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Edge-Enabled Adaptive Shape Estimation of
3-D Printed Soft Actuators With Gaussian
Processes and Unscented Kalman Filters
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Abstract—Soft actuators have the advantages of com-
pliance and adaptability when working with vulnerable ob-
jects, but the deformation shape of the soft actuators is
difficult to measure or estimate. Soft sensors made of
highly flexible and responsive materials are promising new
approaches to the shape estimation of soft actuators, but
suffer from highly nonlinear, hysteresis, and time-variant
properties. A nonlinear and adaptive state observer is es-
sential for shape estimation from soft sensors. Current
state estimation methods rely on complex nonlinear data-
fitting models, and the robustness of the estimation meth-
ods is questionable. This study investigates the soft actua-
tor dynamics and the soft sensor model as a stochastic pro-
cess characterized by the Gaussian process (GP) model.
The unscented Kalman filter is applied to the GP model
for more reliable variance adjustment during the sequen-
tial state estimation process than conventional methods.
In addition, a major limitation of the GP model is its com-
putational complexity during online inference. To improve
the real-time performance while guaranteeing accuracy, we
introduce an edge server to decrease the onboard compu-
tational and memory overhead. The experiments showcase
a significant improvement in estimation accuracy and real-
time performance compared to baseline methods.

Index Terms—Hydraulic/pneumatic actuators, modeling,
control, and learning for soft robots, soft sensors and
actuators.
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I. INTRODUCTION

SOFT robots made of compliant materials have shown
their advantages for adaptability, safety, and novel actua-

tion [1]. Nonetheless, the continuum and hysteresis properties
of soft robots pose a challenge in analyzing their movement
and kinematics compared to the dynamics of conventional
rigid robots [2]. To address this issue, researchers study and
apply continuum mechanics to analyze the kinematics of the
soft material, primarily using the visco-hyperelastic model [3],
piecewise constant curvature models [4], and finite-element
method (FEM) [5]. Those kinematic analysis studies establish
the soft actuators’ plant models and are used to predict the shape
deformation under external actuation. A high-precision plant
model is essential for the accuracy of robot’s actuator control.
However, given the gap between the model and the real physical
device, an increasing uncertainty will evolve if only the state
prediction model is used. Therefore, soft sensors that measure
the shape of the soft actuators and have minimal interference to
their free movement are emerging and gaining interest within
the field of soft robotics [6].

3-D printing has been intensively applied to fabricate soft
actuators directly integrated with printed soft sensors [1], which
either use commercial conductive filaments [7] or self-developed
materials [8] that exhibit deformation-responsive properties.
These sensors usually have piezoresistive or capacitive effects,
which provides feedback through the resistance or capacitance
variations. With the external electrical circuit, sensor feedback
can be captured to reflect the deformation of the soft actuator.
Such a soft actuator–sensor system establishes a state estima-
tor [9] and enjoys the proprioception property [10], i.e., the
system itself has the sensing capacity without the necessity of ex-
ternal sensors, e.g., a camera module with image feedback [11],
where its detection accuracy can be largely influenced by the line
of sight of the camera in a multiactuator intersection scenario.
Thus, the applicability and flexibility of the actuator system are
enhanced.

Despite the advantage of proprioception, piezoresistive and
capacitive materials cause soft sensors to manifest substantial
hysteresis and nonlinearities [12], which confine their usage
since basic calibration techniques with regression cannot ad-
equately identify their features. Compensation strategies are
desired to resolve this issue. Operator-based techniques identify
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the hysteresis behavior using the hysteresis operator [13], [14],
[15], which models hysteresis as a cumulative memory effect of
delayed relay components. These models share a similar operat-
ing principle, in which the parameters of highly nonlinear basis
functions are fitted through a complex identification process.
Furthermore, hysteresis modeling of soft sensors also utilizes
data-driven methods. The dynamics of the soft system is treated
as a black box model, where the hysteresis is regarded as an
inherent property of the sensor [16].

A general limitation of the aforementioned methods is that
they essentially construct a deterministic model to characterize
the system dynamics, which fails to consider model uncertainty
or environmental noise. Moreover, the soft sensor is susceptible
to external noise [12], and the dynamics drift in the soft actuator
due to polymer aging [17] is likely to be nonnegligible. To
overcome these problems, a probability distribution model can
be used to characterize the entire soft actuator–sensor system.
Considering the dynamics of soft actuators and sensors as a
random process allows the state estimation problem to be turned
into a Bayesian filtering problem, but only a few studies [18],
[19], [20] have been conducted in this area [19], mainly owing
to the modeling complexity of nonlinearity and hysteresis with
probability models. In addition, during the filtering process, an
extended Kalman filter (EKF) linearizes the nonlinear dynamic
model, but it is challenging to guarantee system approximation
accuracy with the highly nonlinear system.

This study enhances our previous result [20] by characterizing
the soft actuator–sensor system with a more accurate representa-
tion. Specifically, the Gaussian process (GP) model is employed
to identify the nonlinearity and hysteresis in the soft material.
The Bayesian nonparametric formulation of GP makes it ideal
for modeling the uncertainty and noise in the dynamics of soft
sensors and actuators. Utilizing GP regression, researchers can
construct the time-serial dependence in soft materials [21], [22],
[23]. Moreover, owing to its natural Bayesian interpretation and
predictive variance, the GP model can also be used to combine
the state transition model and the measurement function into the
Bayesian recursive estimation [19]. By utilizing GP regression,
the Bayesian estimation approach can automatically learn the
model and noise process from the training data. In light of this,
we incorporate the GP models for the soft actuator and sensor
into the unscented Kalman filter (UKF) to perform the recursive
state estimation. The UKF applies the unscented transform to
realize a more accurate approximation than the EKF [9] and
exhibits enhanced accuracy for highly nonlinear functions.

The integration framework of GP and UKF was initially pro-
posed by Ko et al. [24]. Recently, it has been applied in various
fields, such as grip force estimation [25], rock movement predic-
tion [26], and lithium-ion battery state of charge estimation [27].
However, its application in soft robotics is still unexplored.
Specifically, the hysteresis property induced by soft materials
brings high nonlinearity and strong time dependence, which
challenges the GP model training and its integration with the
UKF. A standard GP-UKF approach cannot accurately estimate
the states of soft robots, and the tailored design of the system
model for hysteresis characterization of a soft actuator–sensor
system remains an open issue.

Another limitation of the GP approach is its computational
complexities for model training and online inference, which are
cubic and quadratic in the number of training points, respec-
tively [24]. The increase in the number of training points also
raises a memory burden during online implementation, since
the storage capacity of a microcontroller is usually limited. To
resolve this issue, we resort to the concept of edge computing,
which offloads the computational and memory overhead to the
edge server [28]. We set up wireless communication and only
transmit a small amount of necessary data for executing compu-
tationally heavy estimation tasks, by which the communication
latency is reduced. With the offloading scheme, the real-time
performance of the entire solution is improved without any
significant loss of accuracy.

The contributions of our article are summarized as follows.
1) A GP model is formulated to identify the dynamics of

soft actuators and soft sensors, which can characterize
the hysteresis and uncertainty in the soft material without
using parametric models. Consequently, the GP model is
more flexible and not limited by the conjectured paramet-
ric function.

2) We integrate the GP model with the UKF and implement
the GP-UKF approach to improve the state estimation ac-
curacy. The state-space model for the soft actuator–sensor
system is designed and adapted to characterize the time
dependence induced by hysteresis. The developed method
is evaluated in real time to test the estimation precision.
The GP-UKF showcases the advantages compared to
the pure GP and the previous multihypothesis extended
Kalman filter (MH-EKF) approach in estimation accuracy
and computational resource efficiency.

3) To circumvent the problem of high computational and
memory overhead in the GP inference, we offload the
online estimation task from the microcontroller to an edge
server. The offloading architecture guarantees real-time
performance and high estimation accuracy. The edge
computing scheme via wireless communication provides
more flexibility for future applications of the soft actuator.

The rest of this article is organized as follows. Section II first
constructs the probabilistic model to represent the hysteresis,
with which the dynamics models of soft actuators and soft sen-
sors are identified. Then, the GP-UKF approach is derived and
used as a filtering approach to improve the estimation accuracy.
We introduce the experimental setup and offloading scheme in
Section III. Section IV shows the evaluation and results of our
approach. Finally, Section V concludes this article.

II. MODELING OF SOFT ACTUATOR–SENSOR SYSTEM

BASED ON GP REGRESSION

A. System Modeling by the GP

This article uses the same type of soft actuator–sensor system
in our previous study [20], which consists of a soft actuator and
the proprioceptive soft sensor, as illustrated in Fig. 1. The soft
sensor is printed onto the soft actuator directly via multimaterial
3-D printing methods. Its electric resistance is deformation
responsive owing to the changed distribution of carbon black
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Fig. 1. Experimental setup. (a) Test rig and 3-D printed soft actuator.
(b) 3-D printed soft actuator with the integrated soft sensor. The soft
actuator is deformed with the bending angle θt.

during deformation. This proprioceptive soft actuator–sensor
system constructs a state estimator.

We first elaborate the dynamic models of the soft actuator
and sensor, whose state variables are xa,t and xs,t, respectively.
The subscript a/s represents actuator/sensor, and subscript t
represents the time step. Inspired by the probability box method
proposed in [19], we formulate the hysteresis of the soft actuator
and sensor by considering their output defined by a probability
distribution function. The sensor state xs,t consists of three
elements. To express the time dependence, we consider that the
sensor output is influenced by values of the bending angle in two
consecutive periods of time (i.e., θt−1 and θt). In addition, owing
to the memory effect of hysteresis [12], we include the sensor
value of resistance in the last time step rt−1 as a state variable,
which leads to the sensor model function fs :R

3 → R, and

rt = fs(xs,t) (1a)

xs,t = [rt−1, θt−1, θt]
�. (1b)

Similarly, the soft actuator fa :R3 → R can be modeled with

θt+1 = fa(xa,t) (2a)

xa,t = [θt, Pt−1, Pt]
� (2b)

where Pt is the input pressure.
Due to the reality gap, the model functions fs and fa

have modeling errors. Therefore, this study applies GP mod-
els to describe the probabilistic distribution of functions fs
and fa. Due to their similarity, we only show the deriva-
tion of GP regression of the soft actuator as an example.
The GP model of the soft actuator is characterized by the
mean functionma(xa,t) and covariance functionka(xa,t,xa,t′),
i.e., fa(xa,t) ∼ GP(ma(xa,t), ka(xa,t,xa,t′)). In the formula,
ma(xa,t)=E[fa(xa,t)]∈R, andka(xa,t,xa,t′)=E[(fa(xa,t)−
ma(xa,t))(fa(xa,t′)−ma(xa,t′))]∈R+, where t and t′ are two
time indexes. The mean function is normally initialized as zero
with ma(xa,t) = 0. Moreover, this study selects the squared
exponential kernel as the kernel function for the covariance
function, with the expression of [29]

ka(xa,t,xa,t′)= λ2
f exp

[
−1

2
(xa,t−xa,t′)

� Λ−1 (xa,t−xa,t′)

]

+ λ2
ωδ(xa,t,xa,t′) (3)

where λ2
f is the amplitude hyperparameter denoting signal

variance, λ2
ω is the hyperparameter representing the measure-

ment noise variance, Λ = diag([λ2
1, λ

2
2, λ

2
3]) is the scaling factor

along each dimension of the input space, and δ(·, ·) is the
Kronecker delta function. The kernel function in (3) follows
the form by considering the noisy observations (see, e.g., [30,
Sec. 2.2]). The kernel hyperparameters λλλ = [λ2

f , λ
2
ω,Λ] have

a significant impact on the shape of regression functions, and
they can be optimally defined by log marginal likelihood [29].
With a training dataset Ta = {Xa, θθθ} of n training input sam-
ples Xa = [xa,1, . . . ,xa,n] and their corresponding outputs
θθθ = [θ2, . . . , θn+1], the optimal values λλλ∗

a can be acquired by
maximizing the likelihood of the observed outputs through

λλλ∗
a = argmax

λλλ
log p(θθθ | Xa,λλλ)

= −1

2
θθθK−1

a θθθ� − 1

2
log |Ka| −

n

2
log 2π

(4)

where Ka is the n× n covariance matrix and

Ka(i, j) = ka(xa,i,xa,j). (5)

Note that Ka is symmetric and positive semidefinite because
of the influence of λ2

ω . Then, given an arbitrary test state xa,t,
the function value fa(xa,t) is jointly Gaussian with the training
inputs Xa, with the prior as

p

([
fa(Xa)

fa(xa,t)

] ∣∣∣∣xa,t,λλλ
∗
a, Xa

)

= N
(
0,

[
Ka ka(Xa,xa,t)

ka(Xa,xa,t)
� ka(xa,t,xa,t)

]) (6)

where fa(Xa) = [fa(xa,1), . . . , fa(xa,n)]
�. ka(Xa,xa,t) is an

n× 1 vector, and each entry denotes the kernel function value
between xa,t and xa,t′ ∈ Xa. 0 is a column vector of zeros with
the length n+ 1, as we consider the prior mean function as
zero (i.e., ma(xa,t) = 0). Based on (6), the distribution for the
predicted output θt+1 is Gaussian, yielding

p(θt+1 | xa,t,λλλ
∗
a, Ta) = N (μθ,t+1, σθ,t+1) (7)

and

μθ,t+1 = ka(Xa,xa,t)
�K−1

a θθθ� (8a)

σθ,t+1 = ka(xa,t,xa,t)− ka(Xa,xa,t)
�K−1

a ka(Xa,xa,t)
(8b)

where μθ,t+1 and σθ,t+1 are the mean and variance of θt+1,
respectively. The sensor model estimation fs through GP re-
gression can be derived similarly. We omit its derivation here
for simplicity but will give the necessary formulations in the
next section when integrating with the UKF.

B. UKFs With GP Models

Note that when we derive the GP formulation in the previous
section, the input state xa,t is regarded as deterministic points
without considering uncertainty. Nonetheless, the GP model
outputs (i.e., θt+1) are expressed in the stochastic Gaussian
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form. During the online estimate where the long-term prediction
is performed, if we directly incorporate the stochastic state θt
generated by the GP model into the state expression in (2b),
the nondeterministic state xa,t will become a non-Gaussian
prediction of θt+1 during the iterations. Such implementation
will be problematic in the long run, as already demonstrated
in previous studies [19], [31]. Kim et al. [19] circumvent the
variance and only utilize the mean value from the GP model,
by which xa,t can be expressed deterministically. However, the
method does not consider the distribution of the input signal and
may lead to a growing estimation error. In addition, Deisenroth
et al. [31] propose the assumed density filter, where the Gaussian
form is preserved through moment matching, and it can capture
the true mean and the true covariance of the posterior distribu-
tion [9]. However, its high computational complexity restricts
the real-time implementation.

These problems motivate us to investigate a new method to
perform the online estimation with stochastic states in the field of
soft robotics. Since the GPs naturally consider the uncertainty
and noise in the model, we can improve the state prediction
accuracy through the sequential state estimation. Specifically,
this study leverages the UKF to retain the Gaussian distribution
with high efficiency. Compared to the EKF approach [19], [20],
the UKF performs unscented transform, which is a stochastic
approximation by a weighted statistical linear regression pro-
cess. In addition, the UKF is a derivative-free filter that does
not require the computation of Jacobians. By contrast, EKF
implementation will bring difficulties in our case, since the
dynamic functions (i.e., fa and fs) are not explicitly expressed
in the GP approach. Also, compared to other sample-based
filters, e.g., particle filters, the UKF adopts the Gaussian distri-
bution assumption, which matches the GP posterior output and
improves the computational efficiency in real-time applications.

In this section, we present the unscented transform by refer-
ring to the definitions in [9] and [24]. Same to the last section,
we continue to use the actuator model as the representative. In
addition, note that the GP models derived in (1a) and (2a) are
regarded as the state prediction function in the Kalman filter, and
we shall denote their outputs by r̂t and θ̂t+1 in the following.

To fit in the UKF scheme, we express a nonlinear actuator–
sensor state-space model in the discrete-time domain by

xt+1 = f(xt, ut) (9a)

zt+1 = g(xt+1) (9b)

where f and g denote the state transition and observation model
function, xt is the system state at time step t, and ut is the
input signal. zt+1 is the observation value, which differen-
tiates r̂t since the latter is the ideal estimation. We regard
the soft actuator–sensor system as an entirety and define the
state by xt = [θt rt Pt−1 ]� and the input by ut = Pt to
reflect the hysteresis influence. The state xt is viewed as a
random model, which is represented by the posterior proba-
bilities based on the past measurements and controls. We de-
note by θt ∼ N (μθ,t, σθ,t) and rt ∼ N (μr,t, σr,t) the estimated
bending angle and sensor value in xt. Thus, the state is xt ∼
N (μμμt,Σt) with μμμt = [μθ,t, μr,t, Pt−1]

�. Σt is diagonal (i.e.,
Σt = diag(σθ,t, σr,t, σP )) only during initialization (i.e., t = 1).

The off-diagonal elements are nonzero after the measurement
update in the UKF.

Moreover, considering the influence of external disturbances,
the input pressure is also stochastic with time-invariant variance
σP . Thus, the system model (9) can be expanded with

xt+1 = f(xt, ut) =

⎡
⎢⎢⎣
fa
(
[θt, Pt−1, Pt]

�)
fs

(
[rt, θt, θ̂t+1]

�
)

Pt

⎤
⎥⎥⎦ (10a)

zt+1 = g (xt+1) = Cxt+1 + εz (10b)

where θ̂t+1 is the estimation value from (2), C = [0 1 0], and
εz is the sensor measurement noise with εz ∼ N (0, σz).

The UKF applies deterministic sampling to build a small set
of sample points and propagates them through the nonlinear
model functions, from which the new Gaussian estimation is
formed. Given the posterior distribution from the time step t, we
first extract sigma points from this distribution and pass them
through the model transition function f . The sigma points are
located at the mean and symmetrically along the main axes of the
covariance. The dimension of the sigma points depends on the
number of random variables. Since the uncertainty is considered
in ut, note that herein the dimension of multivariate Gaussian
distribution is n=|xt |+ |ut |=4. We denote qt = [xt;ut ] ∈
R

4 to represent the random variable in unscented transform.
There are total 2n+ 1 sigma points Qt = {q[i]

t | i = 0, . . ., 2n},
and

q
[0]
t = μμμq

t (11a)

q
[i]
t = μμμq

t +

(√
(n+ λ̃)Σq

t

)
i

, i = 1, . . . , n (11b)

q
[i]
t = μμμq

t −
(√

(n+ λ̃)Σq
t

)
i−n

, i = n+ 1, . . . , 2n

(11c)

whereμμμq
t=
[
μμμt;Pt

]
, Σq

t =diag(Σt, σP ) is a block diagonal ma-

trix, (·)i selects the ith column of the matrix, and λ̃ is a scaling
parameter that determines how far the sigma points are spread
from the mean [32]. The sigma points are given as the inputs
for the model function f , and the corresponding output is the
set X̂t+1 = {x̂[i]

t+1 | i = 0, . . ., 2n}, where x̂
[i]
t+1 = f(x

[i]
t , u

[i]
t ).

x̂
[i]
t+1 follows Gaussian distribution and x̂[i]

t+1 ∼ N (μ̂μμ
[i]
t+1, Σ̂

[i]
t+1),

where μ̂μμ
[i]
t+1 and Σ̂

[i]
t+1 are estimated from (8) and (10a). Since

the set Qt is transferred through the nonlinear function f , the
output X̂t+1 will not likely be distributed in the Gaussian form.
In order to possess the Gaussian distribution property, we extract
the mean μ̄μμt+1 and variance Σ̄t+1 of the assumed Gaussian from
the mapped sigma points X̂t+1 with

μ̄μμt+1 =

2n∑
i=0

w[i]
m μ̂μμ

[i]
t+1 (12a)

Σ̄t+1 =

2n∑
i=0

w[i]
c

[
(μ̂μμ

[i]
t+1 − μ̄μμt+1)(μ̂μμ

[i]
t+1 − μ̄μμt+1)

� + Σ̂
[i]
t+1

]
(12b)
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where Wm = {w[i]
m | i = 0, . . ., 2n} and Wc = {w[i]

c | i =
0, . . ., 2n} are the weights for sigma points when recovering
the mean and covariance of the Gaussian distribution (see,
e.g., [9, Sec. 3.4.1]). Equations (11) and (12) establish the
essence of unscented transfer that preserves the Gaussian
property after the nonlinear function computation. Instead
of performing linearization around the mean point as in the
EKF, the unscented transform attains the state prediction with
Gaussian form without the calculation of Jacobians.

By performing unscented transfer based on (11) and (12),
we obtain the prior distribution of the state at time step (t+1)
following Gaussian distribution with x̄t+1 ∼ N (μ̄μμt+1, Σ̄t+1),
where x̄t+1 = [θ̄t+1 r̄t+1 Pt ]�. Note that θ̄t+1 is different

from θ̂t+1, where θ̂t+1 is obtained from a single point (i.e., μμμt)
projection through fa, while θ̄t+1 is the unscented transform
on f when taking the posterior distribution p(xt) as the input,
which enables us to capture the overall uncertainty during the
state prediction.

We use the observation model g and measurement zt+1 for the
state estimation update in the following step. Note that in (10b),
the observation model is linear; thus, we can skip the unscented
transform on g as in the conventional UKF, and the predicted ob-
servation z̄t+1 ∼ N (μ̄z,t+1, σ̄z,t+1) can be expressed directly
with

μ̄z,t+1 = Cμ̄μμt+1 = μr,t+1 (13a)

σ̄z,t+1 = CΣ̄t+1C
� + σz = σr,t+1 + σz. (13b)

Accordingly, the Kalman gain Kt+1 ∈ R
3 is calculated by

Kt+1 = Σ̄t+1C
�(σ̄z,t+1)

−1. (14)

Subsequently, with the measurement zt+1, the posterior state
estimation xt+1 ∼ N (μμμt+1,Σt+1) can be updated by

μμμt+1 = μ̄μμt+1 +Kt+1(zt+1 − μ̄z,t+1) (15a)

Σt+1 = Σ̄t+1 −Kt+1σ̄z,t+1K
�
t+1. (15b)

Thus, shape estimation p(θt+1) can be derived from (15). Note
that the off-diagonal elements inΣt+1 are nonzero during update
due to (15b). Algorithm 1 presents the pseudocode for the GP-
UKF online implementation. The initialized variance values in
Line 1 are estimated based on the observations and experiment,
and more details about the numerical parameter initialization are
presented in Section IV. Note that lines 2 and 3 can be estimated
offline based on the collected training data before the real-time
implementation.

As mentioned previously, one main advantage of integrat-
ing GP models with the UKF is that the values of estimation
uncertainty (i.e., σ̂

[i]
θ,t, σ̂

[i]
r,t in Σ̂

[i]
t ) can be calculated adap-

tively by leveraging GP regression, whereas in the conven-
tional UKF, they are manually tuned and often static. With
a higher density of training data around the model state, a
lower level of state uncertainty variance can be determined,
thus achieving the automatic adaptation of the noise variance
value.

Algorithm 1: GP-UKF: Soft Actuator State Estimation.

Fig. 2. Overview of the experiment system.

III. EXPERIMENT SETUP

A. Data Acquisition System

A thermoplastic polyurethane (TPU)-printed soft actuator is
fabricated for the validation of the proposed method. Meanwhile,
we print the soft sensor onto the actuator directly via multimate-
rial 3-D printing methods with NinjaTek EELTM material, which
is a mixture of TPU and carbon black [33].

Fig. 2 gives an overview of the experiment setup. The soft
actuator deformation is induced by the air pressure from the
proportional pressure regulator (Festo VEAB-L-26-D9-Q4-V1-
1R1), which is connected to the pressure source of 6 bar at
maximum and controlled by an Arduino Due microcontroller
board. In addition, to guarantee the accuracy of pressure out-
puts from the regulator, we calibrate and verify the pressure
output with a pressure sensor (Festo SPAU-P6R-W-Q4D-L-
PNLK-PNVBA-M12U) before the experiments. We design a
resistance meter circuit using a Wheatstone bridge to convert
the varied sensor resistances during bending into analog voltage
signals, which are then read by the microcontroller board as
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the sensor measurement. A compiled program is downloaded to
the microcontroller, which performs the estimation and control
tasks. We design a proportional–integral (PI) controller with the
feedforward part to realize the bending angle control [20]. After
receiving the control signal calculated by the microcontroller,
the voltage amplifier module sends the corresponding electric
voltage level signal ranging from 0 to 10 V to the pressure
regulator to drive the soft actuator with deformation.

In addition, we monitor the system status and send reference
control commands to the board in real time through MATLAB
Simulink external mode. As illustrated in Fig. 1(a), we use a
web camera to detect the bending angle of the soft actuator by
the image feedback module, which is regarded as the ground
truth signal for comparison. The image feedback module uses a
Logitech C270 HD web camera, which is located on top of the
soft actuator and captures real-time pictures at 30 frames/s. The
image capture and processing modules are carefully calibrated
before conducting the experiments, and the environment of the
camera module is static once we finish the calibration, to ensure
that the bending angle accuracy captured by the web camera
will not be influenced during the training and testing phases.
The gray area on the left of Fig. 2 represents the alternative
offloading schemes, where the estimation task is offloaded to an
edge server. Its implementation is elaborated in the next section.

B. Offloading Scheme

According to our previous study [20], the step response rise
time for the same type of soft actuator is around 800 ms. Thus,
we define the estimation and control period in this task as 50 ms
to ensure that the control frequency is ten times faster. However,
the computational complexity poses a challenge to execute the
estimation task with the GP approach on the microcontroller
in real time. The microcontroller board has limited capacity in
both computational speed and memory size, featuring 84-MHz
clock speed, 96-kB SRAM, and 512-kB flash memory. Recall
that in (8), the calculation of posterior estimation requires the
information of Ka ∈ R

n×n, Xa ∈ R
3×n, and θθθ ∈ R

n, which
leads to the quadratic space complexity O(n2) to the number of
training data n during the online GP inference. With the growth
of training data, the periodic task may not be schedulable for
computation or affordable to write in the on-chip memory. We
keep the data as the double-precision type both in the storage
and memory to guarantee the accuracy of estimation and bending
angle control. Thus, when the number of training points is 64,
the memory overhead for the GP parameters alone is over 70 kB,
posing a big challenge for SRAM capacity. In light of this, we
set the maximal number of training points to 64 in this study.

To further resolve this resource deficiency issue, we resort
to an edge computing scheme and offload the estimation task
from the microcontroller to the edge. The edge server is a
desktop PC with Intel(R) Core(TM) i7-8700 CPU at 3.20 GHz,
six cores, and 8.0-GB installed memory (RAM). We build the
wireless communication between the microcontroller and the
edge server through Wi-Fi. Due to the lack of wireless commu-
nication capacity on the microcontroller, we connect it with an
ESP82-01S board as the Wi-Fi serial transceiver module, which

Fig. 3. Overview of the communication path.

supports Wi-Fi at 2.4 GHz and up to 72.2 Mb/s of data rate. We
select the user datagram protocol (UDP) as the protocol due to
its simplicity and efficiency. ESP82-01S board transmits UDP
packets between the microcontroller and the edge server through
Wi-Fi.

The communication path in the edge-enabled approach can
be found in Fig. 3. The microcontroller handles sensor reading
and pressure control tasks, where zt and ut are sent to the
Wi-Fi module through Serial communication. After that, the
data are sent to the edge server by the Wi-Fi module, where
the GP/GP-UKF are computed. After the edge computation,
the posterior estimation p(θt) in (15) is then sent back to the
microcontroller for shape control in the next period, via the
Wi-Fi module for transferring the UDP packets to Serial mes-
sages. To avoid the buffering of Serial data, the data transmission
frequency is set to the same as the control frequency with 20 Hz.
Since the estimation and control tasks are accomplished on
different nodes, the end-to-end delay in the closed-loop control
system can be attributed to four segments, as denoted by t1–t4
in Fig. 3. t1 and t3 represent the communication delays between
the microcontroller and the edge server, which contain both the
Serial and UDP transmissions. t2 and t4 denote the computation
delays from the estimation and control tasks, respectively. To
meet the schedulability requirement, the sum of t1–t4 should
be less than 50 ms, thus enabling the latest control signal ut to
drive the actuator in each period. Based on the signal ranges, we
apply fixed point representation and keep two decimal places
for each data point, which limits the communication overhead
by sending each data point with 2 bytes.

IV. RESULTS AND VALIDATION

We compare the performance of GP-UKF with the following
methods for evaluation.

1) GP [30], [22]: The bending angle θt is predicted by mul-
tistep GP regression through (2) without sensor feedback.

2) MH-EKF [20]: The actuator is modeled by a second-order
state-space function, and the sensor is modeled by sev-
eral quadratic functions. The Kalman filter is performed
through multihypothesis correspondence.

3) Bayes filter (BF) [9], [19]: The models are still repre-
sented by GP regression. The posterior distribution is
calculated by the BF without the unscented transform.
The BF is only used to compare the variance estimation
in Section IV-B.
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TABLE I
HYPERPARAMETERS FOR THE GP MODELS

Fig. 4. Variance verification of measurement for input pressure and
output resistance. (a) Pressure input verification. (b) Output resistance
verification.

In addition, a web camera is applied to provide the ground
truth of the estimation by image processing. We use Camera
feedback as the true value to calculate the estimation error.

The training data for GP models are collected by driving
the actuator with sine waves with positive offsets so that the
minimal value is 0◦. The maximal values of the sine waves
change from 10◦ to 50◦, and the frequency of all waves is 2
rad/s. The hyperparameters of GP models are identified offline
through optimizing (4) with the GPML toolbox.1 We present the
identified kernel hyperparameters of GP models for the actuator
(λλλ∗

a) and the sensor (λλλ∗
s) in Table I.

To initialize the parameters in the UKF, we estimate the
values of σP and σz through experiments. As can be seen in
Fig. 4(a), different pressure references Pr are set to the pressure
regulator, and the readings from the pressure sensor are recorded
to calculate the error. The left vertical axis shows the measured
pressureP normalized by the pressure referencePr , and the right
axis shows the error calculated by | (P−Pr)

Pr
|. The figure shows

that the directly regulated pressure by the pressure regulator is
higher for low pressures less than 0.5 bars, but the errors are
still at low levels less than 3%. For higher pressures, the errors
are always less than 1%. The verification result shows the high
accuracy of the pressure regulator. For simplicity, we consider
σP as a constant, and assume the average absolute error sampled
in Fig. 4(a) as one standard deviation, by which we calculate
σP ≈ 0.001.

The verification of the output resistance value is performed
similarly. We measure its stabilized value when driving the
actuator with the pressure of a sine wave multiple times. In
addition, we shift the time step by offsetting each driving cycle
with the start time at the origin and plot the corresponding sensor
output in Fig. 4(b), where the average value is also plotted for
comparison. The output resistance value in different driving
cycles has a standard deviation of 1.3340, and a variance of
1.7796. Thus, we determine the sensor measurement and initial
resistance variance with σz = σr,0 ≈ 1.8.

1[Online]. Available: http://gaussianprocess.org/gpml/code/matlab/doc/

Fig. 5. Estimation accuracy comparison with (a) sine waves, (b) trian-
gle waves, (c) square waves, and (d) a random signal.

A. Comparison With Benchmarks

As shown in Fig. 5, the shape estimation accuracy is assessed
by driving the actuator with different positive reference signals.
Note that we keep the maximal bending angles of the soft
actuator at 40◦ to ensure that it is within the domain of the
training dataset. In Fig. 5(a) and (b), we compare the estimation
performance with sine and triangle waves of different ampli-
tudes, biases, and frequencies. All three approaches can retain
high accuracy with 0◦ as the origin. However, performance
deterioration can be observed in the MH-EKF with the angle
biases, which is an open issue identified in [20] due to the model
limitation. Compared to the MH-EKF, the GP-class approaches
improve the accuracy by adopting the data-driven method with
higher model complexity. In Fig. 5(c) and (d), when the bending
angle is static, the GP-UKF outperforms the GP with a more
noticeable advantage as a result of incorporating sensor feed-
back. The reason can be attributed to the imperfect coverage
of input space in the training data. Since the training data are
composed of sine waves, the pressure is continuously varied,
where the stationary input state is not included in the training;
thus, the model accuracy is influenced. The GP-UKF has a better
performance owing to the additional sensor feedback for the
estimation adjustment.

Table II lists the estimation error of different types of sig-
nals, where the normalized root-mean-square error (NRMSE)
is calculated by the range of data from root-mean-square error
(RMSE). The square wave has a much higher max error than
the other signals because the response time latency incurs a
large error with the sudden change in reference, even though
this large error is not that noticeable in Fig. 5(c). The GP-UKF

http://gaussianprocess.org/gpml/code/matlab/doc/


TAN et al.: EDGE-ENABLED ADAPTIVE SHAPE ESTIMATION OF 3-D PRINTED SOFT ACTUATORS 3051

TABLE II
ESTIMATION ERROR COMPARISON WITH DIFFERENT TYPES OF SIGNAL

Fig. 6. Estimation accuracy comparison by different sampling densi-
ties with (a) num64, (b) num13, (c) num7, and (d) estimation variance
comparison.

enjoys a consistent higher accuracy among the three approaches,
where the NRMSE value is reduced by 30.937% and 57.614%
compared to the GP and the MH-EKF on average.

B. Performance With Different Sampling Density

As mentioned in Section III-B, the GP approach involves a
much higher computational and memory overhead compared to
the traditional methods. Besides the offloading approach for han-
dling the computationally heavy tasks at the edge, another cir-
cumvention is to sacrifice the accuracy by reducing the number
of training data and saving computation and memory overhead.
We compare the tradeoff between the estimation accuracy and
the overhead by checking the performance when the number of
training data varies.

Fig. 6(a), (b), and (c) compare the estimation performance
under three training data sampling densities, i.e., num64, num13,
and num7. As mentioned in Section III-B, the maximal number
of training datasets is limited to 64 due to memory capacity,
which corresponds to the num64 scenario. The numbers of
training points in num13 and num7 are 13 and 7, which are

TABLE III
ESTIMATION ERROR COMPARISON WITH A RANDOM REFERENCE SIGNAL

five and ten times less, respectively, compared to the num64
scenario.

The reference signals in Fig. 6 are a random signal and a
triangle wave. Note that since two models need to be trained
(i.e., actuator and sensor), the amount of training data in the
GP-UKF is doubled compared to the GP with the same sampling
density level. It can be seen that, with less training data, the
estimations of both methods show an increasing deviation from
the ground truth Camera curve. Table III gives the estimation
error comparison of the random reference signal in Fig. 6. Sim-
ilar to Table II, the GP-UKF performs better than the GP under
different densities. In addition, the GP-UKF at num13 maintains
a similar level of accuracy compared to the GP at num64. Even
though two separate models are required in the GP-UKF, it
can achieve the same level of accuracy when the training data
density is five times less, where the memory overhead is only 8%
compared to its GP counterpart because of the quadratic space
complexity O(n2). This implies that the GP-UKF benefits from
sensor feedback and is more resource efficient than the pure GP
approach.

We compare the variance estimation from different methods
at num13 in Fig. 6(d). The GP-UKF has a consistent higher
variance compared to the GP, mainly owing to the unscented
transfer contributing to more uncertainties during the prior state
estimation. It can be seen that, when the estimation error varies
in the num13 scenario in Fig. 6(b), the variance changes accord-
ingly in Fig. 6(d), thus realizing the adaptive variance estimation.
To further verify that the posterior belief should have a lower
level of uncertainty compared to the prior distribution, we design
a BF with GP models and exclude the unscented transfer step.
Compared to the GP, the BF has a lower variance value. However,
both methods show little ability to adjust the variance adaptively
compared to the GP-UKF.

C. Hysteresis Loop Analysis

Since the hysteresis phenomenon exists in both the soft sensor
and actuator, we compare the estimated hysteresis loop deter-
mined by different approaches as a criterion to evaluate the
estimation accuracy. As shown in Fig. 7, we focus on the actuator
hysteresis estimation by utilizing the sine wave as the reference
signal and drawing the relationship between input pressure Pt

and estimated angle θt+1. Besides, the GP-UKFs with two dif-
ferent sampling densities are plotted separately for comparison.
It can be seen that the GP-UKF at num64 characterizes the
hysteresis loop with the highest precision, while the GP at num64
has a similar trend to that of the GP-UKF at num13, which
verifies the results in Table II. The MH-EKF fails to retain the
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Fig. 7. Soft actuator hysteresis loop estimation comparison. (a) GP-
UKF, num64. (b) GP, num64. (c) GP-UKF, num13. (d) MH-EKF, num64.

Fig. 8. Soft sensor hysteresis loop estimation. (a) Different amplitudes
and biases. (b) Temporal variation of the loop due to the sensor drift.

shape of hysteresis loops in multiple scenarios, mainly due to
its inability to handle the angle bias.

Fig. 8 illustrates the hysteresis loop of the soft sensor. Only
the GP-UKF and the MH-EKF are compared since the GP
is excluded from sensor feedback. Fig. 8(a) shows the sensor
hysteresis loop in different sine waves of amplitudes and biases,
where the GP-UKF has a significant advantage over the MH-
EKF. Fig. 8(b) plots the temporal variation of the hysteresis loop
owing to the sensor drift [12]. It can be seen that the GP-UKF
achieves an accurate estimation against the time dependence
issue.

D. Computational Efficiency Comparison

Fig. 9 analyzes the relationship between the computational
overhead and the estimation accuracy. We use response time [34]
to represent the estimation task overhead. The response time of
the task is evaluated with both onboard and offloading schemes,
where the latter enjoys a higher computational capacity but in-
cludes the communication delay. With the increase in the number
of training datasets, the values of NRMSE gradually decrease,
and a higher estimation accuracy is obtained. Meanwhile, the re-
sponse time of the onboard approach climbs nearly in a quadratic
shape. When the number of datasets exceeds 16, the periodic task
of 50 ms becomes overdue for the GP-UKF. Due to its memory
limitation, the microcontroller fails to handle the task when the

Fig. 9. Comparison by the number of training datasets. (a) Response
time. (b) Estimation error (NRMSE).

TABLE IV
COMPARISON OF THE EXECUTION TIMES FOR EVERY TASK SEGMENT

number of training datasets exceeds 32. Nevertheless, due to
the high-computational capacity in the edge-based scheme, the
offloading approach remains schedulable with the increase of
training datasets.

As indicated by Fig. 3, the end-to-end delay in the closed-
loop control system is decomposed into four parts. During the
experiments, we compare the piecewise execution time for each
part and demonstrate them in Table IV, in which t1–t4 are
defined in Fig. 3. The data shown in Table IV are collected
by performing the GP-UKF approach in the num13 scenario,
where the soft actuator is driven by a random signal. We show
data by calculating the average and maximal execution times
among the task periods in 5 min. The onboard execution times
of the control algorithms are measured by Simulink profiling
tools, and the execution times on the edge server are estimated
by Python Profilers. Compared t1–t4, the most computation-
ally demanding task is offloaded to the edge server, and the
microprocessor only needs to handle the PI control and actu-
ation jobs, which significantly reduces the onboard execution
time and ensures real-time efficiency. In addition, the wireless
data transmission enabled by UDP brings low communication
latency with an average receiving time of t1 = 3.566 ms and
sending time of t3 = 1.449 ms. The communication stability
is also examined throughout the experiment by recording the
number of lost packets, which results in a packet loss rate of
0.137% and guarantees the control accuracy of the offloading
approach. The sum of execution times for all task segments in
the closed-loop system is less than one task period, which makes
sure that the control signal is calculated and actuated based on the
latest sensor feedback and will not suffer any deadline misses.

V. CONCLUSION

This study investigated the probabilistic shape estimation
problem in a soft actuator–sensor system. The data-driven
model, enabled by GP regression, was applied to characterize
both the soft actuator and soft sensor dynamics. In addition, to
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further improve the accuracy of the bending angle estimation,
a UKF was designed and collaborated with the GP models.
A higher precision estimation system was achieved with the
adaptive variance while addressing the hysteresis issue of soft
materials. Moreover, the GP approach required a high com-
putation and memory overhead in the online implementation.
To enable real-time performance and guarantee the precision
of estimation, we circumvented this issue by leveraging the
edge computing scheme. The heavy computational estimation
task was offloaded to the edge server through wireless com-
munication, and the edge server approach clearly improved the
real-time estimation performance through the verification with
different types of reference signals. In future work, we will study
soft sensor feedback for external force detection. Also, the drift
property of the soft sensor will be characterized.
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