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Abstract—Generating an accurate and continuous se-
mantic occupancy map is a key component of autonomous
robotics. Most existing continuous semantic occupancy
mapping methods neglect the potential differences be-
tween voxels, which reconstruct an overinflated map. What
is more, these methods have high computational complex-
ity due to the fixed and large query range. To address
the challenges of overinflation and inefficiency, this arti-
cle proposes a novel sharp-edged and efficient continuous
semantic occupancy mapping algorithm (SEE-CSOM). The
main contribution of this work is to design the Redundant
Voxel Filter Model (RVFM) and the Adaptive Kernel Length
Model (AKLM) to improve the performance of the map.
RVFM applies context entropy to filter out the redundant
voxels with a low degree of confidence, so that the rep-
resentation of objects will have accurate boundaries with
sharp edges. AKLM adaptively adjusts the kernel length
with class entropy, which reduces the amount of data used
for training. Then, the multientropy kernel inference func-
tion is formulated to integrate the two models to generate
the continuous semantic occupancy map. The algorithm
has been verified on indoor and outdoor public datasets
and implemented on a real robot platform, validating the
significant improvement in accuracy and efficiency.

Index Terms—Mobile robots, semantic mapping,
Bayesian rule, kernel inference.
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I. INTRODUCTION

THE essence of robot mapping is to employ sparse noisy sen-
sor observations to construct a dense accurate representa-

tion, which is regarded as a fundamental problem in robotics [1].
As robots are required to perform more intelligent tasks, incor-
porating semantic information can further help them distinguish
object categories and allow a higher level of environmental
representation [2]. Currently, the most widely used mapping
technique is the occupancy grid map [3]. Most grid mapping
methods are noncontinuous, assuming that voxels are statis-
tically independent, which contradicts the fact that real-world
object surfaces are usually smooth. Recent success in Bayesian
kernel inference has boosted the development of continuous
mapping, such as BGKOctoMap [4], BGKOctoMap-L [5], and
S-BKI [6]. They incorporate local spatial correlations into the
mapping model, which can infer the continuous surface from
sparse sensor data. However, the potential differences between
voxels are not fully exploited and all voxels are treated equally,
so the voxels next to the object are misclassified to be occupied,
resulting in overinflated objects. Such an overinflated map is
not suitable for robot navigation tasks, because traversable free
space might be falsely blocked. Therefore, the main objective
of this article is to design a novel continuous semantic occu-
pancy mapping algorithm that can mitigate overinflation while
improving efficiency.

The first challenge is to infer the voxels that are worth filling,
so as to mitigate the overinflation phenomenon of existing con-
tinuous mapping methods [4], [5], [6]. As shown in Fig. 1, the
discrete map only recovers the area hit by the sensor observa-
tions, leaving many loopholes. These mapped voxels are defined
as observed voxels in this article. Other unknown voxels can be
divided into two types: the voxels located in the loopholes due
to the lack of observations are called inactive voxels (such as
Fig. 1 yellow masks), while those in the free space outside the
obstacle surface are called redundant voxels (such as Fig. 1 red
masks). Continuous mapping is expected to only fill in inactive
voxels, generating a representation similar to the ground truth
map. However, SOTA continuous mapping method S-BKI [6]
does not distinguish unknown voxels and builds an overinflated
map due to falsely filling in redundant voxels (see Fig. 1).
To accurately reconstruct the scene, the redundant voxel filter
model is proposed to filter out redundant voxels by measuring
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Fig. 1. Demonstration of a conference room of Stanford 2-D–3-D Se-
mantic Dataset [7]. Our map restores smooth surfaces for the objects
while generating precise boundaries with sharp edges.

context entropy, which aims to increase the confidence level in
the inference process.

The second challenge is to reduce the computational com-
plexity of continuous semantic occupancy mapping, thereby
improving efficiency. Current continuous approaches [8], [9],
[10] adopt fixed kernel length, which is n times of the voxel
size. This operation will increase the computational complexity
by n3 compared to discrete approaches. To reduce the time cost,
the Adaptive Kernel Length Model is proposed to adjust the
kernel length adaptively by introducing class entropy, which is
the measurement of the overall uncertainty of a voxel. A large
class entropy usually indicates that the voxel is located at the
junction of objects or contains noisy observations, therefore
a large query range is needed to improve accuracy. When the
class entropy is small, a small kernel length can satisfy the
accuracy.

In summary, overinflation and inefficiency are two challeng-
ing problems of continuous semantic occupancy mapping. This
article proposes a novel sharp-edged and efficient continuous
semantic occupancy mapping algorithm (SEE-CSOM) by ex-
tending [11]. The overall continuous semantic occupancy map-
ping problem is mathematically formulated and its probabilistic
model is derived. The main contributions of this work are listed
as follows.

1) Redundant voxel filter model (RVFM) is proposed to filter
out redundant voxels distinguished by context entropy,
which moderates the overinflation phenomenon.

2) Adaptive kernel length model (AKLM) is proposed to
assign an appropriate kernel length to each voxel by class
entropy, which improves the mapping efficiency.

3) The proposed algorithm has been verified on indoor and
outdoor public datasets and a real robot. Qualitative and
quantitative results show the superiority of the algorithm
in improving accuracy and efficiency.

The rest of this article organized as follows. Section II re-
views the related works. Section III introduces the SEE-CSOM

algorithm. Section IV shows the experimental results. Section V
concludes this article.

II. RELATED WORKS

In this section, existing algorithms related to continuous se-
mantic occupancy mapping are introduced, including semantic
mapping and continuous mapping.

A. Semantic Mapping

With the rapid development of deep learning, semantic map-
ping has attracted increasing attention. Early semantic map-
ping methods directly use semantic images for mapping. The
authors in [12] use the Bayesian framework to filter prob-
abilistic segmentation from multiple views in a voxel-based
3-D map. In [13], the street-level image label estimates are
aggregated to annotate the 3-D volume. These methods are the
pioneers of semantic mapping, but lack further optimization.
To optimize incorrect voxel labels, CRF has become a research
hotspot [14], which can simulate the long-distance relationships
in a region, such as grids corresponding to 2-D superpixels [15]
or grids within supervoxels [16]. In [17], a novel high-order
CRF model is applied to optimize 3-D grid labels. Recently, a
hierarchical framework for collaborative probabilistic semantic
mapping is proposed in [18]. Besides, relative location among
robots can be estimated by matching semantic maps [19],
[20].

Various methods mentioned above promoted the development
of semantic mapping. However, these methods assume that the
voxels are independent and do not reconstruct the continuous
surface of the objects.

B. Continuous Mapping

To construct a smoother occupancy map, many methods have
attempted to relax the assumption that the voxels are indepen-
dent, such as GPmap [8], Hilbert map [21], etc. GPmap [8]
introduced a dependence relationship between points as the
nonparametric Bayesian inference process, which has also been
extended to semantic mapping [10]. However, O(n3) compu-
tational complexity has limited its application to large-scale
online mapping [9]. Hilbert map [21] makes use of fast kernel
approximations to enable faster training in O(n) time. In addi-
tion, a real-time incremental 3-D Hilbert map has been proven
to be feasible [22]. Recently, Bayesian kernel inference with
O(log n) computational complexity has begun to gain attention.
BGKOctoMap [4] innovatively applies the sparse kernel and
Bayesian nonparametric inference data structure to improve
efficiency. Similar work is carried out in BGKOctoMap-L [5].
More recently, S-BKI [6] extends [5] to 3-D semantic mapping,
which enriches the map information.

In summary, the above methods perform continuous mapping
without considering voxel potential differences, which results in
overinflated maps. These algorithms also have a large computa-
tional cost compared to discrete mapping methods. These have
been the reasons for limiting the generalization of continuous
mapping.
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Fig. 2. Framework of sharp-edged and efficient continuous semantic occupancy mapping algorithm.

III. SHARP-EDGED AND EFFICIENT CONTINUOUS SEMANTIC

OCCUPANCY MAPPING

This section describes and formulates the SEE-CSOM al-
gorithm, divided into four sections: Algorithm framework and
problem definition, redundant voxel filter model, adaptive kernel
length model, and multientropy kernel inference.

A. Algorithm Framework and Problem Definition

The framework of the SEE-CSOM algorithm is depicted in
Fig. 2, which consists of three main modules. In the redundant
voxel filter model (RVFM), redundant voxels are distinguished
from inactive and observed voxels by filtering factor. In the
adaptive kernel length model (AKLM), class entropy composed
of two subentropies is introduced to adjust the kernel length,
which determines the range of local spatial associations. Finally,
a continuous semantic map is estimated from sensor observa-
tions through multientropy kernel inference that combines the
information conveyed by RVFM and AKLM.

Considering a robot operating in a completely unknown en-
vironment and attempting to reconstruct the surroundings, the
problem can be defined as follows:

Problem Definition: Given a robot rwith camera observations
I1:t, 3-D LiDAR observationsL1:t and robot trajectoryO1:t, the
objective is to estimate the continuous semantic occupancy map
Mt

p(Mt|I1:t, L1:t, O1:t). (1)

The solution of the problem corresponds to the maximum a
posterior (MAP) estimation of (1). For the input, there are It ∈
R2, Lt ∈ R3 and Ot ∈ SE(3). For output, the dense semantic
map M � {vj}NM

j=1 consists of a set of voxels. Each voxel vj
contains the 3-D coordinate of the center (vxj , v

y
j , v

z
j ), associated

with a tuple λj = (λ1
j , λ

2
j , · · · λK

j ) to store probabilistic semantic
labels, where K is the total number of semantic classes and∑K

k=1 λk
j = 1.

At time t, the RGB image It is fed into the segmentation
network [23]. For each pixel, the output is a one-hot encoded
measurement tuple ci = (c1i , c

2
i , · · · cKi ). Due to differences in

the sensor’s field of perception, only 3-D LiDAR points within
the camera perception area are collected. The semantic labels can
be transmitted from pixels to LiDAR points by projection [24],
where the parameters are calibrated by [25]. Therefore, (1) can
be rewritten as

p(Mt|I1:t, L1:t, O1:t) = p(Mt|Ls1:t). (2)

The semantic point cloud Ls � {pi}NLs
i=1 consists of a series

of semantic points pi referred by coordinates (pxi , p
y
i , p

z
i ), which

are associated with semantic label ci. Alternatively, the problem
can be refined to:

Given semantic points and labels {pi, ci}NLs
i=1 , the objective

is to estimate probabilistic semantic labels λj of each voxel vj

p(Mt|Ls1:t) =

NM∏
j=1

NLs∏
i=1

p(λj | vj , pi, ci). (3)

B. Redundant Voxel Filter Model

As stated before, previous continuous mapping methods [5],
[6] cannot clearly distinguish voxels, resulting in overfitting of
the final continuous map. The redundant voxel filter model is
designed to address this problem, distinguishing different types
of voxels and filtering out the redundant voxels. Fig. 3 illustrates
the significance of RVFM in a 2-D example.

As shown in Fig. 4(a), in order to improve semantic accuracy
and inference efficiency, block is introduced as an intermediate
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Fig. 3. 2-D demonstration of RVFM with the input of semantic point
cloud. Colored boxes represent filled voxels. (a) Semantic point cloud
inserted into the map. (b) Discrete Map with a obvious loophole.
(c) Continuous map built without filtering. (d) Continuous map built with
filtering.

Fig. 4. Illustration of voxels and blocks. (a) Red is a block bJ composed
of several black voxels {vj}. (b) Green blocks {bx} and current block bJ
together form the extended block BJ . (c) Dandelion-CRF extracted from
BJ . The gray part implies its flexible scalability.

layer between map and voxel. Each block bJ � {vj}j∈J is a
small semantic octree, comprised of several adjacent voxels
vj . The depth of the octree is defined as block depth Db. In
consideration of the time cost, the filtering of redundant voxels
is performed in block units, so all the voxels vj in the block bJ
will inherit the attributes of the parent block. To clarify the state
around the current block bJ , extended block BJ � {bJ , {bx}}
[see Fig. 4(b)] is also introduced, which consists of the current
block bJ and neighboring blocks {bx} around bJ . Each block
bJ independently owns a unique extension block.

A graph model is extracted from the extended block [see
Fig. 4(c)], with blocks in the extended block as nodes, and the
connection between the current block bJ and the surrounding
blocks {bx} as edges. This graph is called Dandelion-CRF
because of its highly recognizable structure. It allows arbitrarily
modifying the style of the expansion block to suit the map
application and sensor resolution. Given the observation D, the
context entropy Econ is described as the conditional probability
of the central node bJ

EJ
con = P (bJ ∼ 1|D) (4)

where bJ ∼ 1 indicates that bJ should be filled to enhance the
continuity of the map. It is important to note that filling does
not set the state to be occupied, but instead uses the spatial
association to populate current observation.

There are two kinds of cliques in Dandelion-CRF: One is a
single node{bk} and the other is a pair of adjacent nodes{bk, bl},
where k and l are index variables. By selecting the exponential

potential function and introducing the feature function, the con-
ditional probability is defined as

P (bJ ∼ 1|D) =
1

Z(D)
exp(E(bJ ∼ 1|D)) (5)

E(bJ ∼ 1|D) = ψ(bJ ) +
∑
x

(ψ(bx)ψ(bJ , bx)) (6)

where Z(D) is the partial function for normalization, the sta-
tus feature function ψ(bk), and the transition feature function
ψ(bk, bl) describe the influence of the observation sequence and
adjacent nodes, respectively. In the formulation, ψ(bk) obtains
different values according to whether the block is observed.
ψ(bk, bl) takes the radial basis function (RBF) of the Euclidean
distance between blocks. In (7) and (8), ω1 and ω2 are hyperpa-
rameters to control the amount of information transmitted, and
s is the resolution of the block

ψ(bk) =

{
ω1, ∃pi ∈ bk
0, ∀pi /∈ bk

(7)

ψ(bk, bl) =
ω2

ω1
exp

(
−‖bk − bl‖2

2s2

)
. (8)

Econ reveals potential differences between voxels that can be
used as indicators of differentiation. Taking Tcon as the entropy
threshold, the voxels contained in the block with context entropy
less than Tcon are redundant, often located in the gap between
two objects or outside the boundaries of objects. RVFM will
filter out these redundant voxels during continuous inference,
while preserving observed and inactive voxels to estimate a more
accurate map. This operation is realized by the filtering factor
fJ transmitted to the multientropy kernel inference module

fJ = [EJ
con ≥ Tcon]. (9)

C. Adaptive Kernel Length Model

The kernel length is the key to mapping efficiency, because it
determines the query range. The adaptive kernel length model
is designed to assign appropriate kernel lengths to voxels. Con-
tinuing in units of block, voxels in the same block are assigned
with the same kernel length.

Class entropy Ecla is introduced to measure the overall un-
certainty of the voxel. It contains two subentropies: one is the
probability entropy Ep, and the other is semantic entropy Es.
On the one hand, probability entropy Ep reflects the proportion
of number, which is defined as

Ep =
nall − nmax

nall
(10)

where nmax is the number of semantic points that account for
the largest number among all semantic classes, and nall is the
total number of semantic points in block bJ . On the other hand,
semantic entropyEs describes the diversity of semantic labels in
block bJ . Defining k (k < K) to indicate the number of semantic
labels contained in block bJ , semantic entropy Es

Es = logK(k) =
ln(k)

ln(K)
. (11)
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Fig. 5. (a) Value of class entropy Ecla in the subentropies plane.
(b) Adaptive kernel length for different blocks.

It is worth pointing out that nmax/nall has a bound [1/k, 1].
Converting this mathematical relationship to subentropies, the
implicit constraint of subentropies can be obtained

ln(1−Ep) +K ln(Es) ≥ 0. (12)

Class entropy Ecla is defined in (13) to combine two suben-
tropies. Probability entropyEp is dominant because it integrates
part information of semantic entropy Es. Moreover, the weight
of semantic entropy should be inversely proportional to the total
number of semantic classes K. Coupled with the constraints
of (12), the visualization of class entropy Ecla is illustrated in
Fig. 5(a)

EJ
cla = Ep +

1

K
Es. (13)

When there are no observations in the block, it will have the
largest class entropy. This also occurs when points with any
labels fall into the block evenly. Substituting (10), (11), into
(13), class entropy EJ

cla is written as

EJ
cla =

{
nall−nmax

nall
+ logK(k)

K ∃pi ∈ bJ

1 otherwise.
(14)

Larger class entropy means higher uncertainty, requiring a
larger query range to ensure map accuracy. Therefore, for voxel
vj in block bJ , the kernel length with bounds Lmin and Lmax is
adjusted to

LJ = Lmin +EJ
cla(Lmax − Lmin). (15)

D. Multientropy Kernel Inference

The efficacy of the RVFM and AKLM needs to be exerted
through multientropy kernel inference, which essentially con-
verts sensor observations into updated maps. Different from the
classical voxel probability update model [3], the multientropy
kernel inference model is derived based on the counting sensor
model [26]. According to the Bayesian rule, (3) can be decom-
posed into

p(λj | vj , pi, ci) ∝ p(λj)p(ci| vj , pi, λj). (16)

For incremental Bayesian inference, likelihood probability
is modeled as a categorical distribution cat(λ1

j , λ
2
j , . . . λ

K
j ).

And both prior probability and posterior probability satisfy
Dirichlet distribution Dir(K,σ0) and Dir(K,σj), where σ0 =
{σ1

0 , σ
2
0 , . . . σ

k
0} and σj = {σ1

j , σ
2
j , . . . σ

k
j } are the distribution

parameters.
To break the independence of voxels, an extended likelihood

is introduced with a kernel function k that operates on 3-D space
X × X → [0, 1]. Then, (16) is rewritten as

K∏
k=1

(θkj )
σk
j −1 ∝

K∏
k=1

(θkj )
σk
0−1

(
K∏

k=1

(θkj )
cki

)k(vj ,pi)

. (17)

After simplification, the relationship between the two Dirich-
let distribution parameters σ0 and σj can be obtained

σj = σ0 + k(vj , pi)ci. (18)

Because σ0 usually takes a tiny value due to the lack of prior
knowledge, σj is the weighted count of the semantic points,
called the semantic count tuple of voxel vj . It will be stored
in the voxel and updated when a new semantic point cloud is
inserted.

Equation (18) indicates that the semantic count tupleσj counts
not only the semantic points that fall into the current voxel vj but
also the adjacent semantic points with the kernel function as the
weight. In this way, the choice of kernel function has a pivotal
influence on the quality and efficiency of semantic mapping. In
order to reduce the computational complexity, the sparse kernel
function k0(vj , pi) [27] is chosen as a template:

k0(vj , pi) = I
d<L

ε0

[
(2 + cos(2π d

L )(1− d
L ))

3
+

sin(2π d
L )

2π

]
(19)

where I represents the indicator function, d = ‖vj − pi‖, L is
the kernel length, and ε0 is the scale factor.

Incorporating the proposed RVFM (9) and AKLM (15) into
the (19), the multientropy kernel function ke(vj , pi) is derived
as (20). ke(vj , pi) improves the defects of indistinguishable
redundant voxels and fixed kernel length in k0(vj , pi) by the
integration of the two models, thus helping to greatly improve
the mapping performance

ke(vj , pi) = fJk0(vj , pi)L→Lj
. (20)

Inserting the obtained semantic point clouds Ls1:t , the se-
mantic count tuple σj of each voxel vj in map Mt is denoted as

σk
j = σk

0 +

NLs∑
i=1

ke(vj , pi)c
k
i , k ∈ K (21)

where σk
j represents the count value of the 3-D point with

semantic label k in voxel vj .
Therefore, the probabilistic semantic label of the voxel vj is

the closed-form expected value of the posterior Dirichlet:

λk
j =

σk
j

K∑
m=1

σm
j

=

σk
0 +

NLs∑
i=1

ke(vj , pi)c
k
i

K∑
m=1

(
σm
0 +

NLs∑
i=1

ke(vj , pi)cmi

) . (22)
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Fig. 6. Result of mapping on the structured dataset.

In summary, the mapping problem defined in (3) has been
transformed into a probabilistic solution as (22). The map is
updated by incrementally calculating (21) and (22) as new sensor
observations are obtained.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed SEE-CSOM
algorithm is validated through experiments performed on mul-
tiple public datasets and a real robot platform.

Implementation Details: All experiments are conducted on
AMD R7-5800H CPU @3.20 GHz, 16 GB RAM. Our code
written in C++ has been made public, which is based on Robot
Operating System, Point Cloud Library, and Semantic Bayesian
Kernel Inference Library.

Comparison Baseline: S-CSM, S-BKI [6], OctoMap [3],
GPOctoMap [9], BGKOctoMap-L [5], and AKIMap [28] are
selected as baselines for occupancy accuracy and efficiency
comparison, while S-CSM and S-BKI [6] are set as the baselines
for semantic accuracy comparison. For these algorithms, the
common hyperparameters follow the settings of S-BKI [6],
while the unique ones are kept original or empirically adjusted
to be appropriate.

Evaluation Metric: Accuracy is measured by occupancy AUC,
voxel-IoU, w-average, and accurateness. Voxel-IoU extends the
pixel-IoU from 2-D to 3-D, which is defined as TP/(TP+FP+FN).
W-average is the weighted average of voxel-IoU. Accurateness
is defined as the proportion of correctly classified voxels. Effi-
ciency is measured in seconds.

A. Occupancy Evaluation

The structured toy dataset is collected from a closed space of
10.0 m × 7.0 m × 2.0 m in Gazebo, which is also used in many
previous works [4], [5], [6]. Fig. 6 includes the reconstruction
results for ours and all of the comparison baselines. Our map
has a compact underlying representation even though the sensor

Fig. 7. ROC curve of structured toy dataset.

data are sufficiently sparse, which is the closest to the environ-
ment model, while other methods suffer from underfitting or
overfitting to a certain degree.

To quantitatively evaluate the maps, the receiver operating
characteristic (ROC) curves are plotted in Fig. 7 and their nu-
merical results are shown in Table II. By smoothing in the tangent
plane of the object surface, the proposed algorithm achieves a
promising occupancy classification effect, which is crucial for
robots to avoid obstacles in unknown environments.

B. Stanford Indoor Dataset

Stanford 2-D–3-D Semantics Dataset [7] is a large indoor
spatial dataset. It provides indoor data at multiple modalities,
including annotated 3-D point clouds. A conference room, a
lounge, an office, and a WC are selected as evaluation scenes,
covering various indoor environments with different structures.
The map resolution is set to 0.05 m for all algorithms.

Taking the lounge as an example, the mapping results are
shown in Fig. 8. As can be seen, S-CSM generates a discrete
semantic map by only predicting observed voxels. Objects in
the S-BKI map are very thick, and a zoom-in view shows that
the entire chair has been distorted and glued to the floor due to the
blind filling of redundant voxels. In contrast, our proposed SEE-
CSOM successfully filters out redundant voxels while filling in
the inactive voxels, which builds a semantic map that visually
has the most similar features to the ground truth.

The quantitative evaluation results of the mapping accuracy
are summarized in Table I. SEE-CSOM has achieved significant
advantages, consistent with the visual results. S-BKI has a
higher IoU than S-CSM, but has the lowest accuracy due to
the overfilling of a large number of redundant voxels.

C. SemanticKITTI Outdoor Dataset

SemanticKITTI dataset [29] is a large outdoor semantic point
cloud dataset, collected from the real world. The semantic la-
bels of the point clouds inserted into the map are obtained by
RangeNet++ [30]. Sequences 02, 04, 06, and 08, four different
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Fig. 8. Semantic mapping results on a lounge of Stanford 2-D–3-D Semantic Dataset.

TABLE I
QUANTITATIVE RESULTS ON FOUR SCENES OF STANFORD 2-D–3-D SEMANTIC DATASET

TABLE II
NUMERICAL COMPARISON OF ROC CURVES

types of outdoor scenes are extracted for evaluation. The map
resolution is set to 0.3 m.

Taking Sequence 04 as an example, the comparison of the
mapping results is shown in Fig. 9. The enlarged pictures present
part of the ground. Due to inaccurate network segmentation, all
the generated maps have some random noises. There are many
loopholes and messy semantic labels in the S-CSM map. The
reason is that S-CSM does not consider the spatial correlation.
S-BKI can remove some noises and fill in the loopholes by
smoothing, but it is still not comparable with ours. SEE-CSOM

almost removes all noises by applying RVFM and AKLM, which
is more in line with ground truth.

The quantitative results are summarized in Table III. It is
obvious that SEE-CSOM has the best performance. Moreover,
the accuracy of S-BKI has been greatly improved, and even
surpasses S-CSM. The reason is that continuous mapping is
more suitable for cluttered outdoor scenes with many unknown
or ambiguous objects. Fig. 10 shows the confusion matrices.
The diagonal (TP) of our confusion matrix has the darkest color,
with the largest prediction and recall for each class. The highest
F1 score also confirms the best spatial semantic classification
effect of the proposed algorithm.

D. Efficiency Evaluation

To evaluate efficiency, the average runtime of both semantic
and geometric mapping methods is reported in Table IV. For
a fair comparison, all experiments use the same environment
configuration on both hardware and software. In general, seman-
tic mapping methods cost more time than geometric mapping
methods. This is because the semantic map includes multiple
classes of object labels, thus increasing the complexity of esti-
mation and update. By adaptively assigning the kernel length,
SEE-CSOM has the highest efficiency in semantic mapping
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Fig. 9. Semantic mapping results on Sequence 04 of SemanticKITTI dataset.

TABLE III
QUANTITATIVE RESULTS ON FOUR SEQUENCES OF SEMANTICKITTI DATASET

Fig. 10. Confusion matrix and F1 score of SemanticKITTI dataset. The brown sectors approximate the value of the prediction or recall.

methods and even slightly surpasses OctoMap in some scenes.
Considering the importance of semantic information, the time
cost of SEE-CSOM is acceptable.

E. Impact of Parameters

The sensitivity of SEE-CSOM to two important parameters
is studied: block depth Db and context entropy threshold Tcon.
The experiments are conducted on the conference room dataset.

In Fig. 11, w-average IoU and accurateness are utilized as
evaluation indicators. The best mapping effect is achieved when
the block depthDb is set to 2. When it is smaller, the surrounding
observation data are considered insufficient, and when it is
larger, the details of the map will be ignored, both of which
are not conducive to the accurate reconstruction of the scene.
0.1 is the best candidate for context entropy threshold Tcon,
which filters out voxels that have no interior observations and
have exterior observations in few directions.
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TABLE IV
AVERAGE RUNTIME ON EIGHT SCENES (SECOND/SCAN)

Fig. 11. Impact of parameters on mapping performance of SEE-
CSOM.

F. Validation in the Real World

To verify the practicality in real applications, SEE-CSOM
is tested by deploying a mobile robot. The robot is equipped
with a 3-D Velodyne LiDAR and a visual camera, where the
sensors have been accurately calibrated with [25]. The
Cityscapes dataset [31] is used to train the semantic segmen-
tation model.

The robot is teleoperated to traverse the campus to record raw
sensor data, from which semantic point clouds and robot trajec-
tories are generated. To verify the performance of the algorithms
on sparse data, each scan of the point cloud is downsampled to a
resolution of 0.2 m, the maximum perception range is 15 m, and
the map resolution is set to 0.1 m. Using the exact same input and
real-time playback, the qualitative results of the three semantic
mapping algorithms are shown in Fig. 12. A top view of the
SEE-CSOM map and an image of the robot are shown at the
top. At the bottom is a comparison of the maps constructed by
the three algorithms. By visually checking the generated map,
it is found that the SEE-CSOM map strikes a balance between
the sparse S-CSM map and the overinflated S-BKI map, filling
the mapping loopholes without overfitting.

In addition, the numerical quantitative results are also re-
ported in Table V. Since the ground-truth semantic labels are
not available, the ground-truth geometric map is constructed
offline using dense denoised point clouds. As indicated in the
table, SEE-CSOM outperforms other algorithms on all metrics.
S-CSM has the smallest occupied IoU due to its conservative
estimation of occupancy, while S-BKI, on the opposite, is over-
inflated. In terms of runtime, SEE-SCOM achieves the best
computational efficiency. Based on the real-world validation,

Fig. 12. Qualitative results of semantic mapping of large-scale real
scenes. From top to bottom: The overall semantic occupancy map of
SEE-CSOM, a comparison of three maps in two different regions.

TABLE V
QUANTITATIVE RESULTS IN THE REAL WORLD
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SEE-CSOM demonstrates its accuracy and efficiency in practi-
cal applications.

V. CONCLUSION

This article established a sharp-edged and efficient
continuous semantic occupancy mapping algorithm. More
specifically, the proposed redundant voxel filter model filtered
out redundant voxels, therefore the representation of objects had
accurate boundaries with sharp edges in our map. In addition,
the proposed adaptive kernel length model adjusted kernel length
adaptively, which greatly reduced the computational complexity.
The multientropy kernel function integrated the two models to
jointly reconstruct a dense accurate representation from sparse
noisy sensor observations. The results demonstrated that the
proposed algorithm achieved high accuracy and efficiency. In
the future, the plan is to consider semantic consistency when
filtering redundant voxels, so that a more accurate and smoother
semantic map can be reconstructed.
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