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Abstract—The accelerometers are commonly applied to
measure the vibrations in the fields of motion control and
precision measurement, whose sensitivities are essentially
important to their applications. The vibration calibration is
utilized to determine their sensitivities before they are used
or after a period of time. At present, the Nyquist sampling
(NS), bandpass sampling (BPS), and mixer and low-pass
filter sampling (MLPFS) based heterodyne laser interferom-
etry are widely utilized to accomplish the vibration calibra-
tion. Compared with the NS method, the latter two methods
can significantly reduce the sampling rate and extend the
calibration frequency range. However, the BPS method has
to adopt the complex algorithm and prior information so as
to get its sampling rate, and the MLPFS method is inevitably
influenced by an extra phase delay. In this article, a novel
heterodyne laser interferometry is investigated to simulta-
neously determine the sensitivity magnitude and phase of
the accelerometers with high accuracy in a wide frequency
range. This method significantly eliminates the phase de-
lay by introducing an appropriate symmetric differential
demodulation strategy, which can improve the sensitivity
phase calibration accuracy, especially at higher frequen-
cies. The comparison experiments with the Earth’s grav-
itation and monocular vision methods at low frequencies
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and the traditional MLPFS and NS methods confirm that
the investigated method can calibrate the sensitivity mag-
nitude and phase of accelerometers with the uncertainties
of about 0.5% and 0.5° in the range from 0.1 Hz to 20 kHz.

Index Terms—Accelerometers, heterodyne laser interfer-
ometry (TLI), sensitivity phase, symmetric differential de-
modulation (SDD), vibration calibration.

I. INTRODUCTION

THE different types of accelerometers, such as piezoelectric,
optomechanical, and micro-electro-mechanical systems

(MEMS) have been increasingly used in the applications of
seismic warning, civil structural health testing, rail and machine
health motioning, medical assistance diagnosing, etc. [1], [2],
[3], [4]. The sensitivities of the accelerometers are taken as preci-
sion known values in the applications, which directly determines
the validity of their measurement data. In order to guarantee the
performance of these applications, the accelerometers must be
accurately calibrated. Therefore, it is very important to develop
an appropriate vibration calibration method for determining the
sensitivities of accelerometers in a wide frequency range.

Currently, the laser interferometry (LI) recommended by the
International Standard Organization (ISO) [5], [6] is the pre-
ferred method to calibrate the accelerometers. The LI can be di-
vided into the two types of homodyne laser interferometry (MLI)
and heterodyne laser interferometry (TLI) by the difference of
used interferometer. The MLI uses two mutually orthogonal
signals that contain the excitation displacement to accomplish
the calibration of the accelerometers, which is able to obtain a
considerable accuracy in a relatively wide frequency range and
its lower frequency can be easily less than 1 Hz [7], [8], such
as Veldman [9] presented the MLI based on phase unwrapping
method to calibrate the accelerometers, whose uncertainty is
less than 1.5% in the range of 10 Hz–10 kHz. Lee et al. [10]
used the harmonic components of a homodyne interference
signal to achieve the sensitivity phase calibration, which can
get the uncertainty of 0.25° in the range of 40 Hz–10 kHz.
Garg et al. [11] utilized the discrete Fourier transform-based
MLI to calibrate the accelerometers, and its accuracy can reach
1.4% at frequencies between 0.1 Hz and 20 kHz. Scott and
Dickinson [12] investigated an MLI that considers the distortion
effects in the low-frequency calibration, whose uncertainty is
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limited to 0.2% in the 0.5–20 Hz. D’Emilia et al. [13] provided
a flexible MLI to calibrate the triaxial accelerometer, whose
accuracy is about 2%. However, affected by the signal fading
and nonlinearity, the MLI failed to determine the sensitivities at
the cutoff frequencies of its wide frequency range accurately.

Compared with the MLI, the TLI is increasingly applied to
the wide frequency-band vibration calibration because of its
advantages in high displacement measurement accuracy, wide
dynamic range, low nonlinearity, etc. [14], [15]. The TLI uses a
laser interference signal with high carrier frequency to measure
the excitation displacement, which has gradually become the
hotspot in the vibration calibration [16], [17]. Sun et al. [18]
proposed a TLI with the modified sine approximation method
(SAM) to calibrate the sensitivity magnitude and phase, which
is able to get the accuracy of 1% and 1° in the range of
10 Hz–10 kHz, respectively. Yang et al. [19] investigated a
TLI that is based on the bandpass sampling (BPS) theorem
to efficiently measure the excitation displacement in the range
from 5 Hz to 20 kHz, whose amplitude and phase standard
deviations are superior to 0.1% and 0.1°. Wang et al. [20] im-
proved the performance of the TLI by considering the influences
of periodic nonlinear errors, whose displacement measurement
accuracy can highly reach 0.1 nm. Zhai et al. [21] utilized
the TLI to calibrate the accelerometers at medium frequencies
with especially high acceleration, and its accuracy is approxi-
mately 0.3%. Yang et al. [22] used the TLI to accomplish the
vibration calibration at ultrahigh frequencies, which can get a
similar accuracy compared with most of the National Physical
Laboratories. Additionally, Yang et al. [14] applied the TLI
with three interferometers to calibrate the triaxial accelerometer,
whose accuracies both for the axial and transverse sensitivities
are considerable in the range from 5 Hz to 1.6 kHz. In recent
two years, the TLI was gradually applied to calibrate the digital
accelerometers, whose scale factor and phase-shift calibration
accuracies can highly reach 0.2% and 0.1°, respectively [23],
[24]. Although the TLI can accomplish the vibration calibration
in a relatively wide frequency range, its calibration accuracy and
frequency range are usually contradictory.

The calibration performance of TLI depends on its excitation
measurement accuracy, which is related to the acquisition and
demodulation of the heterodyne laser interference signal [14].
Currently, the commonly used acquisition methods include the
Nyquist sampling (NS) method, the BPS method, and the mixer
and low-pass filter sampling (MLPFS) method [14], [18], [19].
The NS method is easy to accomplish the high-frequency vi-
bration calibration with high accuracy, while its frequency is
limited. Although the BPS method can achieve the calibration
in the wide frequency band without any extra analog devices,
it requires a complex sampling rate calculation method and a
special acquisition card [25]. The MLPFS method utilizes the
analog devices to accomplish the wide frequency-band vibration
calibration; whose accuracy and efficiency are appropriate [18].
This method is the most widely used and recommended by
the different National Institutes of Metrology because of its
simplifying nature and flexibility; however, its sensitivity phase
is significantly affected by the analog low-pass filter when the

Fig. 1. Schematic drawing of SDD-based heterodyne interferometry
calibration system for the accelerometers in the wide frequency range.

frequency is higher than 5 kHz [19]. Additionally, the phase
unwrapping and SAMs that are used for the demodulation are
optimal, which have been proven by several relevant pieces of
literature [26], [27].

To improve the calibration accuracy of the TLI, especially
for the sensitivity phase at higher frequencies, a new TLI that
is based on symmetric differential demodulation (SDD) is in-
vestigated. This method is easily able to eliminate the influence
of used analog devices on the sensitivity phase calibration via
adopting the SDD strategy, whose calibration frequency can be
lower than 1 Hz and up to tens of kHz. Compared with the TLI
with the BPS method in our previous articles [14], [19] and the
TLI with the NS and MLPFS methods reported by many pieces
of literature and recommended by ISOs, the investigated method
presents better comprehensive performances in calibration accu-
racy and efficiency as well as the frequency range. Additionally,
the calibration uncertainties of the investigated method for the
sensitivity magnitude and phase in the wide frequency range are
also evaluated [28], [29], [30], [31].

The rest of this article is organized as follows. Section II
depicts the calibration system of the SDD-based heterodyne
interferometry. In Section III, the principle of the SDD-based
heterodyne interferometry used for calibrating the sensitivity
magnitude and phase of the accelerometers is described in
detail. Several experimental verifications and results analysis
are provided in Section IV. Section V gives the corresponding
error sources and calibration uncertainty. Finally, Section VI
concludes this article.

II. SDD-BASED HETERODYNE INTERFEROMETRY

CALIBRATION SYSTEM FOR THE ACCELEROMETERS

Fig. 1 describes a schematic diagram of an SDD-based TLI
calibration system for determining the sensitivity magnitude and
phase of the accelerometers in the wide frequency range. A
shaker provides the vibration excitation in the wide frequency
range with specific amplitudes for the accelerometer under test
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Fig. 2. Flowchart of SDD-based TLI used for the sensitivity magnitude and phase calibration of accelerometers in the wide frequency range.

(AUT). The AUT is firmly mounted on the center of the shaker’s
working surface, which has consistent excitation with this work-
ing surface. A heterodyne interferometer that can directly output
the original laser interference signal and reference signal simul-
taneously is used to measure the excitation acceleration of the
AUT, whose laser beam is focused vertically onto the center of
the AUTs surface.

Two same types of analog mixer and low-pass filter (MLPF)
transform the original laser interference signal and reference
signal into the low carrier frequency interference signal and low-
frequency reference signal, respectively. The data acquisition
(DAQ) card is applied to collect the transformed interference
and reference signals as well as the output signal of the AUT
simultaneously. The excitation acceleration of the AUT is got
by processing the collected interference and reference signals.
Ultimately, the sensitivity magnitude and phase of the AUT are
determined by calculating the amplitudes and initial phases of
the excitation acceleration and the output signal.

Because the shaker is excited by the sinusoidal signal, the
original laser interference signal UHRF(t) and reference signal
UHREF(t) of the heterodyne interferometer can be given by{

UHRF (t) = UHRF cos [ϕMod (t)]
UHREF (t) = UHREF cos (2πfct+ ϕ0)

(1)

of which the modulated phase ϕMod(t) and excitation displace-
ment s(t) have the forms{

ϕMod (t) = 2πfct+ s (t) · 4π/λ + ϕ0

s (t) = sp cos (2πfvt+ ϕi)
(2)

where UHRF, fc, andϕ0 are the amplitude, carrier frequency, and
initial phase of UHRF(t), respectively; UHREF is the amplitude
of UHREF(t). sp, fv, and ϕi are the amplitude, frequency, and
initial phase of s (t); and λ is the laser wavelength (632.8 nm).
The bandwidth B of the UHRF(t) depends on the corresponding
excitation velocity, which is usually much lower than fc. There-
fore, the analog MLPF is applied to achieve the downconversion
of UHRF(t) and UHREF(t) in order to significantly decrease their
required sampling rate.

III. CALIBRATION PRINCIPLE OF THE ACCELEROMETERS BY

THE SDD-BASED HETERODYNE INTERFEROMETRY

A flowchart of SDD-based TLI calibration principle for the
sensitivity magnitude and phase of accelerometers is illustrated
in Fig. 2. The UHRF(t) and UHREF(t) with the frequency fc are
transformed to the ULRF(t) and ULREF(t) by the analog MLPFs,
whereafter the ULRF(t) and ULREF(t) as well as the output signal
V(t) of AUT are collected by the DAQ synchronously, which can
be expressed as follows:⎧⎪⎪⎨

⎪⎪⎩
ULRF (tj) = ULRF cos

[2π (fc − fLO1) tj + s (tj) · 4π/λ + ϕ′
0]

V (tj) = Vp cos (2πfvtj + ϕs)
ULREF (tj) = ULREF cos [2π (fc − fLO2) tj + ϕ0]

(3)

where ULRF and ULREF are the amplitudes of ULRF(t) and
ULREF(t), f LO1 and fLO2 are the local frequencies of mixers,
ϕ′

0 is the initial phase affected by the time delay of the low-
pass filter, and Vp and ϕs are the amplitude and initial phase
of V(t). tj is the sampling time, j = 1, 2, …, N, and N is the
sampling number. fLO2 can approach fc infinitely, which makes
the frequency of ULREF(t) much lower than the cutoff frequency
of the low-pass filter; thus, the time delay of the low-pass filter
on ULREF(t) can be ignored.

A. Amplitude and Initial Phase Measurement of
Excitation Acceleration With High Accuracy

The sensitivity calibration accuracy of AUT depends on the
measurement accuracy of the vibration excitation demodulated
from the interference signal. In order to obtain the phaseϕMod(t)
that is modulated by the sinusoidal excitation displacement from
the collected interference signal, the ULRF(tj) is first divided into
two quadrature signals with an orthogonal basis < I, Q > in the
algorithm, which can be calculated by{

UL1 (tj) = ULRF (tj) · I
UL2 (tj) = ULRF (tj) ·Q (4)
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of which {
I = sin (2πfortj)
Q = cos (2πfortj)

(5)

where for is the frequency of I and Q. After eliminating the
high-frequency components of UL1(tj) and UL2(tj) by the digital
low-pass filter, they can be simplified to{

UL1(tj) = UL1 cos [2πf
′
c1tj + s (tj) · 4π/λ + ϕ′

0]
UL2(tj) = UL2 sin [2πf

′
c2tj + s (tj) · 4π/λ + ϕ′

0]
(6)

where f ′
c1 and f ′

c2 are the carrier frequency of UL1(t) and
UL2(t), respectively, which is equal to fc − fLO1 − for and
fc − fLO2 − for.

For the two quadrature signals UL1(tj) and UL2(tj), the phase
unwrapping method is adopted to obtain their modulated phase,
which is calculated by the following formula:

ϕ′
Mod (tj) = arctan

[
UL2 (tj)

UL1 (tj)

]
+ kπ (7)

where kπ is an additional phase that is used to avoid the discon-
tinuities in the ϕ′

Mod(t) caused by the arctan calculation at the
zero crossings of UL1(tj), and the value of k is an integer that
belongs to the set {0, 1, 2, …}.

In order to acquire the amplitude and initial phase of s(t), the
SAM with four parameters in [32] and [33] is applied to fit the
calculated phases {ϕ′

Mod(tj)} and corresponding sampling time
sequences {tj}. The solution process is given as follows:

ϕ′
Mod (tj) = As cos (ωvtj)−Bs sin (ωvtj) + Cstj +Ds

(8)
where ωv is the angular frequency. As and Bs are the sinusoidal
components, Cs is the linear component caused by the carrier
frequency, and Ds is the offset component. The Cs is utilized
to eliminate the influences of clock jitter and carrier frequency
instability that leads to the variation of fc, and the Ds is used to
remove offset components at different sampling times. The N
phases {ϕ′

Mod(tj)} and their corresponding time {tj} constitute
the overdetermined equations, where N is much greater than 4.
These equations can be converted into the matrix form⎡

⎢⎢⎢⎣
ϕ′

Mod (t1)
ϕ′

Mod (t2)
...

ϕ′
Mod (tN )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
cos (ωvt1) − sin (ωvt1) t1 1
cos (ωvt2) − sin (ωvt2) t2 1

...
...

...
...

cos (ωvtN ) − sin (ωvtN ) tN 1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎣
As

Bs

Cs

Ds

⎤
⎥⎥⎦ (9)

the parameters As, Bs, Cs, and Ds can be solved by using the
least square method. The fitted amplitude and initial phase of
s(t) can be calculated by the solved As and Bs with the following
formula: {

sp = λ
4π

√
A2

s +B2
s

ϕi = arctan
(

Bs

As

)
+ ϕd

(10)

where ϕd is the phase delay caused by the time delay of a low-
pass filter.

Furthermore, the corresponding excitation acceleration am-
plitude ap and initial phase ϕa can be obtained by the following
second derivative equation:{

ap = ω2
vsp

ϕa = ϕi + π
(11)

similarly, the collected reference signal ULREF(tj) and V(tj)
are also fitted by the SAM, as shown in (8), respectively. The
corresponding parameters AR and BR, and AV and BV can
be obtained by using (9), whereafter the initial phase ϕ0 of
ULREF(t) as well as the fitted amplitude Vp and initial phase
ϕs of V(t) can be calculated by⎧⎪⎨

⎪⎩
ϕ0 = arctan (BR/AR)

Vp =
√
A2

V +B2
V

ϕs = arctan (BV /AV ) .

(12)

B. Sensitivity Magnitude and Phase Calibration of the
Accelerometer

The time delay caused by the low-pass filter inevitably affects
the initial phase of the excitation acceleration, which leads to the
ϕd, as shown in (10). This delay reduces the sensitivity phase
calibration accuracy, especially at high frequencies. Combining
(3), (7), and (8), ϕd can be determined by the proposed symmet-
ric differential way with the formula

ϕd = ϕ′
0 − ϕ0 (13)

where ϕ′
0 is the solved parameter Ds in (8).

According to the sensitivity definition in ISO, the sensitivity
magnitude Smag is the ratio of the fitted amplitude of V(t) to
that of the excitation acceleration, and the sensitivity phase Spha
is the difference of the initial phases between the output signal
and excitation acceleration. Therefore, the Smag and Spha can
be calculated by {

Smag = Vp/ap
Spha = ϕs − ϕa + ϕd.

(14)

Additionally, the relative standard deviation (Sm, RStd) of
Smag and the standard deviation (Sp, Std) of Spha, as shown in
(15), are introduced to describe the calibration repeatability of
the investigated method{

Sm,RStd = Std. (Smag)/Ave. (Smag) · 100%
Sp,Std = Std. (Spha) .

(15)

IV. EXPERIMENTAL VERIFICATIONS AND RESULTS ANALYSIS

The SDD-based TLI calibration system used for determining
the sensitivity magnitude and phase of accelerometers in the
wide frequency range was set up according to the schematic
drawing in Fig. 1, as displayed in Fig. 3.

The two shakers (ESZ185-400 with the range 0.01–100 Hz
and PCB 396C11 with the range 5 Hz–20 kHz) were applied to
provide the sinusoidal excitation in the range 0.1 Hz–20 kHz,
and their provided maximum accelerations were 10 m/s2 and
100 m/s2, respectively. The low-frequency AUT (MSV 3000)
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Fig. 3. SDD-based TLI experimental setup for the sensitivity magni-
tude and phase calibration of accelerometers.

and the embedded AUT in the PCB 396C11 were firmly mounted
on the center of the shakers’ working surface. The Polytec
heterodyne laser interferometer (OFV-5000) with the measure-
ment accuracy of the sub-nanometer was utilized to measure
the excitation acceleration. The mixer (MC ZAD-1-1+) with
the frequency 0.5–500 MHz and low-pass filter (MC BLP-2.5+)
with the cutoff frequency of 2.5 MHz was applied to convert the
original laser interference and reference signals. The DAQ card
(ADLINK 9846) with the maximum sampling rate of 40 MHz is
used to collect the two transformed signals and the output signal
of AUT simultaneously.

A. Calibrated Sensitivity Magnitude and Phase Results
of Low-Frequency Accelerometer

In order to validate the performance of the investigated
SDD-TLI for calibrating the accelerometer at low frequencies,
the AUT was calibrated in the range from 0.1 to 10 Hz, and
the tested frequency was selected according to the one-third
octave regulation. The sensitivity magnitude and phase were
calibrated by the SDD-TLI, Earth’s gravitation (EG) [32], and
monocular vision (MV) methods [33], [34], [35], [36], and they
were calibrated ten times at each tested frequency, respectively.

Fig. 4(a) and (d) shows the calibrated sensitivity magnitudes
and phases by the EG and MV methods, and the investigated
SDD-TLI. In the whole range, the Sm, Ave of the SDD-TLI
was similar to those of the EG and MV methods, and their
corresponding maximum relative deviations were about 0.3%
and 0.4%, respectively. The Sm, RStd of the SDD-TLI also
resembled those of the EG and MV methods in the 0.1–10 Hz,
which is less than 0.216%. Although it slightly increased with
the decreasing of the frequency in the range of 0.1–0.5 Hz, it is
also acceptable compared with the MV method. The calibrated
sensitivity phase curve of the SDD-TLI was highly consistent
with those of the other two methods. In the range of 0.1–10 Hz,
the maximum differences between the SDD-TLI and EG as well
as MV methods were 0.067° and 0.183°, respectively. Although
the Sp, Std of the SDD-TLI was slightly greater than those of the
EG and MV methods when the frequency is less than 0.4 Hz, it
was similar to those of the EG and MV methods at other higher
frequencies.

B. Calibrated Sensitivity Magnitude and Phase Results
of Medium- and High-Frequency Accelerometer

To fully verify the calibration accuracy of the investi-
gated SDD-TLI, the sensitivity magnitude and phase of the
embedded AUT at frequencies between 10 Hz and 20 kHz were
calibrated by the SDD-TLI, NS-TLI, and traditional MLPFS-
TLI simultaneously. The sensitivity magnitude and phase were
calibrated ten times at each tested frequency in this range.
Fig. 5 shows the sensitivity magnitude and phase calibrated
by the MLPFS- TLI, SDD-TLI, and NS-TLI. The calibrated
Sm, Ave of the SDD-TLI kept a highly similar trend with those
of the NS-TLI and MLPFS-TLI, and their corresponding relative
deviations were less than 0.866% and 0.375%, respectively. The
maximum Sm, RStd of the SDD-TLI was 0.086% in the 10 Hz–
20 kHz, which is slightly less than the corresponding 0.112% of
the MLPFS-TLI and 0.101% of the NS-TLI, respectively. The
maximum difference of the Sp, Ave between the SDD-TLI and
NS-TLI was about 0.1°, which is less than the corresponding
0.811° between the MLPFS-TLI and NS-TLI. The Sp, Std of
the SDD-TLI was highly similar to those of the SDD-TLI and
MLPFS-TLI, and it was less than 0.1° except at a few higher
frequencies.

C. Discussion

In order to further illustrate the calibration performance of
the investigated SDD-TLI, the range of 0.1 Hz–20 kHz was
split to four ranges, as listed in Table I. As shown in Fig. 4(a),
the sensitivity magnitude of the SDD-TLI was greater than that
of the EG method because the latter is inevitably affected by the
centrifugal acceleration in the range from 2 to 10 Hz. The MV
method appeared larger sensitivity magnitude than that of the
SDD-TLI because it requires more time to calibrate the AUT, and
such will increase the temperature drift. There were maximum
differences of 0.3% and 0.4% existed among the SDD-TLI
and the EG method as well as the MV method, which can
be acceptable compared with the current calibration accuracy
for the low-frequency accelerometers. As displayed in Fig. 4(b)
and (d), the standard deviations of these three methods were
increased as the decreasing of the frequency in the very low
frequency range because the SNR of the AUTs output signal
is gradually insufficient. In the 0.1–0.3 Hz, the SDD-TLI has
obvious standard deviations both for the sensitivity magnitude
and phase than those of the EG and MV methods. The reason
for this trend is due to the SDD-TLI inevitably influenced by the
weak collimation, slight excitation velocity, and speckle noise
when it is applied to measure the vibration in this range. As the
frequency increases in the range from 0.3 to 10 Hz, the standard
deviations of the SDD-TLI decrease since these influences can
be dramatically reduced in this range.

As shown in Fig. 5(a), the SDD-TLI and the MLPFS-TLI
as well as the NS-TLI presented the highly consistent trends.
The maximum relative standard deviation of the SDD-TLI was
0.086% because it has enough resolution and stability in the
whole range. As displayed in Fig. 5(c), the difference of the
SDD-TLI and NS-TLI is negligible, while its difference with
the MLPFS-TLI gradually increased as the increasing of the
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Fig. 4. Calibrated sensitivity magnitude and phase of the low-frequency AUT by the investigated SDD-TLI, MV, and EG methods in the range of
0.1–10 Hz. (a) Average value (Sm, Ave) of sensitivity magnitude. (b) Sm, RStd of sensitivity magnitude. (c) Sp, Ave of sensitivity phase. (d) Sp, Std

of sensitivity phase.

TABLE I
REPEATABILITY OF CALIBRATED SENSITIVITY MAGNITUDE AND PHASE OF ACCELEROMETER BY THE INVESTIGATED SDD-TLI, MLPFS-TLI, EG METHOD,

AND MV METHOD IN THE RANGE FROM 0.1 HZ TO 20 KHZ

frequency when it is greater than 5 kHz. The reason for this
phenomenon is that the phase delay caused by the low-pass filter
can be ignored at low frequencies, while it is significant at high
frequencies. The relatively large standard deviation appeared at
a few high frequencies because the AUT at these frequencies
cannot guarantee the high-SNR output signal.

The low cutoff frequency of the investigated SDD-TLI was
limited to 0.1 Hz in this experiment since the used DAQ card
cannot collect the signal for enough long time influenced by its
memory. The frequency of this method even can be lower than
0.1 Hz if an appropriate DAQ card with large memory is used.
Correspondingly, the upper frequency of the SDD-TLI can also
be easily higher than 20 kHz if the tested accelerometer is able
to output the signal with high SNR.

V. MEASUREMENT UNCERTAINTY

In order to further illustrate the accuracy of the investigated
method, its measurement uncertainty for the sensitivity calibra-
tion of the accelerometer was accomplished. The generation
and measurement of excitation acceleration, the measurement
of AUTs output signal, the external vibration and noises, and the
sensitivity repeatability in the whole calibration procedure were
considered as the main error sources, as provided in Table II.
The corresponding uncertainty components {u rel, i} of these
sources can be evaluated by the recommended methods in guide
to the expression of uncertainty in measurement (GUM) [37]
according to their probability density distributions. Then, the
relative contribution (Rel. contr.) of each error source is the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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Fig. 5. Sensitivity magnitude and phase of the medium- and high-frequency AUT calibrated by the investigated method, MLPFS-TLI, and NS-TLI
in the range from 10 Hz to 20 kHz. (a) Sm, Ave of sensitivity magnitude. (b) Sm, RStd of sensitivity magnitude. (c) Sp, Ave of sensitivity phase.
(d) Sp, Std of sensitivity phase.

TABLE II
UNCERTAINTY SOURCES AND THEIR CORRESPONDING UNCERTAINTIES OF THE INVESTIGATED SDD-TLI FOR THE ACCELEROMETERS CALIBRATION IN THE

WIDE FREQUENCY RANGE
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ratio of its u rel, i to the corresponding probability distribution
divisor di. The combined calibration uncertainty Urel(S) that
consider the Rel. contr. of the whole error sources according to
the propagation criterion can be given by

Urel (S) =
M∑
i=1

ci · urel,i

di
(16)

where ci is the corresponding sensitive coefficient. Therefore,
the expanded calibration uncertainty of sensitivity magnitude is
Urel(S) multiplies the coverage factor k that means a confidence
interval, which was 0.496%. Similarly, the expanded calibration
uncertainty of the sensitivity phase was 0.422° in the range from
0.1 Hz to 10 kHz. Compared with the reported uncertainty of
HLI and TLI in the pieces of literature [11], [18], [30], the
investigated SDD-TLI can meet the high-accuracy calibration
demand of the accelerometers in the wide frequency range.

VI. CONCLUSION

In this article, we investigated a novel SDD-based TLI for de-
termining the sensitivity magnitude and phase of accelerometers
in the wide frequency range, which can improve the accuracy,
especially for the sensitivity phase at high frequencies. The
investigated method determined the sensitivity magnitude and
phase by applying the symmetric MLPFS that is composed of
the analog mixer and the analog low-pass filter, which can signif-
icantly eliminate the extra phase delay by using their differential
way. The comparison experiments with the commonly used MV
and EG methods in the range of 0.1–10 Hz, and the traditional
MLPFS-TLI and NS-TLI in the range of 10 Hz–20 kHz confirm
that the investigated SDD-TLI can obtain satisfactory calibra-
tion accuracies both for the sensitivity magnitude and phase of
accelerometers. Ultimately, the main error sources in the cali-
bration procedure were considered to evaluate the uncertainties,
which also demonstrated that the SDD-TLI method has good
calibration performance.
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