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Automatic Design System With Generative
Adversarial Network and Vision Transformer for

Efficiency Optimization of Interior Permanent
Magnet Synchronous Motor

Yuki Shimizu , Member, IEEE

Abstract—Interior permanent magnet synchronous mo-
tors are becoming increasingly popular as traction mo-
tors in environmentally friendly vehicles. These motors,
which offer a wide range of design options, require time-
consuming finite-element analysis to verify their perfor-
mance, thereby extending design times. To address this
problem, in this article, we propose a deep learning model
that can accurately predict the iron loss characteristics of
different rotor topologies under various speed and current
conditions, resulting in an automatic design system for
the internal permanent magnet synchronous motor rotor
core. Using this system, the computation time for efficiency
maps is reduced to less than 1/3000 of the time required for
finite-element analysis. The system also shows efficiency
optimization results similar to the best results of previous
research while reducing the computational time for opti-
mization by one or two orders of magnitude.

Index Terms—Design optimization, generative adversar-
ial network (GAN), iron loss, permanent magnet (PM) mo-
tors, vision transformer (ViT).

I. INTRODUCTION

IN THE current era, the increasing integration of electrical
and mechanical elements in a wide range of goods, along

with the development of sustainable energy sources, such as
wind power generation, is being promoted to achieve carbon
neutrality. As a result, the demand for machines that efficiently
convert electrical power into mechanical action has increased
dramatically. In the automotive industry, for example, there has
been a remarkable global increase in the number of electric
transportation systems, including electric cars, plug-in hybrid
vehicles, and fuel cell units, along with the emergence of interior
permanent magnet synchronous motors (IPMSMs), which are
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replacing internal combustion engines as the primary drive sys-
tem in these electrified modes of transportation. In anticipation
of continued growth in motor use in the future, improving the
efficiency of IPMSMs remains a critical challenge.

The design phase of today’s IPMSMs is prolonged due to
two critical factors. First, the widespread use of finite-element
analysis (FEA) to calculate the characteristics of IPMSMs.
Second, the wide range of design alternatives in these motors,
including parts, such as permanent magnets (PMs) and flux
barriers, forces the iterative evaluation of numerous configura-
tions to achieve defined standards. These combined factors lead
to longer development times in IPMSM design, with multiple
structures subjected to FEA and development based largely on
the trial-and-error approach taken by designers.

Many studies have been conducted to reduce the time required
for the optimal design of advanced IPMSMs by implementing
machine learning (ML) methods [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. Although
ML-focused research requires a certain amount of training time,
the computation takes less than 1/1000th of the time compared
with FEA upon model completion [15]. Previous studies can be
divided into those that use geometric parameters as input and
those that use topology information. The former method takes
the dimensions and current conditions of the motor design as
input and predicts the motor characteristics with high accuracy.
The dimension of the input information is often fixed, and the
applicable domain of the ML model is based on the initial ge-
ometry, making the method suitable after the conceptual design
is completed. The latter approach interprets the material data
under the polar coordinate of the rotor geometry for IPMSMs as
tensors, allowing the use of deep learning (DL) image processing
models, such as convolutional neural networks (CNNs) and
vision transformers (ViTs). Although this method is capable of
handling multiple topologies, it results in an increase in training
dataset size, model dimensions, and training time.

The above-mentioned studies encounter limitations in input
features, such as geometry type, current and speed conditions,
and model output variables, such as torque and efficiency, which
hinder the construction of a comprehensive automatic design
system for IPMSMs. Therefore, this study proposes a DL model
capable of handling various input and output conditions, thus
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Fig. 1. Overall configuration of the automatic design system for efficiency optimization. The blue part represents the prediction for the speed and
torque characteristics using the model proposed in [17]. The red part represents the prediction for the iron loss characteristics, which is described
in detail in Sections III-C and IV. id and iq are the d- and q-axis currents, respectively, N is the motor speed, Nlim is the limit motor speed, and T is
the torque.

contributing to the development of an automatic design system
for IPMSMs, as shown in Fig. 1. The system uses a generative
adversarial network (GAN), a type of deep generative model,
to construct the rotor shape of IPMSMs and promptly predicts
the speed, torque, and iron loss characteristics using two dif-
ferent characteristic prediction models. Configured to include
current and speed conditions in addition to rotor geometry data,
these models enable fast, high-quality efficiency map gener-
ation during current vector control, such as maximum torque
per ampere (MTPA) control and flux-weakening (FW) control.
This approach allows efficiency optimization for numerous rotor
topologies at any speed and torque setting. The proposed system
also has the advantage that the optimization can be repeated
many times after the training phase is completed. The main
contributions of this study are as follows.

1) The construction of a model that accurately predicts iron
loss characteristics in IPMSMs with three different rotor
topologies.

2) To propose a time-efficient automatic design system for
motor efficiency at arbitrary speed and torque points.

3) To validate the reliability of the automatic design through
FEA and prototype experimentation on the optimal ge-
ometry generated by the design system.

The dataset described in Section IV-A is available at IEEE
DataPort [18]. This article is a revised version of a conference
proceeding [19] with additions regarding the details of the DL
model and the results of prototype experiments.

II. RELATED WORKS

A. Design Optimization Without ML

Several studies have developed algorithms to efficiently de-
termine the most appropriate design. Farhadian et al. [20] for-
mulated an optimization mechanism, based on an improved

particle swarm optimization, to enrich the torque aspects of a
synchronous reluctance motor (SynRM). Son et al. [21] im-
proved the rotor arrangement of an IPMSM with grain-oriented
electrical steel in the stator teeth by applying a revised genetic
algorithm. Das et al. [22] performed a sensitivity analysis on
the noise vibration performance of the permanent magnet syn-
chronous motor (PMSM) for ten geometric parameters and per-
formed design optimization for the highly sensitive parameters.
Pfister et al. [23] proposed a method to perform an optimization
of a PMSM assuming linear magnetic material properties, fol-
lowed by FEA optimization with a small number of generations.
Although these methods effectively optimize the geometry, they
determine the motor characteristics only at a single or a small
number of current settings, making them unsuitable for IPMSMs
operating over wide current ranges, such as those used in auto-
motive applications.

B. Shape Optimization With ML

To accelerate shape optimization, several research efforts
have used ML to construct surrogate models as an efficient
replacement for FEA. By using these surrogate models, we
can perform the design of IPMSMs with a reduced reliance
on FEA iterations, or potentially, without FEA at all. Islam
et al. [1] used response surface methodology to optimize a
pair of rotor design parameters at multiple output points of an
IPMSM using the response surface methodology. Zheng et al.
[2] performed multiobjective refinement of an IPMSM installed
with rare Earth PMs and ferrite PMs using the response surface
methodology. Sun et al. [3] classified the geometric parameters
of an IPMSM into three different groups using cross-factor
variance analysis and optimized them in terms of torque and
loss characteristics by applying kriging. Sun et al. [4] proposed
a sequential subspace optimization technique using the kriging
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method for a PM hub motor, respectively. Dhulipati et al. [5]
used support vector regression to develop a predictive model
for a six-phase IPMSM. Hao et al. [6] developed a model to
identify the relationship between design parameters and torque
ripple in an IPMSM using radial basis function networks and
used this model for optimization. Yan et al. [7] constructed a
surrogate model using an artificial neural network for an IPMSM
with a cage conductor embedded in the rotor and performed
multiobjective optimization of torque, inertia, efficiency, power
factor, and cogging torque. Zheng et al. [8] proposed an opti-
mization method that combines ridge regression and the whale
optimization algorithm for PM synchronous linear motors. Pan
and Fang [9] used XGBoost, a superior distributed gradient
boosting library, to understand the relationship between the
torque characteristics and the structural parameters of PM arc
motors, and then used this model for optimization. Kwon and
Lim [10] trained a surrogate model that learned the relationship
between motor characteristics and structural parameters of a
PM-assisted SynRM using a random forest and optimized the
design using a genetic algorithm. Despite the demonstrated
effectiveness of these ML-based surrogate models for automated
IPMSM design, their ability to deal with geometric parameters
within the same dimension is limited, restricting them to certain
limited geometries.

C. Topology Optimization With DL

Various research efforts have introduced rotor design using
topology optimization and DL. Barmada et al. [11] considered
the incorporation of DL technology to optimize the rotor core
topology of the SynRM. Sasaki et al. [12] accelerated the rotor
topology optimization of IPMSM with a CNN trained from the
analysis of the magnetic flux distribution at the initial position
and the material distribution. Sato and Igarashi [13] predicted
motor parameters from rotor geometry using CNNs and used the
results to evaluate individuals in topology optimization. Khan
et al. [14] optimized the topology of the SynRM rotor using
deep reinforcement learning, a less biased approach to topology
optimization compared with supervised learning. These research
efforts are primarily focused on identifying innovative rotor
designs and do not consider the wide operational range of
properties and iron loss characteristics required for applications,
such as automotive settings.

III. AUTOMATIC DESIGN SYSTEM

A. Target Motor

The method proposed in this study is not limited to any specific
application. To validate the generality of the proposed method,
the following discussion focuses on automotive IPMSM, which
requires a wide operating range. Fig. 2 shows the rotor topology
of three typical automotive traction motors used in this study.
All IPMSMs have 8-pole, 48-slot stators with distributed wind-
ings. Further specifications of each model can be found in [24]
and [25].

Fig. 2. Single-pole conventional rotor shapes. (a) Two-dimensional.
(b) V. (c) Nabla.

Fig. 3. Schematic of material representation of rotor shape.

B. Motor Design by Deep Generative Model

This study focuses on different rotor topologies and tries
to handle them in a harmonious way by representing rotor
geometries as images. Fig. 3 shows a schematic of the material
representation approach implemented in the system. The rotor
pole coordinates are specified as electrical steel sheets, PMs, or
air. The image represents the rotor configuration by assigning
one-hot vectors to the 256× 256 RGB pixels for each of the three
materials, as shown in the right part of Fig. 3. A GAN generates
the rotor image from a 256-dimensional (256-D) latent variable
space as follows:

x = G (z) (1)

where G is the generator of the GAN, x is the generated rotor
image, and z is the latent variable. See [17] for more details.

C. Prediction Models

By predicting the characteristics from the generated images,
an automatic design system can be constructed without FEA
integration. This study uses geometry, current, and speed con-
ditions as input data, and considers models for predicting motor
parameters and iron loss as follows:

Ψa, Ld, Lq = E1 (x, id, iq) (2)

Wh,We = E2 (x, id, iq, N) (3)

where E1 and E2 are the prediction models for motor parameters
and iron loss, respectively, Ψa is the PM flux linkage, Ld and Lq

are the d- and q-axis inductances, respectively, id and iq are the
d- and q-axis currents, respectively, N is the motor speed, and Wh

and We are the hysteresis loss and eddy current loss, respectively.
These models allow the prediction of torque and efficiency as-

pects under various current vector control conditions as follows:

T = Pn {Ψaiq + (Ld − Lq) idiq} (4)
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Fig. 4. Common architecture of iron loss prediction model.

η =
ωmT −Wi

ωmT +RaI2a
=

ωmT − (Wh +We)

ωmT +RaI2a
(5)

where Pn is the number of pole pairs, Ra is the winding
resistance, Ia is the magnitude of the armature current vector,
ωm is the mechanical angular frequency, and Wi is the iron loss.

The model proposed in [17] is used for motor parameter
prediction, and the iron loss prediction model is detailed in this
section. Fig. 4 shows the common architecture of the iron loss
prediction model used in this study, where dinit is the dimension
of the encoded shape components, dh and de are the dimensions
of the hidden layers of the multilayer perceptron (MLP) for
hysteresis loss and eddy current loss prediction, respectively,
and dho and deo are the dimensions of the second layer from
the end of the MLP for hysteresis loss and eddy current loss
prediction, respectively. FEA conditions, d- and q-axis currents,
and motor speed are standardized according to the following
equations:

X̄ =
X − μX

σX
(X ∈ {id, iq, N}) (6)

where μX and σX are the mean and standard deviation of the
training data, respectively.

As input, a trained model that encodes the rotor image
generated by the GAN is used to extract the semantic rotor
geometry data from the image. The resulting shape encoding
information is combined with the FEA operating conditions in
a multitask learning context, allowing simultaneous prediction
of hysteresis loss and eddy current loss. The MLP consists of
fully connected layers and batch normalization, with a rectified
linear unit serving as the activation

Z(l+1) = φ
(
BNγ(l),β(l)

(
W (l)Z(l) +B(l)

))
(7)

BNγ(l),β(l)

(
X(l)

)
= γ(l) X

(l) − E
[
X(l)

]
√

Var
[
X(l)

]
+ ε

+ β(l) (8)

φ
(
X(l)

)
= ReLU

(
X(l)

)
= max

(
X(l), 0

)
(9)

where Z(l) is the input to the l-layer, and W(l) and B(l) are the
weights and biases of the l-layer to be trained. In the batch
normalization, the mean and standard deviation are computed
per dimension over the minibatches,γ(l) andβ(l) are the learnable
parameter vectors, and ε = 0.00001 is a constant added to the
minibatch variance for numerical stability.

IV. TRAINING OF IRON LOSS PREDICTION MODEL

A. Dataset and Training Setting

To accommodate the large data requirements of DL, this study
combines computer-aided design (CAD) and FEA for dataset
generation. In terms of geometry, 30 000 shapes were formulated
for each topology by randomly generating geometric parame-
ters based on the three rotor topologies, as shown in Fig. 2.
For these geometries, random FEA conditions, such as phase
current (0–140 Arms), current phase (0°–90°), and motor speed
(0–15 000 r/min), were also generated, resulting in 90 000 FEA
cases across the three rotor topologies. The motor characteristics
to be calculated included core iron losses, specifically hysteresis
and eddy current losses. The iron loss calculation was based
on the fast Fourier transform of the magnetic flux density and
material data sheets. JMAG-Designer 19.1 software was used for
analysis, yielding 85 184 datasets after excluding failed cases.
See [16] for details.

A total of 80% of the dataset was used for training, while the
remaining 20% was used for validation. The mean squared error
determined the loss function for multitask learning, as shown in
the following equation:

L=Lh+Le=
1

n

(
n∑
i=1

(
W

(i)
h −Ŵ

(i)
h

)2
+

n∑
i=1

(
W (i)

e −Ŵ (i)
e

)2)

(10)
where W

(i)
h and Ŵ

(i)
h are the predicted hysteresis loss and

training data, respectively, and W
(i)
e and Ŵ

(i)
e are the predicted

eddy current loss and training data, respectively.
The number of training epochs was set to 100. The optimizer

was Adam, and the batch size was set to 128. PyTorch was used
to implement the neural network model.

B. Hyperparameter Optimization

Hyperparameter optimization was performed on the iron loss
prediction model, as shown in Fig. 4. The procedure started by
using the tree-structured Parzen estimator (TPE) for hyperpa-
rameter optimization. Table I lists the variables to be optimized
along with their upper and lower bounds, where nl is the number
of hidden layers in the MLP, and lr is the learning rate of the
optimizer. The Optuna library was used for the TPE [26]. During
each optimization evaluation, a set of 20 epochs was assigned.
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TABLE I
HYPERPARAMETERS FOR IRON LOSS PREDICTION MODEL

Fig. 5. Validation loss differences for several dh and de combinations
for (a) hysteresis loss and (b) eddy current loss. The mean values for
ten training runs are shown.

The encoder model was the pretrained Swin Transformer (Swin-
T) [27], and the optimization results are shown in Table I.

Further comparative evaluations were performed based on the
optimized hyperparameters of TPE. One focus was the compar-
ison of hidden layer sizes in MLPs. Fig. 5 shows the validation
loss differences for several dh and de combinations, where the
validation losses are evaluated at the end of the 100th training
epoch and the listed validation losses are the mean values over 10
training runs. For dh = 4, there is a significantly high validation
loss for the hysteresis loss, which materializes independently
of the de values, decreasing and reaching equilibrium as dh
increases. A parallel trend appears for the eddy current loss and
de, indicating that an adequate representation of the nonlinearity
within the iron loss characteristics occurs when the hidden layer

Fig. 6. Validation loss for different nl for (a) hysteresis loss and
(b) eddy current loss. The mean and standard deviation values for ten
training runs are shown.

dimensions exceed 10. In the following steps, (dh, de) = (12,
10) is used because it produced the minimum validation losses
for both hysteresis and eddy current losses.

Fig. 6 shows the validation loss for different nl values to
compare the influence of the number of hidden layers in MLPs.
The lowest validation loss for both hysteresis and eddy current
loss is achieved with nl = 3, and it increases as the number of
layers increases beyond 3. This result suggests that it may not
be necessary to rely on highly nonlinear models to predict iron
loss from the encoded geometry data, motor speed, and current
conditions. This is also supported by Steinmetz’s experimental
law [28], which states that the nonlinearity of hysteresis and eddy
current loss is affected by up to a power of 1–2 with respect to
the frequency (associated with speed) and the maximum flux
density value (associated with current).

The evaluation of the shape encoder models is performed
subsequently. Fig. 7 shows the validation loss associated with
the weights of the Swin-T encoder weights, where “pretrained”
represents the encoder pretrained using ImageNet [29], and
“normal” represents the model without pretraining. The contrast
between “fix” and “train” refers to whether the encoder weights
are fixed or additionally trained when training with the iron loss
dataset. When comparing the validation loss, the observed min-
imum validation loss for both hysteresis loss and eddy current
loss is achieved using a fixed weight encoder with pretraining.

Finally, the pretrained models were compared. Table II lists
the validation loss of several well-known encoder models [27],
[30], [31], [32], [33]. The final comparative evaluation shows
that the Swin-T model produces the minimum validation loss,
making it the most appropriate encoder model for this study.

Fig. 8 shows the prediction results of the optimized iron
loss prediction model for the test data, where the test data are
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Fig. 7. Validation loss for different types of training for (a) hysteresis
loss and (b) eddy current loss. The mean and standard deviation for ten
training runs are shown. "Pretrained" represents the pretrained encoder,
and "normal" represents the model without pretraining. The contrast
between "fix" and "train" refers to whether the encoder weights are fixed
or additionally trained when training with the iron loss dataset.

TABLE II
VALIDATION LOSSES FOR DIFFERENT ENCODERS

additional 600 datasets of 200 FEA results for each topology.
The optimized prediction model was found to achieve highly
accurate predictions even for unknown FEA data.

V. EFFICIENCY OPTIMIZATION

The combination of the models, as described in Section IV,
results in the automatic design system for the IPMSM rotor core,
as shown in Fig. 1. Using this design system, the efficiency
optimization design is performed within the constraints of the
256-D latent variable space found in the generative model.

Fig. 8. Prediction results for test data of optimized iron loss prediction
model (a) for hysteresis loss and (b) for eddy current loss. r2 indicates
the coefficient of determination (higher is better). "Analyzed" indicates
the results of the FEA, while "Predicted" indicates the predicted results
of the prediction model.

Fig. 9. Evaluation points used for optimization. The blue points are
for efficiency evaluation. The red squares are for average torque con-
straints.

A. Problem

In this study, the efficiency maximization design is performed
at two unique evaluation points, constrained by two torque
limits, as shown in Fig. 9. The efficiency maximization problem,
incorporating a torque constraint for the IPMSM, is formulated
as follows:

min
z

(
−ηpred

1

ηinit
1
,−ηpred

2

ηinit
2

)T
s.t. gi : T

pred
i ≥ αT req

i (i = 3, 4)
(11)

where ηpred
1 and ηpred

2 are the predicted efficiencies at operating
points P1 (3000 r/min, 20 N·m) and P2 (11 000 r/min, 20 N·m),
with each value normalized by the initial values ηinit

1 and ηinit
2 , re-

spectively. The constraint conditions gi are the torque constraints
for two required operating points P3 (3500 r/min, 197 N·m)
and P4 (11 000 r/min, 40 N·m), with a coefficient (α = 1.05)
to account for the prediction error. The efficiency evaluation
points are determined based on the motor operating points in
the worldwide harmonized light vehicles test cycle (WLTC).
The complete WLTC loss calculation procedure is described in
[16]. Two other torque constraints are set to maintain the same
characteristics as the reference motor [16].

Average torques, used in the efficiency evaluation and torque
constraint analysis, were calculated using the motor parameter
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Fig. 10. Optimization result for (a) efficiencies and (b) torques using the proposed automatic design system. The solid red line represents the
Pareto front in the last generation. Individuals outside the Pareto front were eliminated in the optimization process because they did not satisfy the
torque constraint. The solid blue line represents the result of the FEA performed on the individuals in the Pareto front.

Fig. 11. Changes in the evaluation values of (a) and (b) efficiencies and (c) and (d) torques during the optimization process. The solid black lines
indicate the mean values for each population, and the gray areas indicate the maximum to minimum values.

prediction model [17]. Current conditions for torque and effi-
ciency calculations were determined by MTPA control and FW
control algorithm [30].

NSGA-II [34] was used as the optimization algorithm, and the
pymoo [35] library was used for implementation. The population
size was 100, and the number of offspring was 10. Latin hyper-
cube sampling was used for sampling the initial population, the
tournament method was used for selection, the simulated binary
crossover was used for crossover, and polynomial mutation was
used for mutation. The termination condition was set to 50
generations.

B. Optimization Results

Fig. 10 shows the efficiency characteristics and torques at
required speeds for all individuals in the optimization process.
Fig. 11 shows the changes in the evaluation values during the
optimization process, and Fig. 12 shows the Pareto solution
shapes. After optimization, the final generation population es-
tablished a clear Pareto front in terms of efficiencies. Notably, the
entire final generation population satisfied the torque constraints,
specifically the operating point constraint related to maximum
torque was active, as shown in Fig. 11(c). Although the efficiency
at high speed P2 decreased during the optimization process, this
was due to the survival of individuals with increased magnetic

Fig. 12. Shapes of all Pareto solutions of optimization, which are
indicated by the red line in Fig. 10(a).

flux linkages and increased iron loss in order to prioritize satis-
fying the maximum torque constraint. The final generation pop-
ulation is divided into two main clusters, representing Nabla and
2-D topologies, as shown in Fig. 12. Nabla generally produces
higher torque at low speed due to the proximity of the PMs to
the gap, which reduces copper loss and increases efficiency at
P1. In contrast, the 2-D topology is designed to mitigate gap flux
density harmonics and preferentially achieves higher efficiency
at high speeds P2, where iron losses dominate.

Efficiency predictions for the Pareto front are usually better
than those obtained from FEA because tradeoff optimization
with surrogate models tends to converge on individuals with
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TABLE III
PERFORMANCE COMPARISON BETWEEN PROPOSED SYSTEM AND PARAMETER OPTIMIZATION

Fig. 13. Efficiency maps for selected optimal design. (a) Selected rotor
geometry and efficiency maps calculated by (b) FEA and (c) automatic
design system.

overestimated solutions [15]. Nevertheless, the difference be-
tween the system predictions and the FEA results is marginal,
highlighting the effectiveness of the system in predicting effi-
ciencies with high accuracy. The efficiency prediction error at
P1 may appear large, but this is due to the more detailed scaling
of the horizontal axis in Fig. 10(a) as opposed to the vertical
axis, which actually results in a small prediction error.

To evaluate the efficiency characteristics in detail, the individ-
ual with the highest efficiency at P2 was selected from among
the Pareto solutions. Fig. 13 shows the selected rotor geometry
and the efficiency maps calculated by FEA and system predic-
tion. The prediction accuracy of the efficiency characteristics is
high, and the prediction system reduces the computational time
required, with evaluations performed over ten iterations using a
computer with an Intel Core i7-9700K CPU, 32.0 GB of RAM,
and an NVIDIA GeForce RTX 3090 SUPER (24 GB) GPU.

The optimization performance is further evaluated
against previously proposed methods [16], namely parameter

Fig. 14. Photographs of prototype. (a) Stator core. (b) Rotor core.

TABLE IV
EXPERIMENTAL DEVICE

optimization with ML using XGBoost to predict torque and
efficiency with geometric parameters of each topology. Table III
presents a comparison of the losses of the optimized geometry
under WLTC and the computational time for the optimization,
where both methods were trained by the same training dataset,
and the WLTC losses were only evaluated during powering.
An analysis of the results shows that the converging geometry
of the proposed method has similar loss characteristics with
the best result of previous parameter optimization approaches.
Moreover, the computational time for optimization is reduced
by one or two orders of magnitude due to the implementation
of parallel processing on GPUs.

C. Experimental Validation

Finally, a prototype of the optimized geometry, as shown in
Fig. 13(a), was fabricated for experimental validation of the pro-
posed system. Fig. 14 shows the fabricated prototype rotor shape
with minor adjustments to the PM positioning shape and the fillet
pattern. Table IV lists the experimental devices. A pulsewidth
modulation (PWM) inverter with a carrier frequency of 10 kHz
and a dc-side voltage of 650 V drove the tested IPMSMs.
The load motor rating limits the speed to 6000 r/min. Due to
equipment limitations, we measured the motor characteristics
only in the low phase current range of 20 A or less.

Fig. 15 shows the no-load induced voltage, which is the line
voltage between the U and V phases at 1200 r/min. The measured
results are similar to the FEA results.



14608 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 71, NO. 11, NOVEMBER 2024

Fig. 15. Measured no-load induced voltage at 1200 r/min.

Fig. 16. Measured loss characteristics (a) at 3500 r/min and 20 N·m
and (b) at 5500 r/min and 20 N·m.

Fig. 16 shows the loss characteristics of the motor at
3500 r/min and 20 N·m and at 5500 r/min and 20 N·m, where
the measured loss was calculated by subtracting the measured
mechanical output and the electrical input to the motor, taking
into account the premeasured mechanical losses. “FEA (train-
ing)” represents an analysis result performed under conditions
identical to the training dataset of the proposed system, while
“FEA (prototype)” represents an analysis result performed under
conditions adapted to the actual experiment. Specifically, the
“FEA (prototype)” geometry adopts the same CAD data used
in the prototype drawings, including PM positioning shapes and
fillets. In addition, it uses a finer analysis mesh and resolution,
temperature condition, eddy current loss analysis in the PM, and
current input, including carrier harmonics by PWM inverter. The
current waveform, including the PWM harmonics, was analyzed
by using MATLAB/Simulink and the JMAG-RT model.

Direct comparisons between the measured losses and sys-
tem predictions indicate significant errors. On the other hand,
comparing the system predictions with the FEA results under

conditions equivalent to the training data shows a prediction
error of 3.5%, indicating a high level of accuracy in the system
prediction itself. This leads to the conclusion that the discrep-
ancy between the measured losses and the system predictions
is due to the modeling errors present in the FEA results of the
training dataset. Although the losses of “FEA (prototype)” were
closer to the measured results than those of “FEA (training),”
there are still differences between FEA and measured results due
to factors, such as 3-D iron losses, stray load losses, manufac-
turing tolerances, and variations in machine losses. In addition,
the analysis time for “FEA (prototype)” exceeded that of “FEA
(training)” by more than 60 times.

VI. DISCUSSION AND LIMITATION

Big data are essential for DL, and high-quality training data
are important to further improve the proposed system. For ex-
ample, the coefficient of determination for the model, as shown
in Fig. 8, had not reached 1. However, this result does not
necessarily lead to the conclusion that the model simply needs to
be improved. Because the training data were generated by FEA,
errors can occur due to iterative calculations and poor mesh
quality from automated multicase analysis. If the data contain a
lot of noise, the prediction accuracy of the test data will never be
100%. Thus, the quality of the dataset has a significant impact
on the investigation of the prediction model, and generating
high-quality datasets is just as important as building a highly
accurate model.

Also, the tradeoff between the quality and quantity of the
training dataset is important for the proposed system. The result
of the loss comparison in Fig. 16 leads to the conclusion that
the more detailed FEA results are closer to the measured results.
However, as the accuracy of FEA improves, the analysis time
increases. Because the applicability of the proposed system
depends essentially on the training dataset, the tradeoff between
modeling accuracy and FEA analysis time limits the construc-
tion of a DL model that covers a wider range of applications.
There are many more design variables and output characteristics
to consider in motor design than those covered in this study, so
it is necessary to quantitatively discuss how many datasets are
required for a given model application range, and this is future
work.

VII. CONCLUSION

In this article, we proposed a DL model that accurately pre-
dicts the iron loss characteristics in IPMSMs with three different
rotor topologies under various speeds and current conditions. In
addition, the combination of this model and previously proposed
models resulted in an automatic design system for the IPMSM
rotor core. Using this system, the computation time for efficiency
maps was less than 1/3000 that of the FEA. In addition, the
efficiency optimization results with this system showed the same
level of performance as the best results of the previous studies,
while the computation time for optimization is reduced by one
or two orders of magnitude.

The proposed system, which is not limited to a specific
application, is available for different motor specifications by
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changing the optimization settings and electrical parameters. In
addition, it has the capacity for repeated optimizations once the
training phase is completed, and it also can respond to minor
adjustments in the requirements.
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