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Design of Multi-Band Digital Filters and Full-Band
Digital Differentiators Without Frequency Sampling

and Iterative Optimization
Masayoshi Nakamoto, Member, IEEE, and Shuichi Ohno, Senior Member, IEEE

Abstract—Most design problems of digital filters (or differen-
tiators) are formulated with a set of grid point in the frequency
region (frequency sampling). These problems are usually difficult
to solve, and often require iterative optimization. The objective of
this paper is to provide an efficient and simplified design approach
to multi-band filters (including low-pass filters or high-pass filters)
as well as full-band differentiators. The proposed method does not
require frequency sampling and iterative optimization to compute
the coefficients of the filters or that of the differentiators. The mag-
nitude and phase specifications are simultaneously approximated,
and the errors in the specified frequency bands are controlled by
using frequency-weighting factors. In addition, a maximum pole
radius, which corresponds to a stability margin, can be specified
to robustly ensure the stability of the filters or the differentiators.
To evaluate the efficiency of proposed method, we compare the
proposed method with several established methods. Simulation
results show that, although the propose method does not utilize
frequency sampling and iterative optimization, the designed filters
and differentiators have sufficient performance.

Index Terms—Full-band digital differentiators, infinite impulse
response (IIR) filters, maximum pole radius, multi-band digital
filters, no frequency sampling, no iterative optimization.

I. INTRODUCTION

D IGITAL filters are essential elements of signal processing
and have many applications in industrial electronics such

as automatic control, communications engineering, and power
system. A lot of papers on digital filters have been published in
various journals [1]–[17], and the descriptions of digital filters
are usually introduced in reference books [18]–[20]. According
to the difference of structures, digital filters can be classified
into two types; finite impulse response (FIR) filters [6], [14]–
[17] and infinite impulse response (IIR) filters[2]–[5], [7]–[13].
Although FIR filters can achieve the exact linear phase property
by the symmetrical coefficients and the guaranteed stability, the
order of FIR filters is generally higher than that of IIR filters
to reach the comparable accuracy. On the other hand, since the
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transfer function of IIR filters has the denominator polynomial,
the location of the poles (stability condition) must be consid-
ered in the case of IIR filter design. In addition, to accom-
plish a simultaneous approximation for magnitude and phase
responses, the problem needs a complex approximation which
is generally more complicated than that of FIR filter design.

The impulse invariance method and the bilinear z transform
method are well known as typical design methodologies for IIR
filters [18]–[20]. Since the methods above are accomplished by
transforming analog prototype filters (e.g., Butterworth filter
and Chebyshev filter) to its equivalent digital filters, they are
referred to as indirect methods. For convenience, we categorize
the existing methods as in [2]–[5], [7]–[13] into direct methods
for differentiating them from the indirect methods. One of
the advantages of direct methods is to specify the arbitrary
magnitude responses and phase characteristics (group delay).
Hence, various types of filters with approximately linear phase
can be derived by using direct methods. A prescribed maxi-
mum pole radius can also be given in order to achieve robust
stability [7]. Consequently, direct methods demonstrate several
functional advantages over indirect methods. However, the cost
function usually requires a discrete set of frequency points:
Ωd = {ω′

1, ω
′
2, . . . , ω

′
M} where M indicates the number of the

sampled points on the frequency region. (In this paper, this will
be referred to as frequency sampling). One has to decide the
appropriate M by taking into account the tradeoff between the
computation cost and the performance.

The problems of IIR filter design by direct methods are
often nonlinear optimization problems due to the presence of
denominator polynomial in the approximation error. To solve
the problem with stability constraints, the well-structured op-
timization schemes (e.g., quadratic programming [4], [7], and
second-order cone programming [12]) have often been applied.
Generally, direct methods require frequency sampling and/or
iterative optimization. Due to the difficulty of the IIR filter
design, several heuristic approaches to filter design have been
proposed in [5], [9]–[11]. Although heuristic approaches have
been successfully employed in filter designs, similar to some di-
rect methods, heuristic approaches demand frequency sampling
and iterative optimization. Also, some initial parameters such as
population size, crossover rate, and mutation rate should often
be selected by trial-and-error in order to have a good solution.
Furthermore, the search performance of heuristic approaches
generally depends on the size of problem. When the order of
the filter is higher, the size of problem is increased. Then, it
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may be difficult to get a good result by heuristic approaches.
Although direct methods and heuristic approaches are mainly
studied in the field of digital filter design, indirect methods are
still introduced as the representative of IIR filter design even in
the recent technical books [18]–[20]. The reason may be that
indirect methods do not require any complicated programming
and the selection of initial parameters.

Digital differentiators are also an important class of digital
filters, and several related works and applications have been
published (see [3], [12], [21], [22] and the references therein).
In this paper, we treat not only multi-band digital filters which
include low-pass filters or high-pass filters but also full-band
digital differentiators because they are well used in various
situations. We show that the cost function can be expressed
in a quadratic form with respect to the coefficients of the
transfer function. It should be noted that the matrices associated
with the quadratic forms are straightforward derived and the
elements of the matrices can be integrable; hence, frequency
sampling is not necessary in order to compute the matrices.
Moreover, we introduce a novel optimization method without
frequency sampling and iterative optimization, which is based
on the newly proposed scheme: relaxation of pole constraints
and partial optimization. Since our method does not require
iterative optimization, then the selection of the initial point
as well as the definition of the step size and the judgment of
convergence is not necessary. Nevertheless, designers can spec-
ify the maximum pole radius and regulate the approximation
error by frequency-weighting factors. Basically, the proposed
scheme is for the IIR filter designs. However, if the order of
denominator polynomial is 0, an FIR filter can be obtained.

The rest of this paper is organized as follows. We formulate
the design problem of multi-band filters and full-band differen-
tiators without frequency sampling in Section II. The proposed
design scheme which does not require frequency sampling and
iterative optimization is presented in Section III. To validate
the proposed method, several design examples to compare our
method with the existing methods are shown in Section IV.
Finally, we give a conclusion in Section V.

II. FORMULATION OF DESIGN PROBLEM WITHOUT

FREQUENCY SAMPLING

Let an input signal of the digital filter (differentiator) be
u(q) and its output signal be y(q). Assume that u(q) and y(q)
are both discrete signals which are sampled with the sampling
period of Ts [s] in the time domain. Then, we have a difference
equation

y(q) = −
m∑

k=1

aky(q − k) +

n∑
l=0

blu(q − l) (1)

where ak and bl are the filter coefficients, and m and n are the
orders of the filter (differentiator). Using the z-transformation
of (1), we have a transfer function

H(z) =
B(z)

A(z)
=

n∑
l=0

blz
−l

m∑
k=0

akz−k

(2)

with a0 = 1. Since the sampling period is Ts [s], we consider
the range of frequency 0 ≤ f < 1/(2Ts) [Hz].

Here, ω = 2πfTs and ω ∈ [0, π). Let the desired frequency
response be Hd(ω) which is specified in 0 ≤ ω < π. Now, let
z = ejω in (2) where j2 = −1. Then, we consider the problem
that approximates Hd(ω) with the rational transfer function
H(ω). Here, the denominator polynomial A(ω) of order m and
the numerator polynomial B(ω) of order n are, respectively
expressed as

A(ω) =

m∑
k=0

ake
−jkω (3)

B(ω) =

n∑
l=0

ble
−jlω. (4)

Also, we define

a := [a0, a1, . . . , am]T , a0 = 1 (5)

b := [b0, b1, . . . , bn]
T (6)

where the superscript T indicates the transposition of the matrix
(vector).

Let the complex error function be E(ω) = Hd(ω)−H(ω).
The problem of filter design is formulated to minimize the
cost function of E(ω). Now, let the weighting function be
W (ω) with W (ω) ≥ 0. For example, the weighted L2 cost
function is defined by

∫ π

0 W (ω)|E(ω)|2dω. Actually, with a
discrete set of frequency points Ωd = {ω′

1, ω
′
2, . . . , ω

′
M}, then,

the weighted L2 cost function has to be approximated as∑
ω∈Ωd

W (ω)|E(ω)|2. This implies that frequency sampling
is needed to solve the problem. In practice, the integral of
the weighted L2 cost function can be numerically computed
by using discrete approximation (numerical integration). Since
the main purpose of this work is to develop an easy-to-use
alternative, we do not utilize frequency sampling.

Now, let us consider the cost function

J(a, b) =

π∫
0

W (ω) |Hd(ω)A(ω)−B(ω)|2 dω. (7)

Similar to the other cost functions, the cost function (7) gets
to 0 when Hd(ω) is well approximated by A(ω) and B(ω).
Mullis and Roberts [2] introduced a method that approximates
a given impulse response with A(ω) and B(ω) by minimizing
(7), where W (ω) = 1 for ∀ω ∈ [0, π). Since the ideal response
is given by the impulse response, this is a filter design scheme
in the time domain. In this paper, we treat an approximation
problem of digital filter (differentiator) not in the time domain
but in the frequency domain by using the cost function (7). We
prove an integrability result in (7) for the design of multi-band
digital filters and full-band digital differentiators. Accordingly,
we derive the quadratic form of the cost function without
frequency sampling.
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A. Multi-Band Digital Filters

First, let us consider the multi-band (N -band) filters. We
define the desired response such that

Hd(ω) = F (ω) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G1e

−jτ1ω, ω1 ≤ ω < ω2

G2e
−jτ2ω, ω2 ≤ ω < ω3

...

GNe−jτNω, ωN ≤ ω < ωN+1

(8)

where ω1, ω2, . . . , ωN+1 correspond to the band edge frequen-
cies, G1, G2, . . . , GN are the filter gains, and τ1, τ2, . . . , τN
are the desired group delays in the each band. We assume Gi

and τi to be non-negative real values. It is natural that F (ω)
includes the desired response of low-pass filters or high-pass
filters.

Now, we assume the weighting function is

W (ω) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W1, ω1 ≤ ω < ω2

W2, ω2 ≤ ω < ω3
...

WN , ωN ≤ ω < ωN+1

(9)

where W1,W2, . . . ,WN are frequency-weighting factors and
non-negative real values. As Wi gets larger, improved accu-
racy in ωi ≤ ω < ωi+1 is achieved. Since 0 ≤ ω < π, we set
ω1 = 0 and ωN+1 = π. Note that Gi = N/A and τi = N/A
if Wi = 0, and τi = N/A if Gi = 0. Here, N/A stands for
“not applicable.”

Substituting (3), (4), (8), and (9) into (7), we obtain

J(a, b) =
N∑
i=1

Wi

ωi+1∫
ωi

Φi(ω)dω (10)

where

Φi(ω) =

∣∣∣∣∣Gie
−jτiω

m∑
k=0

ake
−jkω −

n∑
l=0

ble
−jlω

∣∣∣∣∣
2

. (11)

Using Euler’s formula, (11) can be modified to

Φi(ω) =G2
i

m∑
k=0

m∑
k′=0

akak′ cos [(k − k′)ω]

− 2Gi

m∑
k=0

n∑
l=0

akbl cos [(k − l + τi)ω]

+

n∑
l=0

n∑
l′=0

blbl′ cos [(l − l′)ω] . (12)

Then, substituting (12) into (10), we have

J(a, b) =

m∑
k=0

m∑
k′=0

akak′Pk,k′ + 2

m∑
k=0

n∑
l=0

akblQk,l

+
n∑

l=0

n∑
l′=0

blbl′Rl,l′ (13)

where

Pk,k′ =
N∑
i=1

WiG
2
i

ωi+1∫
ωi

cos [(k − k′)ω] dω (14)

Qk,l = −
N∑
i=1

WiGi

ωi+1∫
ωi

cos [(k − l + τi)ω] dω (15)

Rl,l′ =

N∑
i=1

Wi

ωi+1∫
ωi

cos [(l − l′)ω] dω. (16)

Let Pk,k′ , Qk,l and Rl,l′ be the (k, k′) element of P (k,
k′ = 0, 1, . . . ,m), the (k, l) element of Q (k = 0, 1, . . . ,m;
l = 0, 1, . . . , n) and the (l, l′) element of R (l, l′ = 0, 1, . . . , n),
respectively, where P is an (m+ 1)× (m+ 1) matrix, Q is
an (m+ 1)× (n+ 1) matrix, and R is an (n+ 1)× (n+ 1)
matrix. Then, (13) can be expressed in a quadratic form

J(a, b) = aTPa+ 2aTQb+ bTRb (17)

where a and b are, respectively, shown in (5) and (6). We get
the quadratic form (17) with respect to the filter coefficients
(a and b). Here, it should be noted that Pk,k′ , Qk,l, and
Rl,l′ are integrable, and the results are summarized in Table I
without evaluating any integral. Hence, frequency sampling
is not necessary to compute (14)–(16). Also, the elements of
the matrices do not require any complex arithmetic; moreover,
the group delays τi are embedded into Qk,l. The contribu-
tion of the no frequency sampling is not only to achieve
the simplicity but also to improve the design accuracy since
any discrete approximation (or numerical integration) is not
required.

B. Full-Band Digital Differentiators

Next, we consider the full-band differentiators. Since the
response of the differentiators is different from that of the multi-
band filters, we derive the matrices associated with the
quadratic form again. The ideal response is given by

Hd(ω) = D(ω) :=
ω

π
ej(0.5π−τdω), ω1 ≤ ω < ωN+1 (18)

with τd = τs + 0.5, where τs is an integer [3]. We assume ω1 =
0 and ωN+1 = π. The weighting function is the same with (9).

Substituting (9) and (18) into (7), we can write

J(a, b) =

N∑
i=1

Wi

ωi+1∫
ωi

Ψ(ω)dω (19)

where

Ψ(ω) =

∣∣∣∣∣ωπ ej(0.5π−τdω)
m∑

k=0

ake
−jkω −

n∑
l=0

ble
−jlω

∣∣∣∣∣
2

. (20)
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TABLE I
ELEMENTS OF MATRICES IN THE MULTI-BAND FILTERS

Using Euler’s formula again, (20) can be modified to

Ψ(ω) =
ω2

π2

m∑
k=0

m∑
k′=0

akak′ cos [(k − k′)ω]

− 2ω

π

m∑
k=0

n∑
l=0

akbl sin [(k − l + τd)ω]

+

n∑
l=0

n∑
l′=0

blbl′ cos [(l − l′)ω] . (21)

Now, we let

Pk,k′ =
1

π2

N∑
i=1

Wi

ωi+1∫
ωi

ω2 cos [(k − k′)ω] dω (22)

Qk,l = − 1

π

N∑
i=1

Wi

ωi+1∫
ωi

ω sin [(k − l + τd)ω] dω (23)

Rl,l′ =
N∑
i=1

Wi

ωi+1∫
ωi

cos [(l − l′)ω] dω. (24)

Then, substituting (21) into (19), similar to the case of the multi-
band filters, (19) can also be expressed in quadratic form (17),
where the elements of matrices are (22)–(24). Using a partial
integral, Pk,k′ , Qk,l, and Rl,l′ can be evaluated as in Table II
(center column) without computing any integral; hence, fre-
quency sampling is not needed. If W (ω) = 1 for ∀ω ∈ [0, π),
(22)–(24) are simply expressed as in Table II (right column).
Hence, we recommend to refer to Table II (right column) if
W (ω) is not employed.

III. DESIGN SCHEME WITHOUT FREQUENCY SAMPLING

AND ITERATIVE OPTIMIZATION

In this section, we propose a design scheme without
frequency sampling and iterative optimization. First, we de-
fine K = m+ n+ 1. Now, we rewrite (17) by redefining a
(K + 1)-dimensional vector as

x :=

[
a

b

]
=

⎡⎢⎣1, a1, . . . , am, b0, b1, . . . , bn︸ ︷︷ ︸
K components

⎤⎥⎦
T

(25)

and a (K + 1)× (K + 1) square matrix as

S :=

[
P Q
QT R

]
(26)

where m ≥ 1. Note that if m = 0, i.e., A(ω) = 1, we obtain the
FIR digital filter whose coefficients are computed by

bFIR = −R−1[Q00, Q01, . . . , Q0,n]
T . (27)

From (25) and (26) with m ≥ 1, (17) can be written as

J(x) = xTSx (28)

where x ∈ �K+1 and � is a set of the real (continuous)
valued coefficients. It is clear that P = P T and R = RT .
It follows that S is also a symmetric matrix, i.e., S = ST .
Also, it is obvious from (7) that J(x) ≥ 0 since W (ω) ≥ 0 and
|Hd(ω)A(ω)−B(ω)|2 ≥ 0. Hence, S is positive semidefinite.
Now let us discuss the case when J(x) = 0. It follows from
(7) that the cases of J(x) = 0 are equivalent to Hd(ω)A(ω)−
B(ω) = 0 i.e., H(ω) = Hd(ω) or W (ω) = 0 throughout 0 ≤
ω < π. However, this case is hardly ever except for some
special cases: Hd(ω) is constant or zero for ∀ω ∈ [0, π). Hence,
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TABLE II
ELEMENTS OF MATRICES IN THE FULL-BAND DIFFERENTIATORS

we assume in fact that J(x) �= 0, namely, J(x) > 0. Thus, in
this paper, we assume that S is positive definite.

Let us consider the problem which minimizes the quadratic
function under the constraints that the all poles are inside
or on a specified circle C with radius rc where 0 < rc < 1.
The denominator polynomial A(ω) of order m has m poles
denoted by ρ1, ρ2, . . . , ρm. Then, the problem can be defined as
follows:

min
x

xTSx (29a)

subject to max {|ρ1|, |ρ2|, . . . , |ρm|} ≤ rc (29b)

where x ∈ �K+1. Equation (29b) indicates the stability con-
straints with prescribed stability margin.

To ensure the stability, for example, the positive realness of
denominator, i.e., Re{A(ω)} > 0, is applied [3], [4]. However,
to achieve the positive realness, a discrete set of A(ω) for
ω ∈ Ωd is necessary. This means that frequency sampling is
also required when using the condition of positive realness.
Also, in [7], Rouché’s theorem with an iteration is employed to
solve the problem. In this section, we propose a new approach
to solve the problem (29) without using frequency sampling and
iterative optimization.

A. Relaxation of Pole Constraints

Since problem (29) is hard to solve, we first relax (or
neglect) the pole constraints (29b), which will be referred
to as relaxation of pole constraints. After the relaxation of
pole constraints, we force the pole constraints on the relaxed

problem. Then, the problem with relaxation of pole constraints
is expressed as

min
x

xTSx (30a)

subject to

⎡⎢⎣1, 0, 0, . . . , 0︸ ︷︷ ︸
K components

⎤⎥⎦x = 1 (30b)

where x ∈ �K+1. The constraint (30b) indicates a0 = 1.
We define the vector obtained by deleting the first element of

x be v, i.e.,

x =

[
1

v

]
(31)

where

v :=

⎡⎢⎣a1, a2, . . . , am, b0, b1, . . . , bn︸ ︷︷ ︸
K components

⎤⎥⎦
T

. (32)

That is, v is the K-dimensional vector and v ∈ �K . We define
the first row except for the first element of S as q and let the
matrix obtained by deleting the first row and column of S be
R. Then, q is a 1×K matrix, R is a K ×K matrix, and S can
be written as

S =

[
P00 q

qT R

]
. (33)

Substituting (31) and (33) into (28), we can write

J(v) = P00 + 2qv + vTRv. (34)
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Then, the problem (30) can be changed to an unconstrained
problem

min
v

2qv + vTRv (35)

where v ∈ �K . Differentiating (34) with respect to v, we have

∂J(v)

∂v
= 2qT + 2Rv. (36)

By equating the result of (36) to 0, where 0 is a zero matrix of
appropriate dimension, the solution v∗ that minimizes (34) can
be obtained as

∂J(v)

∂v

∣∣∣∣
v=v∗

= 0. (37)

It follows from (36) and (37) that

v∗ = −R
−1
qT . (38)

Now, we denote [
a∗

b∗

]
=

[
1

v∗

]
(39)

where a∗ is an (m+1) dimensional vector and b∗ is an (n+1)
dimensional vector. Since the elements of a∗ correspond to
the denominator coefficients, we can compute the temporary
poles from a∗. (The elements of b∗ are not used in this step).
When the order of the denominator polynomial is m, we get m
temporary poles denoted by ρ∗1, ρ

∗
2, . . . , ρ

∗
m. Also, let the radius

and angle of ρ∗k be |ρ∗k| and θ∗k, respectively, i.e.,

ρ∗k := |ρ∗k| ejθ
∗
k , k = 1, 2, . . . ,m. (40)

B. Replacement of Poles

Without loss of generality, we assume the poles ρ∗1, ρ
∗
2,

· · · , ρ∗m are simple. Then, with a partial fraction expansion on
the proper rational part of (2), H(z) can be written as

H(z) =

m∑
k=1

H̃k

(
ρ∗kz

−1
)
+

n−m∑
k=0

βkz
−k (41)

where

H̃k(α) =
γk

1− α
(42)

and the second term in (41) can be obtained if n ≥ m [19].
Here, suppose that a pole ρ∗λ is outside C. Let the new

pole be ρλ which is located on C. Then, let us consider how
to choose ρλ which minimizes the influence caused by the
movement from ρ∗λ to ρλ. We define an absolute difference
between H̃λ(ρλz

−1) and H̃λ(ρ
∗
λz

−1) as

ΔH̃λ(z) :=
∣∣∣H̃λ(ρλz

−1)− H̃λ

(
ρ∗λz

−1
)∣∣∣ . (43)

It follows from (41)–(43) that ΔH̃λ(z) is an absolute error of
H(z) due to the movement from ρ∗λ to ρλ.

Now, H̃k(ρkz
−1) can be linearized with a Taylor series

around ρ∗kz
−1 such that

H̃λ(ρλz
−1) 
 H̃λ

(
ρ∗λz

−1
)
+
(
ρλz

−1 − ρ∗λz
−1
)
H̃

(1)
λ

(
ρ∗λz

−1
)

(44)

where H̃
(1)
λ (α) is the first derivative of H̃λ(α). According to

(43) and (44), we have

ΔH̃λ(z) 

∣∣∣H̃(1)

λ

(
ρ∗λz

−1
)∣∣∣Δρλ (45)

where

Δρλ = |ρλ − ρ∗λ| (46)

which is the distance between ρλ and ρ∗λ. It follows from
(45) that ΔH̃λ(z) can be nearly minimized by selecting ρλ
which minimizes (46). Hence, we choose ρλ so that ρλ is
the nearest point on C from ρ∗λ in the sense of Euclidean
distance. Moreover, in order to minimize the total influence
due to the movement of poles, we apply the above principle
to the replacement of the other poles. That is, the new poles are
obtained by setting

ρk =

{
rce

jθ∗
k , if |ρ∗k| > rc

ρ∗k, otherwise
(47)

for k = 1, 2, . . . ,m. Hence, in (40), |ρ∗k| is changed to rc
without changing θ∗k if ρ∗k is placed outside C. It is obvious that
the new poles satisfy

max {|ρ1|, |ρ2|, . . . , |ρm|} ≤ rc. (48)

With the new poles ρ1, ρ2, . . . , ρm, we obtain

(1− ρ1z
−1)(1− ρ2z

−1) · · · (1− ρmz−1)

= 1 + a1z
−1 + a2z

−2 + · · ·+ amz−m (49)

where 1, a1, a2, . . . , am are new denominator coefficients. We
put the vector of the new denominator coefficients as

a := [1, a1, a2, . . . , am]T . (50)

Therefore, all poles of the polynomial with the coefficients (50)
can be placed inside or on the specified circle C as in (48).
Thanks to the replacement rule (47), the new denominator
coefficients (50) are also real. rc should be selected based on
the stability margin. The stability margin is enlarged as rc is
small. However, rc is a constraint in the filter design. Hence,
it should be noted that there is a tradeoff between the stability
margin and the performance.

C. Partial Optimization

When using the replacement rule (47), the denominator
coefficients are changed from a∗ to a. This leads to a loss of
the optimality of the solution in the sense of minimizing (7),
i.e., J(a, b∗) ≥ J(a∗, b∗), even if the influence caused by the
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Fig. 1. Relaxation of pole constraints and partial optimization.

change of the poles is minimized. Hence, we can get a new b
by solving a constraint problem

min
x

xTSx (51a)

subject to [Im+1 0]x = a (51b)

where Im+1 is an (m+ 1)-dimensional unit matrix, and x ∈
�m+n+2. In [13], an optimization scheme is presented based
on the Lagrange multiplier method under the fixed denominator
coefficients (50). In this paper, we show a different solution by
a direct differentiation. Here, we regard (51) as a problem of
partial optimization; i.e., we partially optimize the last n+ 1
components of x, which corresponds to b.

Now, we assume that a is a constant vector independent of b,
and substitute a into (17). It follows that the problem (51) can
be changed to an unconstrained problem:

min
b

2aTQb+ bTRb (52)

where b ∈ �n. Differentiating J(a, b) with respect to b, we
have

∂J(a, b)

∂b
= 2Rb+ 2QTa. (53)

Let the solution of (52) be b, and equating the result of (53) to
0, i.e.,

∂J(a, b)

∂b

∣∣∣∣
b=b

= 0. (54)

It follows from (53) and (54) that

b = −R−1QTa. (55)

Thus, the numerator coefficients (the elements of b) are
obtained by the denominator coefficients (the elements of a)
which correspond to the poles ρ1, ρ2, · · · , ρm. If a = 1
(m = 0), (55) is equivalent to (27). Notice that b is obtained
as the optimal solution of (52). On the other hand, b∗ is no
longer the optimal solution of (52) due to the replacement
of pole. This yields J(a, b) ≤ J(a, b∗). Hence, (55) indicates
the replacement of zeros when the denominator coefficients
of H(z) are fixed as (50). Fig. 1 illustrates the procedure of
our method including the relationship of the relaxation of pole
constraints and the partial optimization.

Our strategy is summarized as follows. First, (i) we neglect
the pole constraints (29b) and compute the temporary poles
ρ∗1, ρ

∗
2, · · · , ρ∗m from a∗ which is obtained from (38) and

(39). Next, (ii) we replace the poles according to (47) with rc,
and get a (the denominator coefficients) as in (49) and (50)
so that the degradation of H(z) can be minimized. Finally,
(iii) we compute b (the numerator coefficients) by (55), i.e.,
replace the zeros, in order to cancel the degradation of H(z)
which is caused by the movement of the poles. Then, it is
preferable that the number of zeros is more than that of poles.
According to [7], it is advantageous to choose n ≥ m since
the poles ideally contribute only to the pass-bands, while zeros
contribute to the pass-bands as well as to the stop-bands. Hence,
our recommendation is to set n ≥ m. Also, our optimization
scheme does not require the decision of an initial point and
a termination condition of the iteration. Since the proposed
method initially obtains a stable IIR filter, the solution may be
used as an initial solution to some other iterative methods.

IV. DESIGN EXAMPLES

In this section, to evaluate the performance of our method,
we present design examples of a two-band filter (Example 1)
and a full-band differentiator (Example 2). We provide the
comparisons between our method and the recently developed
method [12] which needs frequency sampling and iterative
optimization. We use the corresponding coefficients of the filter
(or the differentiator) which are reported in [12]. Additionally,
we present the comparisons with the indirect method in
Example 3 and Example 4. The design algorithm is implemented
by MATLAB1 program. For the factorization of polynomials
(the computation of the poles ρ∗1, ρ

∗
2, · · · , ρ∗m from a∗) and

the computation of (49), we use roots function and poly
function of MATLAB, respectively.

A. Example 1

We design a two-band filter [8], [12] whose desired response is

Hd(ω) =

{
e−j14.3ω, 0 ≤ ω ≤ 0.46π
0.5e−j20ω, 0.54π ≤ ω < π.

This is a good benchmark of multi-band filters since the gains
and the group delays are, respectively, different in each band.
We compare the proposed method with the existing method
[12]. Similar to [12], we set m = 6, n = 24. The parameters
are set to N = 3, ω1 = 0, ω2 = 0.46π, ω3 = 0.54π, ω4 =
π, W1 = 1, W2 = 0, W3 = 1, G1 = 1, G3 = 0.5, τ1 = 14.3,
τ3 = 20, and rc = 0.945. We compute the coefficients of the
multi-band filter by using Table I. Comparison results of the
magnitude responses and the group delays for the proposed and
the existing method are depicted in Fig. 2. The values of (7)
are computed as 8.8131e − 06 (our method) and 6.0871e −
04 (existing method), respectively. It can be observed from
Fig. 2 that our method achieves a good performance despite no
iterative optimization; however, the peak error is relatively large
around the band-edge. The peak errors in the existing method

1MATLAB is a trademark of The MathWorks Inc.
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Fig. 2. Magnitude responses (left) and group delays (right) of our method (solid line) and the existing method (dashed line) in Example 1.

Fig. 3. Magnitude responses (left) and group delays (right) of our method (solid line) and the existing method (dashed line) in Example 2.

Fig. 4. Magnitude responses in dB (left) and group delays (right) of our method (solid line) and the Butterworth filter (dashed line) in Example 3.

are small in all the bands since the mini-max cost function is
utilized. The peak errors in our method can be controlled by
frequency-weighting factors. The obtained denominator coeffi-
cients of our filter are 1.0000e + 00, 7.8045e − 01, 1.5962e +
00, 9.6900e − 01, 6.7258e − 01, 2.5051e − 01, 5.0615e −
02. The corresponding numerator coefficients of our filter are
−1.5049e− 03, 6.1225e − 04, 2.4457e − 03, −1.0805e− 03,
−3.8799e− 03, 1.8924e − 03, 6.2132e − 03, −3.4534e− 03,
−1.0451e− 02, 7.0278e − 03, 1.9757e − 02, −1.8302e− 02,
−4.9617e− 02, 9.5702e − 02, 5.0574e − 01, 1.0158e + 00,
1.3137e + 00, 1.2174e + 00, 7.9762e − 01, 2.5466e − 01,
2.6172e − 01, −1.7748e− 01, 1.3184e − 01, −6.2149e− 02,
1.5710e − 02.

B. Example 2

We consider a full-band digital differentiator. The desired
response is given by

Hd(ω) =
ω

π
ej(0.5π−τdω), 0 ≤ ω < π

TABLE III
MAXIMUM OF |eR(ω)| FOR 0 ≤ ω ≤ 0.2π AND ATTENUATION FOR

ω = 0.3π IN OUR FILTER AND THE BUTTERWORTH FILTER

where τd = 14.5 in [3], or τd = 15.5 in [12]. Let us compare
the proposed method with the existing method [12]. The orders
of the digital differentiator are set to m = n = 17, which are
the same as that of the existing method. We consider a case
without weighting function (W (ω) = 1 for ∀ω ∈ [0, π)). The
parameters are chosen as τs = 15 and rc = 0.95. The coeffi-
cients of the digital differentiator are computed by Table II
(right column). We obtain the results as given in Fig. 3 including
a comparison with the existing method. The values of (7) are
computed as 5.1139e − 08 (our method) and 5.4123e − 05
(existing method), respectively. From Fig. 3 (left), it is hard to
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Fig. 5. Magnitude responses in dB (left) and group delays (right) of our method (solid line) and the Chebyshev filter (dashed line) in Example 4.

distinguish the difference between both methods; that is, the
performance of two methods is almost similar. Also, it can be
observed from Fig. 3 (right) that the group delay of the filter has
a large error near the origin. However, as suggested in [12], the
error can be neglected since the magnitude on the frequencies
near the origin is almost 0. Hence, we suppose the proposed
method achieves sufficient precision in terms of both the magni-
tude and phase for the design of full-band digital differentiators.
The computed denominator coefficients of our differentiator are
1.0000e + 00, 1.0392e + 00, 6.4672e − 02, −1.0359e− 02,
3.4195e − 03, −1.6186e− 03, 7.8603e − 04, −5.4738e− 04,
2.6896e − 04, −2.6822e− 04, 1.0565e − 04, −1.6692e− 04,
3.9786e − 05, −1.2265e− 04, 9.1465e − 06, −1.0122e− 04,
−5.8285e− 06, −9.1989e− 05. The corresponding numer-
ator coefficients of our differentiator are −6.1187e− 05,
7.3065e − 05, −8.8414e− 05, 1.0864e − 04, −1.3589e− 04,
1.7359e − 04, −2.2738e− 04, 3.0707e − 04, −4.3073e− 04,
6.3412e − 04, −9.9499e− 04, 1.7047e − 03, −3.3232e− 03,
7.9875e − 03, −2.8789e− 02, 3.5965e − 01, 1.2783e − 02,
−3.4940e− 01.

C. Example 3

We demonstrate the comparison with a Butterworth filter
designed by bilinear z transform in the design of low-pass
filter. The specifications of the low-pass filter are given as
follows [19].

1) passband cutoff frequency: 0.2π
2) passband ripple: 1 dB (
0.1087)
3) stopband cutoff frequency: 0.3π
4) stopband attenuation: 15 dB.
In order to satisfy the given specifications, the required orders

of the Butterworth filter are m = n = 6. Hence, we also set the
orders of our filter to m = n = 6. We compute the coefficients
of the low-pass filter based on Table I where N = 3, ω1 = 0,
w2 = 0.2π, w3 = 0.3π, w4 = π, W1 = 20, W2 = 0, W3 = 1,
G1 = 1, G3 = 0, τ1 = 5 and rc = 0.90. Now, the Butterworth
filter (or the Chebyshev filter) satisfies a condition |H(ω)| ≤ 1.
For fair comparison, we normalize the numerator coefficients
of our filter to achieve |H(ω)| ≤ 1 by dividing the initially ob-
tained numerator coefficients by its maximum value of |H(ω)|.
Fig. 4 indicates the comparison of magnitude responses in
dB (left) and group delays (right) between our filter and the
Butterworth filter. Now, let the passband magnitude ripple be
eR(ω) = 1− |H(ω)| for 0 ≤ ω ≤ 0.2π. Then, the maximum

TABLE IV
MAXIMUM OF |eR(ω)| FOR 0 ≤ ω ≤ 0.2π AND ATTENUATION FOR

ω = 0.3π IN OUR FILTER AND THE CHEBYSHEV FILTER

of |eR(ω)| (an index of the accuracy in the passband) and the
attenuation for ω = 0.3π (an index of the cutoff sharpness) in
the both filters are given in Table III. From Table III, our filter
attains the given specifications better than the Butterworth filter.
However, our method is somewhat complex since the weighting
factor W1 should be selected. The obtained denominator coef-
ficients of our filter are 1.0000e + 00, −4.2792e + 00, 8.2187e
+ 00, −8.9523e + 00, 5.8053e + 00, −2.1209e + 00, 3.4104e
− 01. The corresponding (normalized) numerator coefficients
of our filter are 3.5371e − 03, 3.1973e − 03, 2.2648e − 03,
1.1746e − 03, 4.3027e − 04, 3.5923e − 04, 9.4682e − 04.

D. Example 4

In the final example, we show the comparison of our method
with a Chebyshev filter (type I) where the specifications are
the same as in Example 3. Then, the required orders of the
Chebyshev filter are m = n = 4. Hence, we set the orders
of our filter to m = n = 4 to be equal to the orders of the
Chebyshev filter. Similar to Example 3, we normalize the
numerator coefficients of our filter to satisfy |H(ω)| ≤ 1. With
N = 3, w1 = 0, w2 = 0.2π, w3 = 0.3π, w4 = π, W1 = 150,
W2 = 0, W3 = 1, G1 = 1, G3 = 0, τ1 = 7, and rc = 0.92, we
compute the coefficients of the low-pass filter by using Table I.
Fig. 5 shows the comparison of the magnitude responses in dB
and the group delays between the both filters. Table IV shows
the maximum error for 0 ≤ ω ≤ 0.2π and the attenuation for
ω = 0.3π in the both filters. We can see from Table IV that our
filter satisfies the given specifications. Although the attenuation
of our filter is worse than that of the Chebyshev filter, the
phase linearity of our filter is better than that of the Chebyshev
filter due to the simultaneous optimization of the magnitude
and phase responses. The computed denominator coefficients
of our filter are 1.0000e + 00, −2.9994e + 00, 3.6952e + 00,
−2.1826e + 00, 5.1793e − 01. The corresponding (normal-
ized) numerator coefficients of our filter are −6.8320e− 03,
1.8940e − 03, 9.0662e − 03, 1.2536e − 02, 1.1693e − 02.
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V. CONCLUSION

We have formulated the design problems of multi-band
digital filters and full-band digital differentiators. The design
problems are expressed in the quadratic form with respect to
the coefficients of the transfer function. The matrices associated
with the quadratic forms are straightforward derived and it can
be computed without any frequency sampling. Subsequently,
we have proposed the novel design strategy with the relaxation
of pole constraints and the partial optimization, which also does
not require frequency sampling. Moreover, the scheme does
not need iterative optimization. Since the prescribed stability
margin can be given, the filters and differentiators designed
by our method have robust stability. We have evaluated the
performance of our method by comparing with the recently
developed method, from which we can conclude that our
method has comparable performance with the existing method.
Hence, we have succeeded in providing the new easy-to-use
option to design multi-band digital filters and full-band digital
differentiators.
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