
vide viable/lightweight high-capacity energy storage systems.
On the other hand, energy management systems are conceived
to improve vehicle efficiency through advanced control of the
drivetrains and ancillaries. In particular, EVs with multiple driv-
etrains allow the implementation of control functions, such as
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front-to-rear and left-to-right torque vectoring, which improve
active safety and drivability, and contribute to the attractiveness
of EV technology [1], [2]. Owing to the use of multiple motors,
an actuation redundancy is obtained, i.e., the desired vehicle
behavior corresponding to the driver’s inputs at the accelera-
tor/brake pedal and/or steering wheel can be realized through
an infinite number of feasible wheel torque distributions. For
the range of feasible torque distributions, this paper presents a
novel solution enhancing energy efficiency.

The two major sources of power loss in EVs are the
drivetrains and the tires. The drivetrain power losses include the
contributions of the drives, electric motors, and transmissions
(if present). Tire contributions relate to rolling resistance, lon-
gitudinal slip, and lateral slip, with the latter two being relevant
only at significant acceleration levels [3].

Prior research (e.g., [4]-[8]) indicates that the power losses
can be reduced by specific torque distribution algorithms,
also called control allocation (CA) strategies. For instance,
References [4] and [9] present CA strategies minimizing energy
dissipation due to tire slip. Although effective, the practical
implementation of these strategies requires some form of con-
tinuous estimation of the longitudinal and lateral slip velocities
of each tire, which is beyond the capability of existing state esti-
mators in normal driving conditions. In [5]-[7] and [10]-[12],
the reduction of energy dissipations within the electric motor
drives is examined. The presented strategies are mainly based
on experimentally measured efficiency maps of electric motors.
In particular, Reference [5] carries out an offline calculation of
the optimal wheel torques, but without analyzing the resulting
wheel torque distribution as a function of the input parameters,
i.e., wheel torque demand and vehicle speed. The results in [5]
imply that the optimal solution is either to only use a single
axle or to evenly distribute the torque among the front and rear
drives of the EV. Moreover, the CA strategies in [6], [12], and
[13] are shown to be more efficient than the simple even torque
distribution among the front and rear axles. However, the influ-
ence of vehicle speed (V') on the optimal solution is not directly
taken into account. The effect of speed variation is investigated
in [7], but it is not formulated. Reference [10] discusses the
change in the optimal distribution ratio as a function of lon-
gitudinal acceleration. The problem formulation is novel with
results indicating small variations in the optimal distribution
ratio over the achievable acceleration range. According to the
results in [10], the vehicle never operates in the “single-axle”
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Fig. 1. Vehicle dynamics control structure.

mode, which is shown in [5] and [8] to be the optimal solution
for small torque demands. Moreover, Reference [10] only con-
siders straight-line driving. Reference [11] presents a CA strat-
egy thatis based on a simplified piecewise-linear efficiency map
of the brushless dc motors. An algorithm, based on Karush—
Kuhn-Tucker (KKT) conditions of optimality, finds global
solutions of the CA problem for non-monotonically increas-
ing drivetrain power loss curves. The corresponding nonconvex
optimization problem is translated into a number of equiva-
lent eigenvalue problems. References [14] and [15] propose
high-level controllers aimed at achieving the reference corner-
ing response, coupled with CA algorithms to improve vehicle
stability (e.g., based on tire workload reduction). However,
Reference [4] shows that such strategies can be far from optimal
in terms of energy efficiency.

In summary, an extensive literature deals with the subject
of CA strategies for four-wheel-drive EVs. Many of the pro-
posed algorithms are designed for reduced tire slip variance
among the wheels. The papers dealing with drivetrain energy
efficiency either do not discuss the resultant wheel torque dis-
tribution maps or they present very complicated algorithms
(such as multiparametric nonconvex optimization [16], [17]),
which are unlikely to be directly implemented on production
vehicles. As a consequence, there is a clear need for simple,
computationally efficient, easily tunable, and effective solutions
of the CA problem aimed at drivetrain energy efficiency. The
gap is addressed by this paper, including the following novel
contributions:

1) the analytical solution of the CA problem maximizing
energy efficiency, under the hypothesis of strictly mono-
tonically increasing drivetrain power losses with wheel
torque demand. The optimal solution, obtained for the
case of equal drivetrains, is parameterized as a function
of V;

2) a fast and easily implementable torque distribution
strategy maximizing energy efficiency, based on the pro-
posed analytical solution in 1);

3) the simulation-based and experimental validation of the
energy benefits of the CA algorithm in cornering condi-
tions and along driving cycles.

This paper is organized as follows. Section II formulates
the energy-efficient CA problem as a multiparametric noncon-
vex optimization. Section III provides the theoretical back-
ground required to design the proposed fast CA for EVs.
The performance of the CA strategy is verified in Section IV
through computer simulations with a vehicle dynamics
model and experiments on an electric Range Rover Evoque

demonstrator vehicle. Finally, conclusions are provided in
Section V.

Il. PROBLEM STATEMENT AND FORMULATION
A. Problem Statement

Fig. 1 shows the simplified vehicle control structure. The
reference generator outputs the reference yaw rate 7, and trac-
tion/braking force Fi, e.g., starting from the steering wheel
angle (), accelerator and brake pedal positions (respectively,
APP and BPP), and longitudinal vehicle speed and acceleration
(respectively, V' and a,). The high-level controller calculates
the corrected longitudinal force reference ﬁ}ef (i.e., Frer from
the reference generator is reduced in extreme cornering con-
ditions) and the yaw moment reference A M, e.g., based on
the combination of feedforward and feedback control of vehicle
yaw rate 7.

The proposed CA strategy must minimize the drivetrain
power loss while maintaining Fje; (each drivetrain can operate
in either traction or regeneration) and A M. As the drivetrain
power losses are functions of V, the CA strategy includes V" as
a parameter.

The CA problem is formulated as a static optimization or
quasi-dynamic optimization [18]-[20] to be solved at each time
step for the values of Fref and A M, calculated by the high-
level controller, and the estimated V' (Fig. 1). The CA strategy
could be integrated into the high-level controller, thus giving
origin to a single multiple-input multiple-output controller. On
the other hand, the separation among the high-level controller
and the CA strategy (Fig. 1) has advantages, such as ease of
considering actuator limitations [21] and flexibility with respect
to the drivetrain configuration. The following section will for-
mulate the CA problem mathematically, under Assumptions 1
and 2.

Assumption 1: The case study EV includes four identical
electric drivetrains with equal power loss characteristics; i.e.,
the electric machines and their power electronics, single-speed
gearboxes, constant-velocity joints, and wheels are the same on
each vehicle corner.

Assumption 2: The drivetrain power loss characteristic on
each vehicle corner Pioss (7w, V'), is positive and strictly mono-
tonically increasing as a function of wheel torque demand 7.
This means that P (7, V) > 0and OPoss (T, V') /0Ty > 0.

The results presented in the next paragraph can also be
applied (with specific rearrangements) to the simplified case of
a four-wheel-drive EV with a single drivetrain per axle.
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B. Mathematical Formulation

The proposed optimal CA problem for small steering angles
is formulated as follows:

{rw} (Frr, AMres, V)

=arg min J (Twi,thwi,g’V)

Tw; ¢ Tw; g

4
E [sign Twm Py (Twi,t,V)

— sign (Twi,g) P, (Twiﬁg, V)}

4
s.t. Z (Twis = Twiy) = FR
i=1
dy (7’102,,5 + Twy, — Twie — Tw27g>
+d, (Twu + Tws.y = Tws, — Tww) =AM R
0 <V < Vinax
0 < 7w,y < Tw,max,it
0 < 7w, , < Twmaxiyg
Twi Tw; , = 037 =1, 2,3,4 (D)

In the notation of this paper, {7, }" is the vector with the
optimal values of the torques, which has different dimensions
depending on the specific formulations of the optimization
problem presented in this paper. 7, , and 7, , are the trac-
tion and regeneration torque demands at the different wheels
(numbered as in Fig. 1). R is the tire radius. dy and d, are
the front and rear half-tracks. T, max,i,t and Ty max,i,g are the
minimum values between the torque available at the drivetrain
in traction, T, max,¢ (V'), or regeneration, 7. max,q (V'), and the
transmissible torque at the tire-road contact, u,. [, ; I, being
1 the estimated tire-road friction coefficient (in longitudinal
direction) and F’, ; the estimated vertical load at the wheel i.
The first and second constraints in (1) have a clear physical
meaning in terms of vehicle dynamics: they require that the
torques applied to the wheels generate, respectively, the cor-
rected longitudinal force reference Fref, and the reference yaw
moment AM.g, of the torque-vectoring controller. AM.¢ is
actuated through different wheel torques on the two sides of
the vehicle.

In the hypothesis of low load transfers, (1) has three param-
eters: 1) F,ef; 2) AM.; and 3) V. The problem is nonconvex
due to the complementarity constraints and nonconvexities in
the power loss characteristics of the electric machines and
mechanical transmission systems. The complementarity con-
straints T, , 7w, , = 0 specify that at each instant, each wheel
can only operate in traction or regeneration. For the same rea-
son, the sign function in (1) allows to take only either P; ; or
P; 4 (note that sign (0) = 0). P,; and P, , are, respectively,
the drawn and regenerated electrical powers at the wheel ¢,
given by

v +-Plosst (Twltav);i = 1,2,3,4

Pzt TwltR

P,

\% .
g = Twi,gﬁ — Bloss,g (Twi,g; V)7 1=1,2,3,4 )

where the first term on the right-hand side is the mechanical
power at the wheel and the second term is the power loss.
The power losses of all vehicle corners are modeled with the
same functions Pl ¢/, (the subscripts indicate traction and
regeneration, respectively) obtained by fitting the experimental
measurements on the drivetrains to a mathematical expression
(Assumption 1). In general, the power loss characteristics are
different from zero at zero wheel torque demand. This is the
reason for the sign function in (1).

By replacing (2) into the cost function J (Twi‘t s Tw; g5 V) of
(1), J is reformulated as

Frsz
4
Z (Twi,t - Twi,g)
=1

4
+ Z sign Twl t Hoss t (Twl ) V)
=1

J (Twi)t,Twi)g,V) =

o<

+ sign (1w, , ) Poss.g (Tws,, V)] 3)

where the first term on the right-hand side is the overall
mechanical power at the wheels and the second term is the
overall power loss.

The term (V/R) F,tR is constant for given values of the
parameters. Hence, the cost function can be reduced to

4
J (Twi,taTwi,gav) = Z[Sign (Twi,t) Ploss,t (Twi,uv)
i=1

+ Slgn (Twi,g) PlOSS,g (Twi,g7 V)} (4)

Equation (4) assumes that the vehicle operates with limited
yaw rate and limited relative slip among the wheels, which
means that V' can be used as the speed of each vehicle corner.

In summary, (1) is a multiparametric nonlinear program-
ming (mp-NLP) problem [22], [23], with the following general
formulation:

z(0) = grgréng(x 0)

s.t. G(x,0) <0; H(z,0)= 0cO Q)
ﬁ}ef; AMrefa 14

and H represent the inequality and equality constraints.

T
where 6 = { is the parameter vector, and G

Il. CONTROLLER DESIGN

Lemma 1: Problem (1) has only one solution for each side
of the vehicle, assuming d = dy = d,:

- AN,
T, =05 (Fref - ef) R

AM, ref
d

* » =05 (Fref+ R

1 < Tw,max,l,t>
S Tw,max,r,t (6)

—Tw,max,l,g < T

—Tw,max,r,g < Tw,r
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where 7 ; and 7, ,. are, respectively, the optimal wheel torque
demands of the left- and right-hand sides of the vehicle, with
Tw,max,l,t/g — Tw,max,1,t/g + Tw,max,3,t/g and Tw,max,rt/g =
Tw,max,2,t/g T Tw,max,4,t/g (the subscripts ‘¢’ and ‘g’ indicate
traction and regeneration, respectively).

Proof: From the vehicle schematic in Fig. |

Tw,l = Twq 4 + Tws, — Twy,g = Tws,g
Tw,r = Twz,t + Tw4,t - ng,g - Tw4,g (7)

where 7, ; and 7, ,- are, respectively, the wheel torque demands
of the left- and right-hand sides of the vehicle.
By replacing (4) and (7) into (1), (1) becomes

(1w} (Ff AMs, V)

=arg min J(Tw,l77-u1.,7“vv)

Tw,l,Tw,r

= Plossl (Tw,h V) + BOSST (Tw,ra V)

s.t. Tw,l + Tw,r = EefR
AM R
Tw,r — Tw,l = 2d

0 <V < Vinax

— Tw,max,l,g < Tw,l < Tw,max,l,t}

- Tw,max,r,g S Tw,r S 7-w,max,r,t (8)

where P, and g, are the power losses of the drivetrains on
the left and right vehicle sides. The complementarity conditions
Tw; +Tw;,, = 0 are no longer present in (8) as they are inter-
nal conditions for the left- and right-hand sides; this implies
that 7,,; and 7, can only vary between —7y, max,i/rg and
Tw,max,l/r,t (the subscripts ‘I” and ‘r’ indicate left and right,
respectively). Problem (8) has a unique solution, as in (6), due
to the two equality constraints for the decision variables 7,
and 7, ,. The solution is fixed and independent of the cost
function. ]

Remark 1: The solutions for the left- and right-hand sides of
the vehicle are independent of V' and only depend on Flef and
A]\4ref-

Remark 2: The reference values of the total longitudinal
force and yaw moment are restricted, in first approximation,
by the maximum and minimum torques of the electric motors
(which depend on V') and, in second approximation, by the
estimated tire-road friction coefficient.

Remark 3: As mentioned before, because of the two equality
constraints with two decision variables in the main problem, a
unique analytical feasible solution exists. To consider torque
rate constraints, these two equality constraints need to be
relaxed or transferred to the cost function to make the problem
feasible.

Lemma 2: If Assumptions 1 and 2 hold, the optimal torque
distributions for the left- or right-hand sides of the vehicle make
both front and rear motors work in either traction or regenera-
tion (including the case that one motor is switched off and only
one motor is producing torque).

Proof: Lemma 1 proves that (1) can be simplified to an
optimal torque distribution problem for each side of the vehi-
cle. The optimal torque distribution of the left-hand side of the

vehicle for the case of traction, i.e., 7, ; > 0, is the solution of
the following problem:

{Tw}* (7—:;717 V)

= arg min

Tu g Tuwg g Twy g Twg g
+ sign (Tws., ) Posst (Tws.e> V)
+sign (Tun,) Py, o (Twr g0 V)
+ sign (Tw,,, ) Ploss,g (Tws 4+ V)

_ *
S.t. Tw; 4 + Tws,, ~Twi,g ~Tws g = Tw,l

sign (Twl,t) -Ploss,t (T’wl,t’v)

Twi e Twig = 0;1 € {L 3}
0< Tw; < Tw,max,i,t}

0 S Tw,i,y S Tw,max,i,g (9)

The same problem is defined for the right-hand side of the
vehicle or for the regeneration case, i.e., 7, ; < 0. Expanding
the complementarity constraint of (9), the optimal solu-
tion of (9) is the best solution among the following four
problems:

{TIU}* (T;J,b V)
= arg - min —Ploss,t/g (Twl 5 V) + IDloss,t/g (ngu V)
w1 Tws

— * .

Tw, T Tws = Tw,ls OF
— * .

—Tw; = Twy = Ty > OF

— *
Twy = Twg = Ty 15 OT

_ *
—Tw, + Tw; = Tl

0 S Tw; S Tw,max,i,t OF

0 < 7w, < Tw,max,i,g;t € {1,3} (10)
where 7,,, and 7,, are the torques at the left front and left
rear wheels, i.e., Ty, = Ty,, In traction or Ty, = Ty, , in
regeneration. T, + Ty, = T, ; and —T,,, — Ty, = T, ; T€Pre-
sent the pure traction and regeneration cases, while 7, —

Tws = Tayy and —Ty, + Ty, = 7., ; are the cases in which
one of the wheels is in traction and the other one in
regeneration.

The resulting value of the cost function in (10) is
smaller without regeneration, as P 1S positive and strictly
monotonically increasing, i.e., Poss > 0 and 0Pgss/07, > 0
(Assumption 2). Any regeneration increases the absolute value
of the traction torque and, therefore, according to (2), increases
the total power loss. As a result, the conditions 7,,, — Ty, =
Topq and =Ty, + Ty = 7, ; are not optimal cases and, depend-
ing on the sign of 7, ;, both wheels on the same side must work
in either traction or fegeneration. |

Theorem 1: Suppose that Assumptions 1 and 2 hold,
Poss (7o) has the shape indicated in Fig. 2 (with a nonconvex
region followed by a convex region, i.e., with a single saddle
point) and there are no torque rate constraints; then, for each
side of the vehicle:

a) single axle is the optimal solution for small values of the

torque demand;

b) even distribution is the optimal solution for large values

of the torque demand;
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Fig. 2. Geometrical interpretation of Theorem 1, indicating the optimal
switching point on the drivetrain power loss characteristic.

c¢) the optimal switching point between solutions 1) and 2) at
vehicle speed V' can be calculated as the solution of

}_)loss,t/g (TSW; V) + Hoss,t/g(o, V) = 2}Dloss,t/g (0~57—swa V)
(11)

where Ty, is the switching torque.

Proof: Lemma 2 proves that the optimal torque distribu-
tion of the left-hand side of the vehicle with 7'{‘;) ; > 0 is the
solution of the following problem:

{ru}" (TJ,J,V) =arg min J (7w, Tws, V)

TwysTwsg
= Ploss,t (Twl y V) + ]Dlossﬂt (TUJ37 V)
St Ty + Tws = T{Z’l (12)

A

0 S Tw; > Tw,max,i,t;i € {13 3}

By approximating the cost function of (12) around 7,0 =
7 /2, which is the solution of the even distribution strategy,
the Taylor series is

~

I (Twy s Twss V) =
Ploss,t (Tw,07 V) + vTwPloss,t (Tw,07 V) (Twl _Tw,O)

1
+ §V2“,T“, ]Dloss,t (Tw,07 V) (Twl 77—1”70)2

+ -Ploss,t (Tw,Oa V) + v‘rw Zjloss,t (Tw,O, V) (ngfTw,O)

1_, 2
+ ivaTw 131055775 (T’w,07 V) (TIU3_7-'w,O) (13)
Since T, + Ty = T,y ; 1S @ constant value, if 7, (or 7,,)
deviates from 7, ¢ by the amount ¢, then 7,, (or 7,,) must
deviate from 7, o by the same amount but in opposite direction
(14)

Tw, = Tw,0 + g; Tws = Tw,0 — €

By substituting (14) into (13), the Taylor series approxima-
tion in (13) is reformulated as

J (E, V) = 2Ploss,t (Tw,O, V) + v72—w7—w Ploss,t (Tw,Oa V) 52

S.t. — Tw,0 <e< Tw,0 (15)

2Pioss (Tw,0, V') is the power loss of the even distribution

case. Therefore, for Pos > 0, the following holds:
1) If the Hessian of P is negative, i.e., Floss 1S nonconvex
at 7y, 0, then J (&, V) < 2P (Tw,0, V') and, therefore,

the even distribution is the worst strategy. In this case,
the minimum value of the cost function is achieved with
the biggest offset from 7, . From Lemma 2 (see also
Fig. 2), the biggest offset is for the case |¢| = 7,0, and
therefore, 7, or 7,,, must be zero, which is equivalent to
the single-axle strategy a);

2) If the Hessian of Py, is positive or zero at 7y, o, 1.€., Plogs
is convex at 7, o, then J (¢, V') > 2Pjos (Tuw,0, V'), Which
means that the even distribution (¢ = 0) is the optimal
solution. Fig. 2 shows that Pl is typically convex for
large torque demands, and therefore, 2) is proven.

A switching torque T, between these two strategies can be
found, i.e., a torque value exists at which the power loss of the
even distribution strategy 2P (0.57sw, V'), is equal to the one
of the single-axle strategy Plogs (Tsw, V') + Poss (0, V). [ |

Fig. 2 represents a geometrical interpretation of the switching
torque Ty,. It shows that the single-axle strategy is the opti-
mal one up to the point at which Plogs (T, V) — Plogs (0, V) =
Pioss (270, V') — Ploss (Tw, V). The left- and right-hand sides of
the inequality are, respectively, the power loss saving by switch-
ing off one of the drivetrains (i.e., 7,,,1/3 = 0), and the power
loss increases by the other drivetrain, when switching from even
distribution to single axle. If Assumption 2) holds, these two
terms become equal at the switching torque 7y .

Remark 4: Based on Theorem 1, the optimal distribution
strategy for 7 , > 0 is as follows:

. . _ T;],l, 7';;7[ < Tow (V)
Ton (e V) = {0_57;17 o1 > Tow (V)
. . _ 0, 7';, 1 < Tow (V)
Tw,3 (Twﬁl’ V) - { 0.57';:_’17 T;,,l > Tsw (V) (16)

where 7, , and 7, 5 are, respectively, the optimal torque
demands of the front and rear wheels of the left-hand side of
the vehicle. In the single-axle strategy, the front motors are
selected (instead of the rear motors) for safety reasons; in fact,
in limited conditions, it is preferable to have understeer rather
than oversteer.

The equivalent right-hand side torques are calculated with
the same approach. In the practical implementation of the
controller, a sigmoid function is used to approximate the dis-
continuity of (16), to prevent drivability issues deriving from
the fast variation in the torque demands.

Remark 5: 14, depends on the value of V. Since the problem
is parametric, the solution is parametric as well. In practice, V'
can be estimated with a suitable Kalman filter using the four
wheel speeds and the longitudinal acceleration of the vehicle.
References [24] and [25] describe methods for vehicle speed
estimation.

Remark 6: If P (7y) is convex (i.e., without the saddle
point in Fig. 2), then the even distribution is the optimal solution
for any torque demand.

Remark 7: If (13) is not a good approximation of
J (Twy» Tws» V'), the even-order derivatives of Ploss i (Tw, V)
with respect to 7,, must either be zero or have the same
sign for a given value of 7,,. For example, this is the case if
Pioss.t (T, V') is a cubic polynomial. The experimental power
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Fig. 3. Range Rover Evoque setup on the rolling road facility at Flanders
MAKE (Belgium).

TABLE |
MAIN VEHICLE PARAMETERS

Symbol Name and dimension Value
2 Wheelbase (m) 2.665
Tgb Gearbox ratio (—) 10.56
R Wheel radius (m) 0.364
d Half-track (m) 0.808
- Number of motors per axle (—) 2
Ve High-voltage dc bus level (V) 600
Tn Motor nominal torque (Nm) 80
P, Motor nominal power (kW) 35
B, Motor peak power (kW) 75

loss characteristics reported in Section IV are well interpolated
by a cubic polynomial.

Remark 8: The developed CA strategy is overruled in two

cases:

1) In the case of wheel torque saturation (see Section II-B),
the torque demand beyond the limit is transferred to the
other wheel on the same side until saturation is reached as
well;

2) For significant braking, an electronic braking distribution
(EBD) strategy intervenes to maintain the correct relative
slip ratio among the tires of the front and rear axles.

IV. RESULTS
A. Experiments

1) Experimental System Setup: Fig. 3 shows the
experimental setup for the validation of the developed torque
distribution strategy. The vehicle demonstrator is an electric
Range Rover Evoque with four identical on-board switched
reluctance motors, connected to the wheels through single-
speed transmissions, constant-velocity joints, and half-shafts.
Table I reports the main vehicle parameters.

A dSPACE AutoBox system is used for running all con-
trollers (Fig. 1), including the reference generator, the high-
level controller (as in [26]), and the CA algorithm. The elec-
trical power is provided by an external supply (visible in the
background of Fig. 3), which is connected in parallel with
the battery pack. Therefore, the high-voltage dc bus level is
maintained steady around 600 V.
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0 100

Fig. 4. Power losses of a single drivetrain, measured on the rolling road
facility.

The tests were conducted using a MAHA rolling road facility
(located at Flanders MAKE, Belgium) allowing speed and
torque control modes of the rollers. In the speed control mode,
the roller speeds are constantly kept at the specified set value
irrespective of variations in the actual wheel torques. The
torque demand at each wheel is assigned manually through
the dSPACE interface, and therefore, the vehicle can be tested
for any assigned achievable torque demand and speed. The rig
includes the measurement of the longitudinal force and speed
of the rollers, and thus, allows the evaluation of the over-
all drivetrain efficiency, i.e., from the electrical power at the
inverters to the mechanical power at the rollers during trac-
tion (opposite flow in the case of regeneration). In the torque
control mode, the roller bench applies a torque to the rollers,
which emulates tire rolling resistance, aerodynamic drag, and
vehicle inertia. Therefore, the torque control mode is used for
driving cycle testing. The vehicle follows the reference velocity
profile of the specific driving schedule through a velocity tra-
jectory tracker (i.e., a model of the human driver) implemented
on the dSPACE system as the combination of a feedforward and
feedback controller, providing a wheel torque demand output.

2) Drivetrain Power Loss Measurement: The experi-
mental drivetrain power loss characteristics of the case study
EV are reported in Fig. 4 for a number of vehicle speeds.
The power loss curves are plotted in terms of the actual wheel
torque. The first point of each curve corresponds to the case
of zero wheel torque demand, resulting in nonzero power loss
mainly due to tire rolling resistance; conversely, the actual
wheel torque is zero when the torque supplied by the drivetrain
compensates rolling resistance.

Fig. 4 shows that the drivetrain power loss characteristics
are positive and strictly monotonically increasing functions of
wheel torque, hence confirming Assumption 2). The curves are
nonconvex for low wheel torques and become convex for large
torque values. Therefore, Theorem 1 is applicable to the design
of an energy-efficient CA algorithm for the electric Range
Rover Evoque demonstrator. Fig. 5 reports the measured effi-
ciencies of each side of the EV demonstrator in terms of the
front-to-total torque ratio, for different values of V' and side
torque demands. The relative slip among the wheels does not
change significantly for the different combinations of speeds,
torque demands, and front-to-total torque ratios. Due to the
nonconvexity of the power loss at low torque demands, the
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Fig. 5. Measured drivetrain efficiencies as a function of the front-to-total
torque ratio, for different side torques at vehicle speeds of: (a) 40 km/h,
(b) 65 km/h, (c) 90 km/h, and (d) 115 km/h.

efficiency is higher for torque ratios of 0 or 1, i.e., for the single-
axle strategy. In contrast, an even distribution (corresponding to
the torque ratio of 0.5) is the optimal solution for high torque
demands. As a result, the optimal torque distribution on each
side of the vehicle is achieved by switching between the sin-
gle axle and even distribution strategies depending on torque
demand and vehicle speed.

3) Switching Torque Calculation: Based on the measured
power loss curves in Fig. 4, the switching torque Ty, is cal-
culated using Theorem 1 and (11). The power loss curve at
each vehicle speed is piecewise linearly interpolated to con-
struct Plogs (Tw, V). The method assumes that the tire rolling
resistance power losses are equal at each vehicle corner, which
is a reasonable approximation in normal driving conditions with
low values of the load transfers (which directly affect tire power
losses). The longitudinal slip power losses are included in the
rolling road measurement. The method assumes that the slip
ratios are similar to those measured on the rolling road, which is
also a reasonable approximation in normal driving conditions.
Knowing Ploss (Tw, V'), (11) is solved offline with an exhaus-
tive search method to calculate 7. Fig. 6 shows the calculated
Tew ON each side of the vehicle for different V. The values
were stored as a look-up table in the controller running on the
dSPACE system. In terms of implementation on the vehicle, the
developed procedure is fast, i.e., it can easily be run in real time
on hardware with low-computational processing power.

4) Driving Cycle Tests: To assess the energy efficiency
benefits of the developed CA strategy in straight-line condi-
tions, three different driving cycles were performed with the
vehicle demonstrator on the rolling road. The driving cycles are
the New European Driving Cycle (NEDC), the Artemis Road
driving cycle, and the Extra Urban Driving Cycle (EUDC) with
the hypothesis of a constant 8% (uphill) slope of the road.

Vehicle speed (km/h)

Fig. 6. Switching torque (7sw) for each side of the vehicle as a function
of V.

TABLE Il
ENERGY CONSUMPTION OVER DIFFERENT DRIVING CYCLES

1 0,
Energy consumptions (kWh) CA improvements (%)

Driving with respect to
cycle Single- Even With Single- Even
axle distribution CA axle distribution
NEDC 2.921 3.059 2918 0.1 4.6
Artemis- 4.487 4.634 4442 1.0 41
road
0,
EUDC8% 5 93 5.740 5.709 15 0.5
slope

The energy consumption of the vehicle with the CA strategy
was measured and compared with the ones for the fixed sin-
gle axle and even distribution strategies. Table II shows the
measurement results, which indicate energy savings of up to
~ 5% for the developed CA algorithm, depending on the driv-
ing cycle. Interestingly, the NEDC and Artemis Road favor
the single-axle strategy over the even distribution because of
the relatively low wheel torque demand. This trend is reversed
with the EUDC with 8% slope, as it is a more aggressive cycle
with mostly high torque demands. The fact that for some condi-
tions, the specific vehicle is more efficient with the single-axle
strategy is caused by the significant values of the peak power
and torque of its electric drivetrains, which work at very low
demands during conventional driving cycles.

The operation of the developed torque distribution algorithm
over a segment of a driving cycle is investigated in Fig. 7,
which confirms the validity of the CA strategy. For instance,
between 305 and 309 s, when the vehicle speed is ~117 km/h,
the side torque demand is ~215 Nm, i.e., less than the calcu-
lated switching torque of 280 Nm in Fig. 6, and therefore the
single-axle strategy is the optimal solution, as in Fig. 7(a).

B. Simulations

To examine the performance of the CA torque distribution
strategy in cornering conditions, ramp steer simulations with
a validated CarMaker/Simulink vehicle model (see details in
[26]) were performed. For the simulations, the vehicle was
accelerated to V' = 110 km/h and then a constant steering wheel
rate of 3°/s and up to 100° was applied.

Fig. 8 depicts the simulated longitudinal wheel forces as
functions of lateral acceleration a,,, according to the developed
CA strategy. The single-axle strategy is the solution for both
sides of the vehicle for lateral accelerations below 2.6 m/s%,
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Fig. 8. Longitudinal wheel forces, simulated during the ramp steer
maneuver at 100 km/h with the developed CA strategy. The outer and
inner sides switch from single axle to even distribution, respectively, at
ay of 2.6 and 7.8 m/s.

Fora, > 7.8 m/sQ, the solution for both sides is the even distri-
bution. Between the two a, values, the switching between the
strategies is dependent on the side of the vehicle — namely, with
the increasing a,, the outer side of the vehicle switches earlier
to even distribution due to the yaw moment and its contribu-
tion to the longitudinal forces in (6). This happens because the
specific high-level controller setup (see Section II-A) applies a
yaw moment which reduces vehicle understeer, i.e., the torque
demand (the parameter on which the switching is actually
based) on the outer side of the car is higher than on the inner
side. Therefore, when the lateral acceleration is between 2.6 and
7.8 m/s?, the torque demand is distributed equally between the
front and rear wheels on the outer side and is applied only to
the front wheel on the inner side of the vehicle. In other words,
three motors are simultaneously active.

Fig. 9 shows the total vehicle power loss (excluding the
aerodynamic losses) simulated for the three different torque
distribution strategies: 1) even distribution; 2) single axle; and
3) the developed CA strategy. As with the experimental tests,
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Fig. 9. Total drivetrain power losses (including tire power losses) simu-
lated during the ramp steer maneuver for even distribution, single axle,
and the developed CA strategy.

the CA strategy reduces the drivetrain power losses here by
up to 10% and 8% compared to the even distribution and
single-axle strategies. The biggest improvements are achieved
at very low and very high lateral accelerations where, respec-
tively, the single-axle strategy and the even distribution strategy
are the optimal solutions (see also Fig. 6). For lateral accel-
erations between 2.6 and 7.8 m/s2, when the optimal solution
for the outer and inner vehicle sides are different (Fig. 8),
the developed CA strategy reduces the power loss by ~ 2.4%
(Fig. 9).

V. CONCLUSION

The presented research work allows the following conclu-
sions, essential for the design of a fast, energy-efficient, and
easily implementable torque allocation algorithm for four-
wheel-drive EVs with equal drivetrains on the front and rear
axles.

1) For relatively small values of steering wheel angle, the
CA problem of a four-wheel-drive EV with multiple
motors can be independently solved for the left- and
right-hand sides of the vehicle.

2) If the power loss characteristics of the electric drivetrains
are strictly monotonically increasing functions of the
torque demand, the minimum consumption is achieved
using a single motor on each side of the vehicle up to a
torque demand threshold, and an even torque distribution
among the front and rear motors above such threshold.

3) An analytical formula is proposed for the computation
of the torque demand threshold, which is a function
of vehicle speed, based on the drivetrain power loss
characteristic.

4) The developed strategy is easily implementable as a
small-sized look-up table in the main control unit of
the vehicle, allowing real-time operation with minimum
demand on the processing hardware.

5) The experimental analysis of the case study drivetrain
efficiency characteristics as functions of the front-to-total
wheel torque distribution confirms the validity of the pro-
posed CA algorithm at different vehicle velocities and
torque demands, i.e., at low torques, the single axle is the
optimal solution, and at high torques, the even distribution
is the optimal solution.
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0)

7)

The experimental results for a four-wheel-drive
EV demonstrator along driving cycles show energy
consumption reductions between 0.1% and 5%, with
respect to the same vehicle with single axle or even
torque distribution strategies.

The simulation results of ramp steer maneuvers indicate
significant energy consumption reductions for the whole
range of lateral accelerations.

The approximation related to the assumptions of tire slip
ratios similar to those in the rolling road experiments and neg-
ligible rolling resistance variation with vertical load will be
addressed in future work.
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