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Abstract—The adequate control of stator currents is a
fundamental requirement for several high-performance in-
duction motor (IM) control schemes. In this context, classi-
cal linear controllers remain widely employed due to their
simplicity and success in industrial applications. However,
the models and methods commonly used for control design
lack valuable information, which is fundamental to guar-
antee robustness and high performance. Following this
line, the design and existence of linear fixed controllers
is examined using individual channel analysis and design.
The studies presented here aim to establish guidelines
for the design of simple (time invariant, low order, stable,
minimum phase, and decentralized) yet robust and high-
performance linear controllers. Such characteristics ease
the implementation task and are well suited for engineer-
ing applications, making the resulting controllers a good
alternative for the stator current control required for high-
performance IM schemes such as field-oriented, passivity-
based, and intelligent control. Illustrative examples are
presented to demonstrate the analysis and controller de-
sign of an IM, with results validated in a real-time experi-
mental platform. It is shown that it is possible to completely
decouple the stator current subsystem without the use of
additional decoupling elements.

Index Terms—Decentralized control, induction motors
(IMs), linear feedback control systems, motor drives, real-
time systems, robust multivariable control, robustness,
stability.
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I. INTRODUCTION

INDUCTION motors (IMs) have been historically recog-
nized as the workhorse of the industry. Their employment

as actuators provides the preferred choice for a number of
industrial and research applications. Substantial innovations in
power electronics and digital processing systems have enabled
the use of high-performance IM control strategies. Among
these, field-oriented control (FOC) has been the most popular
[1]. The most successful FOC schemes aim to modify the
behavior of an IM so that it resembles a dc motor, where the
rotor flux and the torque are separately manipulated as they are
naturally driven by different physical currents (i.e., field and
armature). Since IMs do not share such a physical construction,
the decoupling of the rotor flux and the torque is achieved
by introducing nonlinear control elements that generate virtual
flux- and torque-producing currents [1]–[3].

FOC has been traditionally implemented in two stages
[1]–[3]. First, stator currents are controlled by using a voltage
source inverter (VSI). The second step involves the design of a
nonlinear flux–torque control law. The effectiveness of FOC is
determined by the adequate decoupling, high performance, and
robustness of the inner stator current control loops [4]. This is
vital to reduce the burden imposed on the robustness and pertur-
bation rejection requirements of a flux–torque controller. Other
schemes not requiring the direct control of the stator currents
exist (e.g., direct torque control); however, FOC schemes with
a VSI actuation are the most widespread.

There are several approaches for controlling the stator cur-
rent subsystem. Hysteresis controllers are easy to design and
implement, but they introduce a higher level of harmonics
due to changes in the switching frequency. In addition, the
instantaneous error can be up to twice the hysteresis level [5],
[6]. Predictive controllers have been also employed [7], but
they tend to show high sensitivity to parametric variations.
More importantly, a systematic procedure for the selection of
weighting parameters is missing, which is counteracted by an
extensive number of simulations. Other proposed methods may
be too intricate for an easy industrial application. Controllers
based on neural networks offer an adequate performance [8].
Nevertheless, the required computational effort represents a
great disadvantage if compared with simpler alternatives.

At industrial levels, the most widely implemented schemes
employ classical linear controllers due to their simplicity and
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effectiveness [9]–[11]. Through the use of controllers in a syn-
chronous reference frame, a substantial reduction in the inher-
ent cross-coupling effect of an IM can be achieved [12]–[14].
This is facilitated by the addition of feedforward loops, aim-
ing to decouple the back electromotive force (EMF) voltages
from the current regulation process. Moreover, by adopting a
complex vector notation, the control design task may be sim-
plified, which in turn simplifies the IM model from a multiple-
input–multiple-output (MIMO) to a single-input–single-output
(SISO) complex vector system [15]. This way, an analysis em-
ploying multivariable methods is avoided. Although the use of
a synchronous proportional–integral (PI) controller has shown
superior attributes when compared with its stationary reference
frame PI counterpart, the synchronous scheme is more complex
to construct [11], [14].

Regardless of the reference frame, the typical design of
decentralized fixed linear controllers is often accompanied by
the following:

• On-site adjustment. Controller gains are commonly ad-
justed by trial and error or experimental responses com-
bined with heuristic methods [1], [9]. To address such
a shortcoming, a tuning method has been suggested to
achieve a response with a minimum settling time and a
negligible overshoot. Such an approach sets the open-
loop crossover frequency to 4% of the sampling frequency
[16]. In [11], a PI controller tuning procedure is pro-
posed, where the proportional gain and integrator reset
times are set to their maximum possible values. More
recently, the work in [17] has proposed a MIMO root-
locus-based approach that minimizes the controller time
constant and, thus, the settling time. Although the afore-
mentioned methods may limit controller retuning, their
recent publication prevents them from being widespread
practices.

• Oversimplified models for control design. Although it is
claimed that several simplified models capture the fun-
damental IM dynamics, the majority fail to include the
MIMO nature of the process, the process dependence on
the rotor speed, and the rotor components [10], [11].

• Decoupling networks. These aim to transform the MIMO
process into SISO systems through the cancelation of the
coupling [18]. Satisfactory responses have been reported
using these networks and are currently considered a good
high-performance option [11], [19], [20]. However, good
performance has been also achieved in electric machine
FOC-based applications without their use [11], [21].

The main goal of this paper is to present clear and simple
control design guidelines for stationary reference frame con-
trollers. These principles are based on a profound study of
the stator current subsystem and supported by previous work.
For instance, in [22] and [23], the theoretical foundation for
evaluating electric machines using MIMO tools is presented,
and in [24], the simplification of an IM electric subsystem was
studied; in [25], the problem of torque–speed–position control
is addressed. In this paper, it is shown through theoretical analy-
sis and experiments how it is possible to design robust high-
performance linear controllers as long as a few simple protocols

are followed. Due to the analysis presented, a designer is not
required to repeat all the theoretical assessments and may only
follow the control design method. The principal characteristics
of this paper can be summarized as follows:

• A full IM model including both the stator and rotor dy-
namics is adopted (i.e., the rotor effects are not neglected).

• The multivariable nature of the process is considered
without any simplifications, direct cancelations, or infor-
mation loss. Although a number of MIMO studies can
be found in literature, direct cross-coupling cancelations
are commonly used. The approach presented here allows
evaluating and quantifying the robustness of decoupling
schemes, including the resulting coupling level of the
stator currents.

• The effect of the rotor angular speed is fully considered.

The omission of the rotor dynamics, the multivariable effects,
and the rotor speed is common practice [10], [11]. Nonetheless,
it will be shown that this is only valid if a high-bandwidth
controller is used. In particular, when designing controllers that
operate under a limited bandwidth, the combined effect of these
factors is only negligible if proper care is exercised during the
control design task. In this line, the problem is analyzed here
using individual channel analysis and design (ICAD), which is
a frequency-domain framework that allows the design of robust
linear controllers for MIMO systems [26]. Several applications
using ICAD have been reported, including satisfactory results
in the analysis of the cross coupling of electrical systems
[27]–[29]. In this paper, the formal analysis afforded by the
ICAD framework is presented. In addition, an experimental test
bench is used to demonstrate, in real time, the performance of
simple controllers designed with ICAD.

The scope of this paper is limited to the analysis and con-
trol system design of stationary reference frame controllers.
Through the approach followed, it is shown that a simple de-
centralized controller decouples the stator currents without the
use of additional control structures. This simplifies the control
system, which is a valuable asset in any industrial application.
Moreover, it is shown that an adequately designed stationary
reference frame controller is sufficient to achieve high per-
formance, which contrasts with the responses obtained with
stationary PI controllers. This is revealed through theoretical
analysis and confirmed via real-time experimentation. It should
be highlighted that the theoretical analysis presented here is
valid for any IM regardless of its rating and parameters.

II. STATIONARY REFERENCE FRAME IM MODEL

A classical bipolar IM model is given by [10]

ẋ =Ax+Bu

y =Cx+Du (1)

τE =
3

2

(
P

2

)
Lm

Lr
[ψαriβs − ψβriαs]

d

dt
ωr =

P

2J
(τE − τL) (2)
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with
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]T
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]

x =
[
iαs iβs ψαr ψβr
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iαs iβs

]T
a11 = a22 = −L2

rRs+L2
mRr

σLsL2
r

σ = 1− L2
m

LsLr

where iαs and iβs are the stator currents; ψαr and ψβr are
the rotor fluxes; ωr is the rotor angular velocity; υαs and υβs
are the stator voltages; Ls, Lr, and Lm are the stator, rotor,
and mutual inductances, respectively; Rs and Rr are the stator
and rotor resistances, respectively; J is the rotor inertia; τL is
the external load torque; τE is the generated torque; and P is
the number of poles. The model has been arranged so that the
electrical subsystem is contained in state space realization (1).
The equations in (2) represent the mechanical subsystem. The
control variables of interest are τE , ωr, and the rotor position θr
(integral of ωr). However, a successful IM control scheme first
requires the control of the stator currents by driving the stator
voltages (i.e., the control inputs) using a VSI.

Although the system in (1) and (2) is nonlinear, ωr varies
at speeds well below the closed-loop current subsystem. This
bandwidth separation allows considering (1) as linear time
invariant (LTI), making it possible to design a linear controller
robust to the variations of ωr. This is a well-known accepted
property of some nonlinear systems [30]. Thus, (1) can be
represented as[
iαs(s)
iβs(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
υαs(s)
υβs(s)

]
= G(s)

[
υαs(s)
υβs(s)

]
.

(3)

G(s) = C(sI−A)−1B+D is a transfer function matrix, and

G(s) =
1

d(s)

[
n11(s) n12(s)
n21(s) n22(s)

]
. (4)

The elements of (4) can be found in [23].

III. BRIEF OVERVIEW OF ICAD

ICAD is an analysis and control design framework used to
investigate the potential and limitations for the feedback design
of any MIMO LTI system. Although it is based on diagonal
controllers, it can be applied to any cross-coupled system [26],
[31]. ICAD is an interactive process involving the required
specifications, plant characteristics, and the multivariable feed-
back design process. A brief overview of the ICAD setup for a

2× 2 process is presented next, although it is not limited to this
case [28], [32]. Let a linear 2× 2 plant be represented by

y(s) =G(s)u(s)[
y1(s)
y2(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
u1(s)
u2(s)

]
(5)

where gij(s) represents scalar individual transfer functions,
yi(s) represents the outputs, ui(s) represents the inputs, and
ri(s) represents the reference signals (with i, j = 1, 2). Let a
diagonal controller matrix be

u(s) =K(s)e(s)[
u1(s)
u2(s)

]
=

[
k1(s) 0
0 k2(s)

] [
e1(s)
e2(s)

]

ei(s) = ri(s)− yi(s). (6)

The system in (5) and (6) can be formulated without any
assumption or loss of multivariable information in terms of
individual channels ci(s) relating references ri(s) with outputs
yi(s) as

ci(s) =
yi(s)

ei(s)
= ki(s)gii(s) (1− γ(s)hj(s)) (7)

with i �= j; i, j = 1, 2, where

γ(s) =
g12(s)g21(s)

g11(s)g22(s)
(8)

hi(s) =
ki(s)gii(s)

1 + ki(s)gii(s)
. (9)

The cross-coupling relationship is given by [26]

yi(s)

rj(s)
=

1

1 + ci(s)
· gij(s)
gjj(s)

· hj(s) = Si(s) ·
gij(s)

gjj(s)
· hj(s).

(10)

Equation (10) shows that the level of cross coupling depends on
the sensitivity function Si(s) of each channel ci(s).

It should be emphasized that (7) and (9) are SISO relations;
hence, a classical analysis is feasible. It is known that sensi-
tivity functions assess the capabilities of a control system to
reject noise, perturbations, and parametric uncertainty. Thus,
by analyzing the frequency properties of the sensitivity and
complementary sensitivity functions of (7) and (9), it is possible
to establish a sensitivity analysis of the overall MIMO control
system. This way, the control design problem reduces to the
design of a SISO controller for each channel. A block diagram
of a feedback system with a diagonal control is shown in Fig. 1.
The equivalent scalar channels are shown in Fig. 2.

In (8), γ(s) is called the multivariable structure function
(MSF) and is key to ICAD. It is inherent to the nature of the
process and reveals important characteristics on the existence of
robust controllers satisfying arbitrary specifications. The MSF
has the following characteristics [31]:

• It determines the dynamical characteristics of each input–
output configuration.

• It has an interpretation in the frequency domain.
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Fig. 1. MIMO 2× 2 control system with a diagonal controller.

Fig. 2. Equivalent individual channel representation of a 2× 2 control
system.

• Its magnitude quantifies the coupling between channels.
• it is related to transmission zeros (zeros of 1− γ(s) =
0 = det[G(s)] = g11g22 − g12g21). This allows testing
for right-hand plane (RHP) transmission zeros using the
Nyquist criterion.

• Its closeness to (1, 0) in the Nyquist plot indicates to what
extent the plant structure (not necessarily its stability) is
sensitive to uncertainty. This fact plays a key role in the
design of robust controllers and allows going beyond the
concept of bifurcations for nonlinear systems.

• It allows a robustness evaluation of decoupling matrices
since the zeros of (1− γ(s)) are equal to the roots of
det[G(s)].

• The existence and design of stabilizing diagonal compen-
sators can be determined from the characteristics of γ(s).
Controllers with a different structure than diagonal can be
treated with slight modifications.

• It has a close relation with the relative gain array (RGA);
however, the RGA is only used to define the selec-
tion of input–output pairs as a previous step to control
design [33].

It is important to note that the Nyquist stability criterion and
the plots of the MSF are used to evaluate the configuration
robustness. Thus, the interpretation of such plots is not the same
as in the classical control theory. A comprehensive treatment of
this topic was presented in [26] and [31].

IV. MIMO ANALYSIS: STATOR CURRENT SUBSYSTEM

The guidelines for the design of linear diagonal controllers
for system (3) are derived in this section. The analysis, which

is based on ICAD’s MSF, applies to any decentralized linear
control scheme. Let the individual channels be defined as

c1(s) : υαs(s) → iαs(s)

c2(s) : υβs(s) → iβs(s). (11)

From (4) and (8), the MSF is given by

γ(s) =
n12(s)n21(s)

n11(s)n22(s)
. (12)

The existence of stabilizing controllers for individual chan-
nels ci(s) (i = 1, 2) reduces to the existence of ki(s) that
simultaneously stabilizes gii(s)(1 − γ(s)hj(s)) and gii(s) iff
MSF γ(s) satisfies the following requirements [22], [26]:

(a.1) γ(s) has no RHP poles (RHPPs).
(a.2) The Nyquist plot of γ(s) does not encircle point (1, 0).
(a.3) γ(s) tends to zero as s tends to infinity.

Conditions (a.1) and (a.2) ensure that (1 − γ(s)) does not
contain RHP zeros (RHPZs); thus, the system is minimum
phase. To maintain the dynamical structure in (7), it is also
required that the Nyquist plot of γ(s)hj(s) does not encircle
(1, 0). It has been shown in [22] and [23] that all IMs defined by
(1) and (2) comply with (a.1), (a.2), and (a.3) for any ωr ∈ R.

For robust stability and performance, controllers ki(s) must
comply, in addition to (a.1)–(a.3), with the following [26], [31]:

(b.1) ki(s) should stabilize gii(s)(1 − γ(s)hj(s)) and gii(s)
with sufficient robustness margins.

(b.2) The Nyquist trajectories of γ(s) and γ(s)hj(s) must
not encircle nor pass near point (1, 0).

The stability of the control system depends on condition
(b.1) only, which can be satisfied by the application of any
control design technique. Condition (b.2), which is referred to
as structural robustness, is unique to ICAD and is defined by
the number of individual channel RHPZs and RHPPs. Recall
that the transmission zeros of a 2× 2 system are contained
in the zeros of (1− γ(s)) (since 1− γ(s) = det[G(s)]) [26],
[31]. Using the Nyquist criterion for stable systems, the zeros
of (1− γ(s)) are equal to the number of RHPPs of γ(s) plus
the number of encirclements to (1, 0) of the Nyquist plot of
γ(s). If the Nyquist plot of γ(s) passes near (1, 0), then it is
said that the system has low structural robustness, i.e., due to
uncertainty, the number of encirclements to (1, 0) and, thus, the
number of nonminimum-phase transmission zeros may easily
change. This can be measured in terms of classical phase and
gain margins.

Consider a DeLorenzo DL10115A1 three-phase squirrel-
cage IM. This machine has a nominal power of 300 W, a
nominal voltage of 380 Vrms, a nominal speed of 3450 r/min,
and 2 poles. Its state space representation (1) is given by [34]

A =

⎡
⎢⎢⎣
−359.2 0 141.8 9.2ωr

0 −359.2 −9.2ωr 141.8
21.9 0 −15.4 −ωr

0 21.9 ωr −15.4

⎤
⎥⎥⎦B=

⎡
⎢⎢⎣
9.7 0
0 9.7
0 0
0 0

⎤
⎥⎥⎦

C =

[
1 0 0 0
0 1 0 0

]
D =

[
0 0
0 0

]
. (13)
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Fig. 3. Nyquist plots of γ(s) for different values of ωr.

Fig. 3 shows the Nyquist plot of γ(s) for this IM. It can be
seen that the gain margin of γ(s) decreases as rotor speed ωr

increases; that is, the Nyquist plot of γ(s) passes near (1, 0)
when arg[γ(jω)] = 0 for high values of ωr, with ωr ∈ R.

It has been shown that the Nyquist plot of γ(s) does not
encircle (1, 0) for any IM even if it is parametrically perturbed
[22], [23]. This satisfies the first part of condition (b.2). How-
ever, it is necessary to determine the proximity of γ(s) to (1,
0) to assess the structural robustness. To this end, consider the
MSF (12) evaluated at ω = ωr (i.e., s = jωr) as follows:

γ(jωr) =
L2
rL

4
mω4

r

(reωr + jimωr)2
(14)

where

reωr =2ω2
rσLsL

2
r + ω2

rLrL
2
m − LrRsRr

imωr = − ωrσLsLrRr − 2ωrL
2
rRs − ωrL

2
mRr.

An algebraic exercise reveals that the argument of γ(jωr) is

arg [γ(jωr)] = − tan−1

(
2reωrimωr

re2ωr − im2
ωr

)
− φ

φ =

{
0, for re2ωr − im2

ωr ≥ 0

π, for re2ωr − im2
ωr < 0.

(15)

Additionally, we have

tan−1

(
2reωrimωr

re2ωr − im2
ωr

)
= tan−1

(
−k1ω

3
r + k2ωr

k3ω4
r − k4ω2

r + k5

)
(16)

where k1, k2, k3, k4, and k5 are real positive constants. Thus,

lim
ωr→∞

(
2reωrimωr

re2ωr − im2
ωr

)
= 0 ⇒ lim

ωr→∞
(arg [γ(jωr)]) = 0◦.

(17)
On the other hand, the magnitude of γ(jωr) yields

‖γ(jωr)‖ =
L2
rL

4
mω4

r√(
re2ωr − im2

ωr

)2
+ 4re2ωrim

2
ωr

. (18)

Therefore,

lim
ωr→∞

‖γ(jωr)‖ =
L2
rL

4
m

L2
rL

4
m + 4σL3

rLsL2
m + 4σ2L4

rL
2
s

=GM,min < 1 (19)

whereGM,min is a structural robustness measure that represents
the gain margin lower bound corresponding to the highest rotor
speed of any IM. By combining (17) and (19), it can be clearly
noticed that the Nyquist plot of γ(jωr) crosses the positive
part of the real axis at (GM,min, 0) at a high value of ωr. This
complies with the observation that the lowest gain margin of
γ(s) occurs at high values of ωr. That is, the Nyquist plot of
γ(s) is closest to point (1, 0) when the motor is operating at
high rotor speeds (as shown in Fig. 3).

To comply with the second part of (b.2), the Nyquist plots
of γ(s)hj(s) should be assessed along the design process of
controllers ki(s). The following observations can help for this:

• hj(s) in (9) should be robust, as stated in condition (b.1).
• The bandwidth of hj(s) is similar to the bandwidth

of the individual channels [26], [31] and should be
greater than the maximum expected ωr; that is, the stator
currents should be able to track sinusoidal signals at
frequencies ωr.

• The gain margin lower bound GM,min of γ(s) occurs at
frequencies around the maximum operating ωr.

• The Nyquist plot of γ(s)hj(s) must not encircle (1, 0) for
any ωr ∈ R.

If these items hold, then hj(jωr) ≈ 1 ⇒ γ(jωr)hj(jωr) ≈
γ(jωr). Under a normal design scenario (if hj(jωr) ≈ 1 and
(b.1) is true), this leads to conclude, by (a.2), that hj(s) will not
encircle (1, 0) since γ(s) never does [22], [23]. This completes
condition (b.2); thus, the resulting stator current control system
is structurally robust. It should be emphasized that this robust-
ness assessment is not the typical Nyquist stability criterion as,
in this case, the critical point is (1,0).

Let the stator current subsystem be defined by (3), controller
(6), and −ωr,max ≤ ωr ≤ ωr,max. In agreement with the last
paragraph, the following conclusions can be stated:

• The difficulty to control the system at top speed increases
as ‖γ(jωr)‖ in (18) is closer to 1 for ωr = ωr,max.

• hj(s) must have an appropriate disturbance rejec-
tion at ωr = ωr,max so that hj(jωr,max) ≈ 1 and that
γ(jωr,max)hj(jωr,max) ≈ γ(jωr,max). This is a clear re-
quirement since the control system should track sinu-
soidal references at this frequency.

• If GM,min in (19) approaches (1, 0) for high values of
ωr, it is necessary to increase the bandwidth of hj(s),
which is equivalent to increasing the disturbance rejection
properties of hj(s).

• The open-loop gain requirements of controller kj(s) for
s = jωr are determined by the closeness of ‖γ(jωr)‖ to
1 in (18).

In addition, consider a decoupling matrix Cd(s) such that
G(s)Cd(s) = Gd(s), where Gd(s) is any desired decoupled
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Fig. 4. Frequency response of various design models.

dynamic. Therefore, Cd(s) = [G(s)]−1Gd(s). Since [G(s)]−1

exists iff det[G(s)] �= 0 and (1− γ(s)) = det[G(s)], it is clear
that γ(s) ≈ 1 indicates a lack of robustness of a decoupling sys-
tem. In this regard, (19) can be used to measure the robustness
of any decoupling control system at high speeds.

The results presented in this paper demonstrate that a diag-
onal controller is sufficient to control the stator currents [11].
This is relevant from the viewpoint of industrial applications,
where effective easy-to-implement solutions are preferred.

V. CONTROL DESIGN STUDY CASE

The design of a stator current controller of the IM given by
(13) is presented in this section as an illustrative example.

A. Design Model Comparison

When designing a controller, model oversimplification may
result in a nonrobust fragile control system; thus, this should be
avoided. Consider the following IM representations [24]:

• Model A: ICAD individual channel 1. This contains the
multivariable nature of the system, the effect of rotor
angular speed ωr, and all rotor components. The full-
speed range should be assessed for proper control system
design.

• Model B: n11(s)/d(s) with an arbitrary ωr. The multi-
variable nature of the system is neglected.

• Model C: n11(s)/d(s) with ωr = 0 rad/s. The rotor speed
and multivariable nature of the system are not considered.

• Model D: iαs(s)/υαs(s) = 1/(Lss+Rs). The MIMO
nature of the system, the rotor angular speed, and the rotor
components are neglected. This represents the most com-
mon design model for linear stator current controllers [11].

Fig. 4 shows the frequency response of the input–output mul-
tivariable channel (Model A) compared with the responses of
the alternative design models. For this exercise, ωr = 375 rad/s
for Models A and B. It is evident that Model D does not

provide sufficient information for designing an efficient and
robust controller. Model C also fails in this aspect mainly
because of the phase-shift error. The comparison of Models A
and B demonstrates that model B lacks the important phase lag
occurring at around 370 rad/s. Neglecting the system phase lag
has a key effect when designing robust controllers.

It is commonly considered that the effects of the rotor speed,
the rotor elements, and the cross coupling are not relevant. This
can be better understood by comparing Models A and D. Their
main difference is the negative resonance peak coinciding with
the rotor speed. Correspondingly, a phase lag effect is noted
around this frequency. For both models, the phase converges to
−90◦, whereas the gain eventually decays at −20 dB/decade at
higher frequencies. Thus, if a sufficiently high-gain controller
is used, it could be possible to reject the effect of the neg-
ative resonance peak while maintaining stability. Under these
circumstances, it seems that the additional effects in Model A
are negligible. In general, it is possible to reject these effects
by either increasing the overall open-loop gain or by carefully
compensating for the negative resonance peak. An increase
in the open-loop gain can be exercised without further plant
knowledge (i.e., using Model D) but at the expense of also
increasing the inverter performance requirements. Conversely,
compensating for the negative resonance peak allows maintain-
ing a lower bandwidth, but this requires the knowledge of the
dynamical characteristics captured in Model A. In the following
sections, a controller that exploits the additional information
contained in Model A is designed.

B. Control Specifications for Performance
and Robustness

A successful control strategy should be able to incorporate
control specifications stated in typical electrical engineering
terms. The stator current references are given by the sinusoidal
signals of varying amplitudes, frequencies, and phases. In this
context, the following specifications are imposed:

• Provided that the IM is under no-load conditions and
that the maximum shaft speed considered is ωr,max =
375 rad/s, then the closed-loop bandwidth specification is
set at a frequency that is approximately a decade higher
than the maximum speed. Thus, a bandwidth of at least
3300 rad/s is specified.

• Gain and phase margins over 12 dB and 50◦, respectively.
Such measures of robustness, which are normally used
in an engineering context, can be employed for a MIMO
system using ICAD.

• The cross coupling between the individual channels
should be less than −15 dB , warranting a low coupling
between the stator currents. This clear assessment of cross
coupling is an easy task within ICAD and is one of its key
advantages.

It is common to operate at speeds higher than that at a no-
load condition using field weakening techniques [10], requiring
a higher bandwidth. However, in practice, the bandwidth of
the stator current controller is limited by the inverter switching
frequency. In this case, 5 kHz proved to be sufficient.
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Fig. 5. Bode diagram: open-loop individual channels for different ωr.

C. ICAD Controller Design

Consider an IM (13) with individual channels defined by
(11). Fig. 3 shows the Nyquist plot of γ(s) [defined by (12)] for
different ωr. In this figure, it is possible to confirm that the sys-
tem complies with conditions (a.1)–(a.3) for ωr ∈ [0, ωr,max],
i.e., γ(s) has no RHPPs, the Nyquist plot of γ(s) does not
encircle (1, 0), and γ(s) → 0 as s → ∞. Hence, as concluded
in Section IV, a stabilizing multivariable controller ki(s) should
simultaneously stabilize gii(s)(1 − γ(s)hj(s)) and gii(s), with
i, j = 1, 2. For robustness, the design should also comply with
requirements (b.1) and (b.2).

When using ICAD, a designer must normally make the
previous assessments. Nonetheless, the theoretical work in
Section IV allows for the design of stator current controllers to
be just centered in the stabilization of the individual channels
with a bandwidth higher than the nominal rotor shaft speed.
That is, controllers k1(s) = k2(s) can be designed as a SISO
controller for (7), with hj(s) = 1 and i = 1.

A diagonal controller satisfying all the requirements is
given by

k1(s) = k2(s) =
326.5(s+ 400)2(s+ 1000)

s(s2 + 100s+ 42500)
(20)

obtained using Bode shaping techniques. An integrator has been
included to ensure a low steady-state error. Recall that, through
(19), the gain margin lower bound for structural robustness can
be assessed. This is ≈ 0.75 (−2.47 dB) for a high rotor speed.
The closeness of this number to 0 dB indicates that hi(s) must
feature a high disturbance rejection at ≈ 375 rad/s to ensure
structural robustness. This is achieved through a high open-loop
gain around this frequency. To do so, controller (20) includes a
lag compensator with poles at −50± j200 and two zeros at
−400. To ensure stability, a sufficient phase lead is added by a
zero at −1000. It is important for the controller not to include
faster dynamics than the closed-loop bandwidth as this is not
suitable for a real-time implementation. The highest frequency
dynamic of (20) is 1000 rad/s that is lower than the control
system bandwidth, which is equal to 3350 rad/s.

Fig. 6. Bode diagram: open-loop elements kj(s)gjj(s) for different ωr .

Fig. 7. Nyquist diagrams of γ(s) and γ(s)hj(s) for different values
of ωr.

Fig. 5 shows the robustness and performance of individ-
ual channels ci(s) for different values of ωr. Due to system
symmetry, both channels are equal; the same applies to hj(s),
γ(s)hj(s), and coupling functions (10). As it can be seen, ci(s)
are stable and represent the overall performance of the system
since the stability of the MIMO control system is determined by
the stability of the individual channels [26], [31]. The robust-
ness properties of hj(s) can be assessed through Fig. 6, which
shows the Bode plot of kii(s)gii(s) for different values of ωr.
As it can be seen, the diagonal subsystems are robust. It can be
observed that |ki(s)gii(s)| > 20 dB around 375 rad/s, ensuring
a strong disturbance rejection at that frequency. The structural
robustness is further assessed through the Nyquist plots of
γ(s)hj(s) (see Fig. 7). Since the trajectories of γ(s)hj(s) and
γ(s) are similar and do not encircle the critical point (1, 0),
structural robustness is ensured. The previous analysis shows
that conditions (b.1) and (b.2) have been satisfied.

Table I summarizes the control system performance and ro-
bustness characteristics for an operating speed ωr = 375 rad/s.
The control system ensures high gain and phase margins for
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TABLE I
CONTROL SYSTEM ROBUSTNESS AND
PERFORMANCE CHARACTERISTICS

Fig. 8. Bode diagram of the coupling between the individual channels.

ci(s) and kii(s)gii(s) (i = 1, 2). Although the gain margins for
γ(s)hj(s) may seem low (3.4 dB), these have been provided for
the worst case scenario (recall from (19) that the gain margin
lower bound occurs at high rotor speeds).

It should be emphasized that controller (20) has stable
minimum-phase low-order elements and does not contain high-
frequency modes. These attributes make the designed controller
well suited for engineering applications. Otherwise, the sam-
pling frequency would be determined by the controller’s high-
speed modes rather than the characteristics of the process.

D. Coupling Analysis

The cross coupling between individual channels (see Fig. 2)
can be fully assessed by (10). Fig. 8 shows the Bode plot of
the coupling from input 2 to output 1 (equivalent from input
1 to output 2 due to system symmetry). In the worst case,
the coupling magnitude is limited to a maximum of −20 dB,
which complies with the specifications. Thus, the control sys-
tem effectively decouples the stator currents without the use of
additional decoupling elements.

E. Structural Robustness to Parametric Perturbations

A control system should be robust to parametric pertur-
bations. Fig. 9 shows the Nyquist plot of γ(s)hi(s) under a
number of critical parametric variations (at ωr = 375 rad/s).
Nominal system parameters are provided in the Appendix. It
can be seen that the Nyquist plot of γ(s) does not encircle the
critical point (1, 0) under parametric variations. This numeri-
cally confirms that condition (a.2) has been satisfied.

Fig. 9. Structural robustness assessment: γ(s)hi(s) under parametric
perturbations (ωr = 375 rad/s).

Fig. 10. Real-time experimental platform.

VI. EXPERIMENTAL RESULTS

Real-time experiments have been performed to prove the
validity of the control design in Section V. The experimental
platform (see Fig. 10) consists of a DeLorenzo DL10115A1
three-phase squirrel cage IM (as in Section IV), an unregulated
310-V dc source, a 3-phase 2-level insulated-gate-bipolar-
transistor-based VSI with a 5-kHz space vector modulation,
an eddy-current-based brake, and a load cell for torque mea-
surement. It is limited to passive torque loads in speed tests
(as in a brake) and to active loads in position tests. A dSPACE
DS1103 digital processing system with a 50-kHz base sampling
frequency was employed.

It should be noted that the proposed ICAD controller has
been implemented without back-EMF compensation. Similarly,
the stationary frame PI design in Section VI-D does not feature
decoupling elements. The motivation behind this approach
was to explore and extend the limits of pure stationary frame
control, which is independent of any slip-angle estimation.

A. Locked-Rotor Test

This was performed to show the tracking capabilities of
the stator current control system. Controller (20) was em-
ployed, with results shown in Fig. 11. The references for the
closed-loop system (iαs and iβs) consisted in sinusoids with
a frequency of 300 rad/s. The performance assessment is the
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Fig. 11. Stator currents iαs and iβs: a 300-rad/s reference with
ωr = 0 rad/s.

Fig. 12. Block diagram of typical FOC speed and position controllers.

successful tracking of the sinusoidal references with a low
degree of error.

B. Stator Current Performance: FOC Speed Controller

An indirect FOC (IFOC) speed controller was implemented,
as in [25], to evaluate the performance of the stator current
subsystem under realistic conditions. The IFOC controller gen-
erates the references for the stator current controller, as shown
in Fig. 12. The design and analysis of the outer speed control
loop are out of the scope of this paper. For a detailed study of
this component, see [25].

Fig. 13(a) shows the experimental response of the rotor speed
for a step reference of 150 rad/s considering controller (20) and
the FOC speed controller. An external torque load was applied
along the experiment [see Fig. 13(b)]. These plots show that
the FOC scheme is able to reject the torque load and maintain
a good transient response. The tracking performance of the
inner stator current control system can be assessed in Fig. 13(c),
where both stator currents iαs and iβs are shown together with
their references. A close-up capturing the load torque change is
shown, which reflects as an amplitude change in the references.
The corresponding stator voltage modulation signal for phase
a is presented in Fig. 13(d). The signal clearly lies within the
inverter modulation limits.

Once the speed reference of 150 rad/s is reached, the IM will
operate under constant speed control while applying an external
torque load. In general, the torque acting over the shaft is given

Fig. 13. Experimental responses with an IFOC speed controller and
stator current controller (20) following a rotor speed reference step
change. (a) Rotor angular speed ωr . (b) Measured load torque τL.
(c) Currents iαs/iβs and their references. (d) Phase a of the stator
voltage.

by τS = τE − τL − τF , where τL is the external torque load,
τF is the shaft friction, and τE is the generated torque. Since
the speed is maintained constant, τS = 0, and τE = τL + τF .
Thus, a change in the torque load is very similar to changing the
generated torque reference in a closed loop (minus the residual
friction) when operating a constant-speed closed loop.

C. Stator Current Performance: FOC Position Controller

Although the most common application for IMs is speed
control, their use for precision servocontrol is attractive.
Fig. 12 shows an IFOC position controller. This was designed,
as in [25], to assess the proposed stator current controller.
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Fig. 14. Experimental responses with an IFOC position controller and
stator current controller (20) following a rotor position reference step
change. (a) Position θr. (b) Measured load torque τL. (c) Currents
iαs/iβs and their references.

The experimental response to a step reference (6.28 rad) is
shown in Fig. 14(a). A torque load was introduced at t = 2.5
[see Fig. 14(b)], with the system being able to reject it with a
slight transient deviation from the reference. Fig. 14(c) shows
the response of iαs and iβs with their references (allowing
to assess the tracking performance of the current controller).
As shown, controller (20) adequately operates in low-speed
conditions. Moreover, the proposed scheme works well with
typical high-performance position servocontrollers.

D. Comparison With Typical Stationary Frame
PI Controller

A typical solution for stator current control is the use of sta-
tionary PI controllers. However, it is widely accepted that they
do not deliver high-performance responses, hindering outer
control loops. In addition, they are known to yield unaccept-
able error levels. High-gain stationary PI controllers achieve
better results [11], but the inverter commutation frequency
poses a fundamental limitation. This factor is crucial when
implementing high-performance controllers. In this context, it
is remarkable that the stationary frame controller proposed in
this paper is capable of delivering a high level of performance.

Fig. 15. Comparison between ICAD and PI controllers: Bode diagram
of the open-loop individual channels with ωr = 375 rad/s.

To further this, ICAD controller (20) was compared with a
typical PI controller to assess the differences between them.

The most important parameter for the stationary frame cur-
rent control is the open-loop crossover frequency since it deter-
mines the required inverter modulation frequency. As explained
in Section V-A, the cross-coupling and rotor element effects can
be neglected if a sufficiently high-bandwidth controller is used.
To carry out a fair comparison, the PI controller was designed
so that its open-loop crossover frequency coincides with that
of controller (20). Additionally, both controllers must comply
with robustness specifications. This was measured through the
phase margin, with a minimum of 45◦ being considered. The
combination of these constraints yielded the resulting gains
KP = 360 and KI = 9000.

Fig. 15 shows the Bode plot of the individual channels with
each controller (ωr = 375 rad/s). Although both have the same
crossover frequency, the PI controller has a much lower open-
loop gain (dropping near 0 dB around 375 rad/s) due to the
resonance peak introduced by the rotor elements and the shaft
speed. This indicates that a phase over −135◦ is necessary to
ensure robustness. It is not possible to alter KP and KI and
keep the same crossover frequency since the phase lead would
be lost around 375 rad/s. Conversely, controller (20) yields
a high open-loop gain and acceptable stability margins (see
Table I).

To highlight the benefits of ensuring an appropriate electrical
subsystem control, a simple proportional IFOC speed controller
was implemented as follows:

τref =

⎧⎪⎨
⎪⎩
τmax, kp(ωr,ref − ωr) > τmax

kp(ωr,ref − ωr), |kp(ωr,ref − ωr)| < τmax

−τmax, kp(ωr,ref − ωr) < −τmax

(21)

where τref is the torque reference, τmax is the maximum torque
allowed, ωr,ref is the rotor speed reference, and kp is the
controller gain. Controller (21) is a saturated control. The satu-
ration element (shown in Fig. 12) prevents high-transient stator
currents and inverter overmodulation when operating IFOC
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Fig. 16. Comparison between ICAD and PI controllers. Experimental
responses: (a) speed ωr and (b) current iαs.

flux–torque controllers with a speed control loop. In this setup,
a sudden change in the speed reference (e.g., a large-step start-
up reference) induces the saturation of the torque reference. As
a result, the speed loop opens, and the machine operates with
a pure IFOC torque controller and a constant reference τmax.
If low friction is considered and given a properly tuned FOC
controller, the rotor speed response during saturation should be
a ramp with a constant slope until ωr is close to ωr,ref . Since
(21) has no integral effect, a steady-state error will be present.

Fig. 16 compares the experimental responses of the PI and
ICAD controllers. The same speed controller and reference
(376 rad/s) were used. Fig. 16(a) shows the constant torque
slope for an ideally tuned FOC controller assuming a perfect
stator current control. As it can be seen, the use of ICAD
controller (20) with FOC controller (21) enables a response
that is significantly closer to the ideal than when the PI is
used, thus rendering superior performance. This highlights the
importance of having a correctly designed inner stator current
controller as it dramatically affects the performance of the
speed controller. If care is not exercised, the torque responses
may be affected not only through the effect of shaft friction but
also due to the shortcomings of the inner current control loops.
Excellent performance would not be achievable without a high-
performance stator current control subsystem.

Fig. 16(b) presents the response of current iαs when the
PI controller and controller (20) were used. The responses
have been superimposed for comparison. It is clear that the PI

controller results in greater error levels than those of controller
(20), which in turn affect the performance of the FOC speed
controller. This was expected from the theoretical predictions
in Fig. 15 (from the low open-loop gain of the PI controller)
and falls in line with the results reported in the literature for
stationary PI control. The comparison carried out in this section
shows that, for the same bandwidth, the proposed scheme is
able to yield better overall performance without sacrificing
robustness.

Figs. 11, 13(c), 14(c), and 16(b) confirm that the proposed
controller (20) achieves good tracking and decoupling of the
stator currents. This simplifies the outer FOC control loop
design by assuming fully controlled stator currents. In turn, the
system in (1) and (2) is simplified to a third-order system [25].

Excellent performance was believed to be possible only when
synchronous reference frame controllers, decoupling networks,
or high-bandwidth stationary controllers (with higher inverter
requirements) are employed. Nonetheless, although the pro-
posed controller is stationary and decentralized, it yields high
performance. This has been shown through thorough theoretical
assessments and confirmed experimentally.

VII. ON THE PERFORMANCE OF PI CONTROLLERS

It could be argued that, by increasing its open-loop gain, a PI
controller would improve its performance. As shown in Fig. 15,
the system will remain stable for an increase in proportional
gain KP since the phase never drops below −135◦; however,
there are two possible outcomes. If KP is a common factor
in the PI transfer function, the bandwidth would be increased,
or if KP is not a common factor, the zero of the PI would
tend to zero, reducing the integral action. The reason why
the PI exhibits inferior performance when compared with the
proposed controller (20) arises from its inability to compensate
for the sudden loss of gain around 370 rad/s. This results
in a slow response with a large steady-state error for speed
references close to ωr = 370 rad/s (see Fig. 16).

The selection of PI gains has a major impact on the sys-
tem performance. To have a benchmark for comparison, the
bandwidth has been restricted to assess the potential controller
capability within the allowed frequency range. Combinations
of PI gains have been obtained by initially setting integral gain
KI and then adjusting proportional gain KP so that the desired
crossover frequency is obtained. This resulted in a set of PI
controllers for a range of integral gains. The Bode plot of the
open-loop individual channels is shown in Fig. 17, with the
response of controller (20) also included for comparison.

Fig. 17 reveals that, for low integral gains, the open-loop gain
is low around 300 rad/s, although the phase remains far from the
critical −180◦. By increasing the integral gain, the open-loop
gain increases, but the phase margin is reduced. This indicates
that a low integral gain ensures high robustness but results in
low performance. Conversely, a high integral gain will deliver
better performance at the cost of decreasing robustness. For
instance, the highest gain PI achieves a high open-loop gain
(20 dB) around 300 rad/s, but in doing so, the phase margin
substantially falls, causing an increased overshoot in the time
response. Fig. 18 compares the step response of the highest
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Fig. 17. Comparison between PI controllers with increasing integral
gains: Bode diagram of the open-loop channels with ωr = 375 rad/s.

Fig. 18. Step responses with high-integral-gain PI and ICAD
controllers.

gain PI controller with that of controller (20). Although the
PI controller eliminates the ringing associated with lower gains
around 300 rad/s, the resulting overshoot increases.

Although controller (20) offers superior performance than its
stationary PI counterpart, it has a more complex structure. How-
ever, the ICAD framework may be employed to evaluate and
improve any linear stationary controller. In this line, consider
that controller (20) can be expressed as

k1(s) =
326.5(s+ 1000)

s
· (s+ 400)2

s2 + 100s+ 42500
(22)

which is effectively a PI controller cascaded with a lag compen-
sator. The contribution of these components in the individual
channels can be seen in Fig. 19. Notice that the PI controller
enables a similar bandwidth but a greater phase margin than
the complete control structure. However, it exhibits a low open-
loop gain with a phase close to −180◦ around 300 rad/s. These
characteristics cause unwanted ringing in the transient response
(see Fig. 20). The inclusion of the lag compensator corrects this
by increasing the open-loop gain to ≈ 20 dB at the resonance
peak while avoiding a drastic reduction in the phase margin
(from 80◦ to 67◦), thus preventing a high overshoot. This
effect can be observed in the step response of the individual
channels (see Fig. 20). Once the lag compensator is included,

Fig. 19. Bode plots of the open loop individual channels: ICAD con-
troller (20) and its internal PI controller.

Fig. 20. Simulated step response: ICAD controller (20) and its internal
PI controller.

the response exhibits a higher yet tolerable overshoot without
the ringing.

It should be stressed that the main contribution of this paper
goes beyond obtaining a good controller for an isolated case.
The greatest achievement has been the development of a frame-
work for designing and evaluating linear controllers for the
stator current subsystem of any IM. Thus, the main advantage
of the methodology is not to show a controller that outperforms
PI structures but to be able to theoretically analyze the potential
and limitations of any linear stationary frame control structure
(such as a PI controller) to improve its dynamic behavior. This
can be achieved by presenting information to a designer in a
simple and direct manner while making use of well-established
classical control system tools.

VIII. ROBUSTNESS CONSIDERATIONS

So far, robustness has been assessed in three ways as follows:

1) The theoretical proof that the system structure is pre-
served for any valid combination of system parameters
and rotor speed, i.e., it is always stable and minimum
phase. This is fundamental since it is well known that
systems with stable and minimum-phase dynamics are
“easy” to control [35].
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Fig. 21. Nyquist plots of γ(s) for the perturbed plant with different ωr .

2) The use of well-known and experimentally proven clas-
sical robustness measures based on the Nyquist stability
criterion. Normally, classical measures cannot be calcu-
lated for MIMO systems; however, ICAD allows doing
this. The proposed design complies with typical robust-
ness margins.

3) Experimental validation without “experimental fine tun-
ing,” i.e., the control design task was solely based on
theoretical analysis and digital simulation tools.

An additional method has been used to complement the
aforementioned points. It consists of designing controllers
while adopting a perturbed IM model and then experimentally
validating the control scheme without said variations. Since
the most common variations result from an increase in the
resistance due to heat and a reduction in the inductance due
to magnetic saturation [36], the following parameters were
used (standing for ≈ 100% of perturbation): Rs = 2Rs,nom,
Rr = 2Rr,nom, Ls = 0.6Ls,nom, Lr = 0.6Lr,nom, and Lm =
0.59Lm,nom.

Let the aforementioned parametric variations be incorporated
to the IM model in (1) and (2). Fig. 21 shows the Nyquist plot of
γ(s) for different ωr. As it can be seen, γ(s) does not encircle
(1, 0). This confirms that the MIMO analysis in Section IV
holds for a highly perturbed IM, complementing the results
in Fig. 9. As the system complies with conditions (a.1)–(a.3),
the design task remains the same as in Section V-C, i.e.,
the stabilization of the individual channels with a bandwidth
higher than the nominal rotor shaft speed; that is, controllers
k1(s) = k2(s) being designed as a SISO controller for (7) with
hj(s) = 1 and i = 1, or explicitly, g11(s)(1 − γ(s)). Controller
(20) is able to satisfy the previous conditions.

Fig. 22 shows the Bode plot of the individual channels using
controller (20) and the perturbed IM (for ωr = 375 rad/s).
The design specifications are clearly met, i.e., a bandwidth of
3700 rad/s, phase and gain margins of 77◦ and 20 dB, respec-
tively, and a high open-loop gain around 375 rad/s. The robust-
ness of subsystems hj(s) is evaluated through the frequency
response of kj(s)gjj(s) (see Fig. 22). As observed, hj(s) are

Fig. 22. Bode diagrams of the perturbed open-loop individual channels
and elements kj(s)gjj(s) with ωr = 375 rad/s.

Fig. 23. Simulated response for the perturbed plant: stator currents iαs

and iβs for a reference signal with a frequency of 300 rad/s.

robust, with phase and gain margins of 77◦ and 27 dB, respec-
tively. In addition, the system dynamic structure is preserved,
i.e., the Nyquist plot of γ(s)hj(s) does not encircle (1, 0), with
the trajectory being sufficiently far from the critical point (not
shown). This analysis shows that robustness requirements (b.1)
and (b.2) have been satisfied.

A simulation has been carried out using controller (20) with
the perturbed plant. This includes the full nonlinear IM model,
the nonlinear characteristics of the mechanical friction, and a
two-level VSI with space vector modulation. Fig. 23 shows the
stator current response for a reference signal with a frequency
of 300 rad/s. It can be noticed that the stator currents closely
follow their references with little distortion.

As it has been shown through the theoretical and time-
domain assessments in this section, the proposed controller
is a good design for a highly perturbed IM, satisfying the
performance and robustness specifications. Moreover, the con-
troller also enables high performance when tested with the real
unperturbed plant (as presented in Section VI).
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IX. NOTE ON INVERTER SWITCHING FREQUENCY

It is known that the inverter switching frequency poses
bandwidth limitations. Care should be exercised when low
switching frequencies are adopted, as done for high-power
medium-voltage industrial IM drives. A reduction in the switch-
ing frequency may restrict switching losses, albeit at the ex-
pense of causing signal delays. These in turn may amplify the
cross coupling of the stator current subsystem [12], [13]. The
performance of synchronous PI controllers was studied in [16]
upon computation and modulation delays. Reference [37] rec-
ommends discrete models to capture the effect of pulsewidth-
modulation delays.

Although the framework afforded by ICAD has proven suc-
cessful to design diagonal controllers for plants featuring high
cross-coupling dynamics [31]–[33], the effect of time delays
associated to low switching frequencies has not been analyzed
yet. This opens the door for future investigation.

X. CONCLUSION

The control of the stator current subsystem of three-phase
IMs for high-performance applications has been thoroughly
studied and assessed. Through the framework afforded by
ICAD, it has been possible to:

• formally state the requirements for the stability and ro-
bustness of stator current decentralized linear control
systems in a stationary reference frame;

• design simple decentralized controllers exhibiting a high
degree of robustness and performance; and

• measure the cross coupling of the system through the
interpretation of ICAD’s MSF.

Through the analyses presented in this paper, it has been
clearly shown that the stator current subsystem can be con-
trolled using simple, linear, and decentralized controllers in a
stationary reference frame and is capable of delivering high
performance. For this to be possible, careful attention has to
be paid to specific constraints introduced by the multivariable
nature of the system, the rotor elements, and the rotor angular
speed. By carrying out a truly multivariable analysis, it has
been possible to design decoupling decentralized controllers
that prevent the use of additional decoupling elements. This
simplification of the control system makes the proposed phi-
losophy a suitable option for industrial applications.

The theoretical analysis presented in this paper has been
supported by real-time experimental work. Through the ex-
perimental results, the importance of achieving an appropriate
electrical subsystem control has been elucidated. It has been
shown that this directly affects the performance of the outer-
loop speed or position FOC controllers. The key characteristics
of the proposed strategy can be summarized as follows:

• It is a simple design methodology based on classical
control.

• It is applicable to any IM.
• It is based on stationary frame coordinates and does

not require additional decoupling or signal conditioning
elements.

• It is comparable in complexity with stationary frame PI
control, but it yields higher performance.

• It is suitable for low- or high-bandwidth requirements.

APPENDIX

The IM parameters have been obtained following the iden-
tification exercise in [34], i.e., Rs = 16.2 Ω, Rr = 23.2 Ω,
Ls = 1.44 H , Lr = 1.5 H , Lm = 1.42 H, and P = 2.
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