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Deep Neural Network-Based Stability Region
Estimation for Grid-Converter
Interaction Systems

Mengfan Zhang

Abstraci—The large-scale integration of renewables in
the modern power system will lead to a large number of
power electronics in the power system and pose interac-
tion stability challenges. Impedance-based stability anal-
ysis methods have been widely adopted for the stabil-
ity evaluation of interconnected power converter systems.
However, they are small signal stability analysis tools that
can only effectively estimate stability near a certain op-
erating point; they are not effective for grid-converter in-
teraction systems due to the wide variation of operating
points caused by the fast and large fluctuations of renew-
able energy and load. To address this challenge, this article
proposes a double deep neural network (DNN)-based black-
box modeling and stability region estimation approach for
grid-converter interaction systems. First, a DNN-based mul-
tioperating point (MOP) impedance model is proposed to
build the impedance model covering multiple operating
points. Next, a DNN-based stability evaluation model is de-
veloped based on the MOP impedance model and the phys-
ical nature of the whole system for the estimation of the sta-
bility region. The proposed double DNN-based method can
achieve fast and accurate online estimation of the stability
region for grid-converter system under large variations of
renewable energy. Numerous experiments are conducted
to demonstrate the effectiveness of the proposed method
to achieve accurate identification of the MOP impedance
model and to generate an accurate stability region of the
system.

Index Terms—Deep neural network (DNN), grid-converter
interaction, power electronics dominated power systems,
renewables, stability.

[. INTRODUCTION

N RECENT years, with increasing renewable energy (solar
photovoltaic, wind, etc.) integrated into the grid, the tradi-
tional power system has become more sustainable [1]. As power
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electronic converters are the interfaces for renewable energy
to be integrated into the grid, traditional power systems are
becoming power-electronics-based power systems. However,
the interaction between the grid and the internal control systems
of power converters brings instability issues of the grid-converter
system [2], [3].

The impedance-based methods are widely used to ana-
lyze the grid-converter interaction stability [4], [5], [6]. Nor-
mally, the grid-converter system is divided into two subsystems
at the point of common coupling (PCC), and impedance mod-
els are developed in a parallel admittance matrix format for
stability analysis [7]. However, in practical applications, many
vendors are unwilling to share details of their products, mak-
ing it difficult to get the full information of the converters
required in impedance modeling. To overcome this challenge,
the impedance measurement technique is developed to directly
get the impedance model by frequency scanning measurement
without the prior information of inner control systems, which
enables a “black-box” modeling and stability estimation of
the grid-converter interaction system. However, the existing
impedance measurement-based stability analysis methods are
conducted only in the fixed operating scenario, but in real-world
situations there are continuous variations and fluctuations due to
renewables, load changes, and commands from system operators
in the system, which cause wide variations of operating points.
Meanwhile, the model of the converters has high-order non-
linearities, that make the identified impedance models change
continuously, making it challenging to estimate with existing
impedance measurement methods. Therefore, it is significantly
important to develop a multioperating-point (MOP) converter
modeling and stability region estimation method.

To identify converter impedance at wide operating points,
there are a few methods proposed in the previous literature.
A polytopic modeling method for power-electronics converters
is reported in [8], where the small-signal models at different
operating points are summarized with respective weights to
generate an MOP model. Yet this method can just predict the
impedance of the converters at limited operating points and the
accuracy is hard to be guaranteed. Deep neural network (DNN)-
based methods are proposed to identify the impedance model
of the voltage source converter (VSC) at different operating
points [9], [10], [11], [12]. The authors in [13] and [14] use
the DNN to achieve the MOP model of the MMC, then use
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To fill the research gaps, this article proposes a double-DNN-
based method to achieve fast online stability region estimation Fig. 2. Proposed double DNN-based stability region estimation

under the wide variation of operating points. First, a DNN-based
MOP-impedance model is established by frequency scanning
at various scenarios with different operating points. Second,
a DNN-based stability evaluation model is developed for the
estimation of the whole stability region. The proposed double
DNN-based stability region estimation method achieves fast
and accurate online estimation of the stability region for grid-
converter interaction under a wide variation of operating points
to guarantee the stable operation of the system under large
variations of renewable energy. It can also be combined with
optimization/scheduling methods to achieve stability guaranteed
optimal operation of the system.

The rest of this article is organized as follows. Section II
introduces the proposed approach. Sections III and IV give the
practical implementation of the proposed method in impedance
model generation and stability evaluation model generation,
respectively. The experimental test results are provided in Sec-
tion V, which validates the effectiveness of the proposed method.
Finally, Section VI concludes this article.

[I. FRAMEWORK OF BLACK-BOX DNN-BASED STABILITY
ANALYSIS OF GRID-CONVERTER INTERACTION

A. System Description

Fig. 1 shows a typical topology of the grid-converter interac-
tion system with integrated renewables. The input of the voltage
source converter (VSC) is connected to the renewables, while

method for grid-converter interaction system.

the output is connected to the power grid through the filter L ¢
and its parasitic resistance RLf at the PCC. The equivalent model
of the grid side is an ideal voltage source with an equivalent grid
inductor denoted as L. In such a system, inductors in the filters
of the VSC and power cables interact with the inner control loops
of the VSC, resulting in oscillations and instability. On the other
hand, the uncertainties of the renewables and loads also bring
the variation of the operating points of the VSC, which affect
the stability analysis of the interaction system. Therefore, it is
significantly important to develop an MOP-impedance model
to study the interaction between VSC and grid and analyze its
stability.

B. Proposed Method

Fig. 2 shows the proposed double DNN-based stability anal-
ysis method for grid-converter interaction systems, where the
first DNN performs a regression task of multioperating-point
impedance modeling, while the second DNN performs a classi-
fication task of system stability evaluation. The proposed method
consists of two steps.

The first step is to develop the DNN-based MOP-impedance
model. The impedance model of VSC varies with the operating
point. To deal with operating point variations, the operating point
scanning measurement is carried out with various operating
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points. op denotes the operating point set, where the elements
inside (e.g., opl, op2, etc.) represent operating vectors dg-frame
(i.e., id, g, Va, Vq). And then the frequency scanning impedance
measurement is implemented to get the impedance spectrum
in the full frequency domain. By feeding the data measured
from the above procedure (i.e., operating point, frequency, and
impedance), a DNN-based MOP-impedance model is estab-
lished, which is marked as DNNi.

The second step is to develop the DNN-based stability eval-
uation model. Based on the MOP impedance model DNNi
developed in the first step, as well as the grid impedance model
and generalized Nyquist criterion (GNC), the stability data can
be generated. Then the DNN-based stability evaluation model
can be constructed to show the stability state of the grid-inverter
interaction system at variable operating points, which is marked
as DNNd.

Finally, the stability region can be generated based on the
stability evaluation model in the second step by inputting the
concerned operating point range into the DNNd model.

The proposed DNN-based MOP-impedance model, by fre-
quency scanning measurement without the prior information of
inner control systems, can get the high-order nonlinear model
under the wide operating range, which enables a “black-box”
modeling for a wind operating condition; and together with the
proposed DNN-based stability estimation model, the proposed
double DNN-based stability analysis method can achieve fast
online stability region estimation and stability estimation of
the grid-converter interaction system under wide variation of
operating points to fill the current research gap.

Detailed implementation of the proposed double-DNN ap-
proach will be explained in the next two sections.

[Il. DNN-BASED POWER ELECTRONICS CONVERTER
MODELING

To capture the multioperating-point impedance model of
converters under variation of operating points, a DNN-based
MOP-impedance model is developed, as shown in the first step
in Fig. 2. It consists of MOP-impedance measurement and
MOP-impedance model training.

A. MOP-Impedance Measurement

The MOP-impedance data is acquired by frequency scanning
at different operating points. The detailed workflow is shown in
Fig. 3.

Before the measurement, the operating point and frequency f
are initialized. Then, the magnitude of perturbation signals needs
to be appropriately designed. If the magnitude of the perturbation
signal is not small enough, the operating point of the VSC will
be changed. Meanwhile, if it is not sufficiently large, the noise
disturbances will affect the measurement [17]. According to [18]
and [19], the current perturbation is set to 5% of the operating
point in this article. Next, the current excitation signal is injected
into the VSC system with the current-controlled power source
and measure the voltage and current (vgpe, tqpe) Of the VSC
at the PCC as shown in Fig. 4. Two independent perturbation
signals are injected to gather enough information to solve the
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Fig. 3. Workflow of the MOP-impedance measurement.
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impedance matrix. Park’s transformation is adopted to transform
the measured abc-frame signal into the dg-frame. The frequency
domain voltage and current signal at the injected frequency are
extracted with the fast Fourier transform (FFT) algorithm. With
the processed voltage and current data, the admittance of the
VSC is calculated as follows [20]:

Ud2:| |:/L:d1 1142} _1. )

Zao — Zaa Zaq| _ Va1
4 Zgd  Zaqq Vgl Vg2] [%q1 g2

where the Zgq is the dg-frame VSC impedance. After the
procedure, the impedance of the VSC at one operating point
is generated. By repeating this procedure and changing the
frequency of the perturbation and operating point of the VSC,
the impedance dataset for training is established. Thus, the
structure of the MOP-impedance model is established, where
the operating point of the VSC in dg-frame, i.e., (v4, Vg, %4,
iq) and frequency f, are selected as the input of the model to
reveal the operating-point-dependent and frequency-dependent
feature. The calculated dg-frame impedance is selected as the
output of the model.

Perturbation
Labe

Vabe T

- Ly

q pCC

Fig. 4. Impedance measurement diagram.

B. MOP-Impedance Model Training

To achieve fast mapping of the highly nonlinear impedance
model from measurement, a DNN-based MOP-impedance
model is developed, denoted as DNNi, which performs a regres-
sion task of multioperating-point impedance modeling. First,
the DNN model is designed based on the physical nature of the
impedance. As the MOP-impedance is defined as a four-input
eight-output highly nonlinear model, the architecture adopted in
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Fig. 7.

this article is a feed-forward neural network to represent a highly
nonlinear function that maps the operating point of the VSC
to its impedance model, where five neurons in the input layer
and eight neurons in the output layer [21]. The designed DNN
shown in Fig. 5 DNNd is a four-layer structure with 4-64-64-8
neurons, which contains one input layer, one output layer, and
two hidden layers. The type of activation function in hidden
neurons is selected as sigmoid function, while the output neurons
are linear. Thus, the output of neurons in hidden layers and the
output layer are represented as follows:

k
n; = Sigmoid [Z (wij-zi)+bjal,j=1,...m (2

i=1

the output of neurons in the upper layer. Random initialization is
suitable for impedance identification due to its high nonlinear-
ity [22], [23]. The back-propagation algorithm is used to train
the DNN model with the typical mean squared error (MSE) loss

function [24], [25], which can be expressed as follows:

[ 12
MSE = — Yi — Ui “4)
22

where y; is the observed value of the output of the DNN and
7; is the actual value of the output. The MSE is chosen in this
article due to its continuity, easy interpretation, and being less
sensitive to outliers than other loss functions like mean absolute
error (MAE) loss, which can make the NN training more robust.
For the optimizers in the neural network training, the adaptive
moment estimation (Adam) method is adopted in this arti-
cle [26], [27]. During the training process, a DNN is used to
learn the mapping function of the relationship of impedance
with the operating point without making assumptions. It can au-
tomatically learn the complicated relationship to the impedance
from the operating points, given sufficient training samples. This
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Fig. 12.  Convergence of neural network DNNi training.

process needs to be executed several times and the impedance
model is then generated. After the training, the generated MOP-
impedance model can be used for stability analysis of the grid-
converter interactions.

IV. DNN-BASED STABILITY EVALUATION MODEL

Based on the developed MOP-impedance model in Sec-
tion III, a DNN-based stability evaluation model is proposed
to achieve fast and accurate stability estimation of the grid-
connected VSC system under changing operating points, as
shown in the second step in Fig. 2. It consists of stability condi-
tion data generation and stability evaluation model generation.

A. Stability Condition Data Generation

To effectively generate the stability condition data with
the trained MOP impedance model, a GNC-based method is
adopted [28]. The grid-connected VSC system shown in Fig. 2
is modeled as two subsystems connected at PCC. According
to Thevenin’s theorem, each subsystem is represented as the
impedance in series with the voltage source, which is shown
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in Fig. 6, where Zj,, is the equivalent impedance of the VSC,
which is developed in Section III, while Z, is the equivalent grid
impedance. The impedance ratio is calculated as follows:

Le(jw)

The stability of the grid-converter system is predicted by
the eigenlocus, which are the locus of the eigenvalues of the
impedance ratio parameterized as a function of frequency and
is derived as

:Zg(jw) 'va (jw) (5)

det [M] — Le(jw)] = 0. (6)

If the impedance ratio Le(s) has P unstable poles, then the
grid-connected VSC system is stable if and only if the eigenlocus
of the impedance ratio, taken together, encircles the critical point
(—1,40) P times [29].

Substituting the trained impedance model DNNi into the
above criterion, the stability condition at each operating point
can be identified and the stability condition data are generated.
The stability condition data consist of a feature space of oper-
ating points X and the corresponding class label y (stable or
unstable), which are represented as (1, y1),..., (Tn, Yn), Where
2 contains four elements of the operating points (vq4, Vg, 4, %q)-

B. DNN-Based Stability Evaluation Model Training

The DNNd performs a classification task of system stability
evaluation, which is a feed-forward neural network and serves
as the multilayer perceptron. As shown in Fig. 7, the structure
of DNN-based stability evaluation model DNNd is a four-layer
structure with 3-64-64-1 neurons, which contains one input
layer, one output layer, and two hidden layers. The input of
the model is the operating point, while the output is the stability
probability. The activation function in hidden layers is sigmoid,
while the softmax function is embedded in the output layer to
generate the probability of stability [24]. As the output of the
DNN is the probability of the stable state, when the probability
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of the stability state of the DNN output is bigger than 0.5, the
system is stable.

The back-propagation algorithm with the logarithmic loss
function is used to train the DNN model [30]. The cross-entropy
loss function is used to evaluate the performance of the classifi-
cation task, which is given by

H:—Ztk-lnPk @)
k

where ¢, denotes the label of the stable state in each reference
sample, t; is equal to 1 when the system is stable, while P
denotes the probability of 1. It is noticed that the cross-entropy
loss function measures the difference between the predicted
class probabilities and the true class labels by calculating the
logarithmic loss of the predicted probabilities for the true class
labels. The cross-entropy loss function can penalize the model
more when it makes a wrong prediction with high confidence,
and less when it makes a wrong prediction with low confidence.

Thus, it can converge faster than the MSE in the classification
task. Adam is selected as the optimizer in the DNNd training.

After the training process, the DNN-based stability evaluation
model that can be used for stability analysis of the grid-converter
interaction is generated.

V. CASE STUDY AND VALIDATION

To verify the proposed method, it is applied to a typical
grid-converter interaction system shown in Fig. 8. The VSC
is controlled with the proportional-integral (PI) current con-
troller and the phase-locked loop (PLL). The PLL is used to
synchronize the phase of the VSC to the grid voltage at PCC.
The active power reference P, and reactive power reference
QQef are varied with the renewables and loads, which are used to
generate the current reference %grer and i4rf. The current of the
VSC is controlled by the PI controller. The detailed parameters
of the VSC are shown in Table I.
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TABLE |
VSC PARAMETERS
Variables Description Value
Vie DC voltage of VSC 700 V
fsw Switching frequency 10 kHz
fo Fundamental frequency 50 Hz
Ly Inverter inductor 2.5 mH
Ry Parasitic resistance of inverter inductor 0.9 mQ2
Ly Grid inductor 18 mH
Kpi Proportional parameter of current controller 31.41
Ki; Integral parameter of current controller 16449
Kppu Proportional parameter of the PLL 2.8
Kipi Integral parameter of the PLL 1302

The active power reference Pt and reactive power reference
Q.et are varied with the renewables and loads. The variation of
grid voltage magnitude is also taken into consideration. In this
article, the voltage and current on the dg-axis are selected as
the operating point, the relationship between these elements is
shown as follows:

P=1;-Vyg+1,-Vg, Hzarctan<%)

U=\

cosf.

®)

Q=1s-Vya+1,-Vy,
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Fig. 20.  2-D cutting planes of the stability region of the grid-converter system. (a) I, = 0. (b) V4 =311 V.

TABLE Il
TRAINING DATASET PARAMETERS

Symbol Range Interval
f 1 to 100 Hz 1 Hz
1y 0to20 A 1A
14 -40 to 60 A 10 A
Va 300 to 400 V 10V

As shown in (9), the system operating point is dependent on
the voltage and current. Due to the PLL effect, the voltage of the
VSC in g-axis is aligned to the voltage reference at PCC, i.e.,
vy = 0. Thus, the system operating point can be represented as
the vector (vq, 4, iq)-

Following the proposed DNN-based stability region esti-
mation method, first, the MOP-impedance model is estab-
lished with the operating-point-scanning impedance measure-
ment technique and DNN training technique; then the estab-
lished impedance model is used for the DNN-based stability
evaluation model generation; finally, the stability region of
the grid-connected VSC system is generated with the stability
evaluation model. For DNNi, the inputs of the dataset are the
frequency f, and the operating points 1,4, I,, V, and the outputs
are the impedance of the VSC. For DNNd, the inputs of the
dataset are operating point 14, I, V, the outputs are the stability
of the grid-converter interaction system shown in Fig. 8. The
dataset structure of DNNi and DNNd are shown in Figs. 9 and 10,
separately.

A. MOP-Impedance Model

The current perturbation is injected into the grid-connected
VSC and after the calculation, the dataset is established. The
inputs of the dataset are the frequency and operating point, where
frequency f, and the operating points /4, I,, and V;; are swept
with the different ranges and intervals separately, as shown in
Table 11, the outputs are the impedance of the VSC. Here, the
2000 operating points data are used for the training. To make
the results easily visible, only the variation of I; is drawn in
this article. The obtained dataset is shown in Fig. 1 1. Then the

training dataset is fed into the DNNi as shown in Fig. 5. The
training process of DNNi is shown in Fig. 12. After the training,
the MOP-impedance model DNNi is visualized as shown in
Fig. 13.

The accuracy of the MOP-impedance model is evaluated by
the index R?, which is given as follows:

R*=1- Z (v (Xi) — fi (X2)*/ Z (v: (X)) —9)* ()
where X; denotes the operating point and frequency, y; denotes
the reference impedance data corresponding to the X; in the
verification dataset,yy denotes the average value, and f; denotes
the trained DNN model. For the DNNi training in this arti-
cle, the index R2 is 0.99. To validate the accuracy of trained
MOP-impedance mode outside the training data range. The
corresponding errors of the trained MOP-impedance model and
testing data, where the resolution is (0.1 A, 0.1 Hz), are shown in
Fig. 14. From the errors diagram, the biggest error is lower than
0.1°, which can validate the accuracy of the trained model, and
demonstrate the effectiveness of the method outside the training
data.

To demonstrate the superiority of the proposed method against
the existing method, we conducted the linear interpolation-based
method to identify the impedance model. The corresponding
errors of the linear interpolation-based method and the testing
data have been visualized in Fig. 15. The resolution of testing
impedance dataset is (0.1 A, 0.1 Hz), while the resolution
of the training/interpolating dataset is (1 A, 1 Hz). From the
comparison of the error diagram of Figs. 14 and 15, the error
of the linear interpolation-based method is much larger than the
proposed method (e.g., 10 times in Z4 and Z ).

B. DNN-Based Stability Evaluation Model

The grid impedance can be modeled as a second-order matrix
in dg-frame, which is written as follows:

Zgaa(f)  Zgaq(f)
Zgaq(f) = Zgjj(f) Zng(f)

where f is the sweeping frequency. It should be mentioned
that the grid impedance can be nonlinear and time-varying,

(10)
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Fig. 21. Experimental results of the grid-converter interaction system at different operating points. (a) Case |: Operating point a. (b) Case I
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TABLE Il
CONFUSION MATRIX OF THE STABILITY ESTIMATION MODEL

N P'| Stable |Unstable
Stable 197 4
Unstable 3 196

the proposed method is also effective for these cases (the only
difference is that the grid impedance needs to be measured
following [31]). Thus, the impedance ratio at one operating point
is shown as follows:

Le(j2nf) = Zgaq(2nf) - Ziny (727 f) (1D

where Zi,, (727 f) is the impedance at the frequency f that is ob-
tained with the MOP-impedance model generated above. Then
we calculate the eigenlocus of the system with the sweeping
frequency in the following:

det [M] — Le(j2nf)] = 0. (12)

The stability state of the converter-grid interaction system at
the specific operating point is predicted by analyzing the eigenlo-
cus, which is shown in Fig. 16. By sweeping the operating point
of the MOP-impedance model, the stability state at the global
operating points is obtained. Then the stability state dataset is
achieved. The inputs of the dataset are the operating point, while
the outputs are the stability state of the grid-connected VSC
system.

Then the dataset is fed into the neural network and after the
training, the stability evaluation model DNNd is obtained. The
training process of DNNd is shown in Fig. 17.

C. Experiment Validation

To verify the effectiveness of the stability evaluation model,
the experimental tests are carried out for the system shown in
Fig. 8. The experiment setup is shown in Fig. 18. The Danfoss
converter is controlled with the current control loop and phase
lock loop, where the dSPACE DS1007 is used to control the
VSC, and the parameters are the same as shown in Table I. The
Chroma 61845 is used as the grid simulator.

The stability region can be estimated using the generated
DNN-based stability evaluation model. Fig. 19 shows the stabil-
ity region of the grid-converter interaction system estimated by
the DNN model. The blue region is the stability region, while
the yellow region denotes the unstable scenarios.

To verify the accuracy of the stability region estimation model,
massive experiments with 400 operating points are conducted,
where these points are simple random samples within the oper-
ating range, following the uniform distribution. The confusion
matrix of the model is shown in Table I11, where P represents the
actual stability results in the data and N represents the predicted
stability results in the data. The accuracy of the model is 98.25%,
which can validate the accuracy of the proposed method. During
the experiment test, the short circuit ratio (SCR) of the system
ranges from 2.2 to 6.8, which covers both the strong grid and
weak grid scenarios.

TABLE IV
STABILITY PREDICTION AT DIFFERENT OPERATING POINT

Symbol 1 Iq Vi Stability
a 18 A 0A 311 V  unstable
b I0A  O0A 311V stable
c 18 A 0A 367 V stable
d I5A O0OA 311V stable
e 18A 12 A 311V unstable
f I5A 8A 311V stable
g 1I9A O0A 311V unstable
h 10 A 0A 367 V stable

To clearly demonstrate the stability boundary, we can obtain
two cutting planes within the stability region by letting V; =
311 V and I, = 0. The cutting planes are shown in Fig. 20,
where the stability boundaries can be visualized.

To check the stability estimation of the grid-converter system,
we have conducted several experiments around the boundaries,
which are marked in the 2-D diagram of the stability region of the
grid-converter system in Fig. 20. And the corresponding exper-
iment results are shown in Fig. 21 to show the stable/unstable
experimental phenomena under selected stable/unstable oper-
ating points based on DNNd prediction, which are shown in
Table 1V, where the V;, represents the grid voltage and I,,
I, and I. are the output current of VSC. From the figures,
the prediction results match the experimental results, which
show the effectiveness of the proposed approach for stability
estimation of the grid-converter system.

VI. CONCLUSION

This article had proposed a double DNN-based black-box
modeling and stability region estimation method for converter-
grid interaction systems under the wide changing operating
points, consisting of a DNN-based MOP-impedance model and
a DNN-based stability evaluation model. The proposed method
enabled fast and accurate online stability region estimation
of grid-converter interaction system, thus could guarantee the
system’s stable operation under large variations in renewables
and loads. The experiment was conducted to demonstrate the
effectiveness of the proposed method in achieving accurate iden-
tification of MOP impedance model, and accurate estimation of
the stability region of the system. The accuracy of the obtained
stability region was 98.25% based on massive experiments with
400 operating points. Moreover, experimental results of different
operating points near the stability boundary were presented in
detail to further illustrate the accuracy of the predicted stability
region by the proposed method.
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