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The growing popularity of edgeAI requires novel solutions to support the
deployment of compute-intense algorithms in embedded devices. In this article, we
advocate for a holistic approach, where application-level transformations are
jointly conceived with dedicated hardware platforms. We embody such a stance in a
strategy that employs ensemble-based algorithmic transformations to increase
robustness and accuracy in convolutional neural networks, enabling the aggressive
quantization of weights and activations. Opportunities offered by algorithmic
optimizations are then harnessed in domain-specific hardware solutions, such as
the use of multiple ultra-low-power processing cores, the provision of shared
acceleration resources, the presence of independently power-managed memory
banks, and voltage scaling to ultra-low levels, greatly reducing (up to 60% in our
experiments) energy requirements. Furthermore, we show that aggressive
quantization schemes can be leveraged to perform efficient computations directly
in memory banks, adopting in-memory computing solutions. We showcase that the
combination of parallel in-memory execution and aggressive quantization leads to
more than 70% energy and latency gains compared to baseline implementations.

The rise and ever-improving accuracy of artificial
intelligence (AI) is fostering a revolution in a
multitude of scenarios, ranging from healthcare

to manufacturing. Still, this impressive rise in perfor-
mance has been fueled by a concurrent increase in
complexity.1 For example, the state-of-the-art AI meth-
ods for object recognition and automated translation
require a workload in the order of floating-point opera-
tions giga floating-point operations (109 floating-point
operations) for each inference.

Such computational requirements strain the capa-
bilities of digital architectures, especially when consid-
ering edge applications where processing is performed
entirely or in part at the edge, where devices are typi-
cally constrained in terms of computing and memory
capabilities. Indeed, a vast number of hardware and

software solutions for improving the energy, runtime,
and memory efficiency of AI algorithms have been
recently proposed.2–4 Nonetheless, hardware and soft-
ware aspects are often considered in isolation. Instead,
we advocate for combining hardware-friendly applica-
tion optimization strategies and software-friendly
architectural solutions to achieve disruptive efficiency
gains.

The framework depicted in Figure 1 embodies such a
stance. It receives as input a convolutional neural net-
work (CNN) architecture designed (or selected from the
state-of-the-art) to achieve the desired classification
accuracy on the target dataset. As for software optimiza-
tions [see Figure 1(I)], we first consider resource-con-
strained ensembles, which increase accuracy and
robustness against sources of internal noise (e.g., mem-
ory errors due to subnominal operating conditions or
approximation due to operands’ quantization). Then, this
higher resiliency opens the path to aggressive quantiza-
tion, which reduces memory requirements and improves
efficiency [see Figure 1(II)]. Dedicated hardware resources
exploit software optimizations. The parallelism exposed
by ensembles allows their mapping and execution on
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platforms featuring multiple ultra-low-power cores [see
Figure 1(III)]. Similarly, the presence of multiple, indepen-
dently power-managed banks opens the opportunity for
efficient in-memory computation [see Figure 1(IV)].

In the rest of this article, we detail our proposed
strategy. We cover software-level optimizations in the
“Resource-aware application optimization” section.
Then, we describe how these can be effectively
exploited in the design of domain-specific hardware
for edgeAI in the “Domain-specific hardware” section
and the “IMC: Bit-line accelerator for devices on the
edge (BLADE)” section.

RESOURCE-AWARE APPLICATION
OPTIMIZATION

Application-level optimization methodologies aim at
modifying the structure of CNNs to build models with
increased accuracy and efficiency.

Toward this goal, Ponzina et al.2 introduced embed-
ded ensembles of CNNs [E2CNNs; see Figure 1(I)]. To
build E2CNNs, the filters of an untrained CNN architec-
ture are first pruned to obtain amodel with lower mem-
ory and computing requirements. The obtained
structure is then replicated, hence deriving models
composed of multiple, but lightweight, instances (see
Figure 2). Afterward, each instance is independently
trained starting from different initial weight values.
E2CNNs can also reduce storage requirements when
the pruning factor exceeds replication. For example,
pruning GoogLeNet by 8x to build an E2CNNs imple-
mentation composed of just four instances halves the
memory and computational requirements and reduces
energy cost by 55%, without any degradation in accu-
racy when evaluated on the CIFAR100 dataset.

The accuracy and resiliency improvements of
E2CNNs support a synergic use of additional

optimization approaches. First, the robustness of
E2CNNs is exploited by aggressive quantization
schemes [see Figure 1(II)]. Indeed, in Ponzina et al.,3 a
strategy is described to aggressively reduces the
width of activations and weights in convolutional and
fully connected (FC) layers. This approach, summa-
rized in Figure 3, is based on a greedy heuristic that, at
each iteration, selects a layer in which the bitwidth
should be reduced based on a measure of sensitivity
and on its size (since quantizing larger layers achieves
greater gains). The baseline model (a) is heteroge-
neously quantized, reducing the bitwidth of weights in
convolutional layers and activations in FC layers while
meeting a user-defined accuracy level (b). Then, con-
volutional filters composed of only 0-valued weights
are pruned from the model (c), resulting in significant
memory and energy savings with no impact on accu-
racy. Finally, to improve data-level parallelism, the bit-
width of FC weights and convolutional activations is
selectively reduced (d). The resulting heterogeneous
and fine-grained quantization schemes can be effec-
tively implemented in in-memory computing (IMC)
accelerators, resulting in notable energy gains and
very limited accuracy degradations. The energy gains
of our approach are discussed in the “IMC: Bit-Line

FIGURE 1. Overview of the hardware/software co-design framework. Left: application-level optimizations: ensembling (I) and

quantization (II). These are leveraged to drive the design of domain-specific platforms featuring heterogeneous multicores (III)

and IMC capabilities (IV).

FIGURE 2. In E2CNNs, a CNN model is first pruned. Then, it is

replicated several times to build up an ensemble that meets

the same memory and computational requirements of the

original model.
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Accelerator for Devices on the Edge (BLADE)” section,
where an IMC accelerator supporting the described
algorithmic optimization is presented.

Furthermore, ensembles of CNNs exhibit a high
degree of robustness toward memory errors, because
the instances composing the ensemble exhibit varying
weight distributions due to their separate training.
Hence, memory errors having a critical impact on the
accuracy of one instance may have a significantly lower
influence on the others, thus increasing the probability
of returning the correct output. The increased resiliency
of E2CNNs enables scaling of the supply voltage while
tolerating the ensuing error probability when accessing
static random-accessmemory (SRAM) banks. In Ponzina
et al.,2 experiments on different benchmarks demon-
strate that voltage scaling can increase energy efficiency
up to 60%without appreciable impact accuracy.

DOMAIN-SPECIFIC HARDWARE
The parallelization of the computing and memory sub-
systems is a key to reducing the energy budget of edgeAI
platforms. By using multiple processors, shallower in-
order pipelines based on reduced and modular inst-
ruction sets (e.g., reduced instruction set computer-V)
can be employed in conjunction with dedicated

components [e.g., direct memory access (DMA) and
accelerators]. Such an approach effectively con-
strains energy without overly sacrificing performance,
giving the flexibility to adapt to varying workloads at
run-time. For example, when only signal acquisition is
performed, solely the analog-to-digital converter
(ADC) components and the DMA transferring data to
memory banks are required, while processors and
accelerators can be power gated. Moreover, clock
gating can be employed to harvest energy-saving
opportunities over short time intervals. As an exam-
ple, cores and accelerators can be clock-gated during
synchronization events.

Similarly, dividing the memory into small banks
enables energy-saving opportunities. Banks can be
individually powered off or put in retention mode
when unused, hence increasing efficiency. Moreover,
in-memory operations can be supported in multi-
banked memories with a high degree of run-time par-
allelism with limited area overhead, as detailed in the
“IMC: Bit-Line Accelerator for Devices on the Edge
(BLADE)” section.

A high-level block scheme of an architecture
implementing the abovementioned features is depic-
ted in Figure 4. It features multiple cores to cope with
the high workloads of AI applications and several
memory banks that can be independently powered
off, possibly supporting IMC capabilities. The template
architecture also includes flexible coarse-grained
reconfigurable arrays (CGRAs), thus enabling the hard-
ware acceleration of computational kernels, as show-
cased in Giovanni et al.,12 where energy gains up to
32% are achieved compared to an equivalent single-
core system.

FIGURE 4. Architecture template for edgeAI platforms, includ-

ingmultiple cores, an independent input/output system, amul-

tibanked memory supporting IMC, a reconfigurable CGRA

accelerator, and a fine-grained powermanagement unit.
FIGURE 3. Workload-aware quantization and pruning meth-

odology (left). Running example showing how the bitwidth of

weights and activations are optimized in different steps

(right). (a) Baseline quantization level. (b) Heterogeneous

multipliers’ quantization. (c) Filter-level optimization, where

filters having all 0-valued weights are removed. (d) Multipli-

cands’ quantization enabling in-memory SIMD.

50 IEEE Micro November/December 2022

ARTIFICIAL INTELLIGENCE AT THE EDGE



Note that hardware-friendly software optimiza-
tions presented in the “Resource-aware application
optimization” section can efficiently be included in
this architecture. CNN instances composing the
ensemble can be easily mapped on different cores,
which selectively activate memory banks only when
needed. The lower workload in each core can then be
exploited to reduce the operating frequency (and
therefore energy) while abiding to performance con-
straints, allowing the scaling of the voltage supply.

Although aggressive voltage reduction is possible
as digital logic is error-resilient down to the technology
voltage threshold, memories (e.g., SRAM cells) usually
start failing at higher voltages, hence posing a limit to
voltage scaling. The impact of memory errors due to
voltage scaling on CNN accuracy has been studied in
Denkinger et al.11 and Ponzina et al.,2 showing that
ensembling improves the robustness of CNNs, allowing
SRAM memories to operate at subnominal voltages
while coping with the ensuing errors. These works
show energy savings in memories of up to 90% due to
voltage scaling while limiting CNN output quality deg-
radation caused bymemory errors to just 1%.

The implementation process also plays a role in
energy efficiency. Hardware can be optimized at syn-
thesis time by matching the system performance and
power consumption to the demands of the target appli-
cations using multi-Vt libraries. Such libraries enable
low-power and high-performance cells to be instanti-
ated as required to meet timing constraints. Indeed,
Figure 5 shows how the normalized energy consump-
tion required to execute a CNN inference varies when
differentmaximumoperating frequencies are imposed.

IMC: BIT-LINE ACCELERATOR FOR
DEVICES ON THE EDGE (BLADE)

Enabling computation inside SRAM memory banks is
particularly appealing for edgeAI workloads, which are

dominated by convolutions or other forms of matrix–
matrix and matrix–vector multiplications. The high
regularity of these operations in terms of access pat-
terns enables ultraefficient IMC solutions.

IMC architectures can employ technologies rang-
ing from emerging nonvolatile memories (eNVM) to
traditional complementary metal–oxide–semiconduc-
tor (CMOS)-based memories. IMC based on eNVMs,
such as resistive random-access memories, phase
change memories, and magnetic random-access
memories, can be arranged in cross-points with high
integration density. However, these IMC methods rely
on nonconventional fabrication processes, complex
periphery circuitry including ADCs, and high write cur-
rents. On the other hand, IMC using SRAM memories
1) takes advantage of a well-known fabrication pro-
cess and 2) can be operated as digital devices, with lit-
tle additional logic at the periphery of memory cell
arrays compared to the regular SRAMmemories.

ENABLING COMPUTATION INSIDE
SRAMMEMORY BANKS IS
PARTICULARLY APPEALING FOR
edgeAI WORKLOADS, WHICH ARE
DOMINATED BY CONVOLUTIONS OR
OTHER FORMS OFMATRIX–MATRIX
ANDMATRIX–VECTOR
MULTIPLICATIONS.

Moreover, by relying on SRAMs and due to their
very low circuit overhead, SRAM-based IMC architec-
tures can be drop-down replacements for traditional
memory banks. Hence, they can leverage the same
system-level optimization: they can be power-gated
when not used or put in retentive mode when no
accesses are performed.

One notable SRAM-based IMC architectural solu-
tion is BLADE.4 BLADE enables in situ arithmetic oper-
ations and nether rely on analog elements, nor on
associated ADCs and digital-to-analog converters. Its
circuit-level implementation is compatible with high-
density 6T-SRAM bitcells, thanks to an organization of
memory cells in Local Groups. Such characteristics
make BLADE compatible with a large range of supply
voltages and enable an aggressive voltage/frequency
scaling, as shown in Figure 6(a).

In BLADE, operations are performed by simulta-
neously activating two word lines of different local
groups. IMC operations are performed on the global

FIGURE 5. Change in the normalized energy consumption of a

CNN inference for different frequency constraints imposed

during synthesis.
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bit-lines and evaluated by conventional single-ended
sense amplifiers. Operations such as additions, sub-
tractions, logic shifts, and bitwise operations can be
performed in the memory periphery. By chaining addi-
tions and shifts, multiply-and-accumulate (MAC) oper-
ations can also be implemented. As convolutional and
FC layers of CNNs are composed of MAC operations,

they can be executed with very high efficiency in a sin-
gle-instruction multiple-data fashion on the subarrays
composing each BLADE bank, as showcased in Pon-
zina et al.3

BLADE’s performance is further increased when
low-bitwidth quantization schemes are adopted.
Indeed, in SRAM-based IMC architectures, the number
of clock cycles required to execute a multiplication is
proportional to the bitwidth of the multiplier. There-
fore, the application-level strategy described in the
“Resource-Aware Application Optimization” section
can be effectively harnessed by executing the result-
ing heterogeneously quantized ensembles in BLADE.
Results considering a single-instance implementation
are summarized in Figure 7. They show energy (and
latency) improvements of 72% with just 1% accuracy
degradation compared to a homogeneously 8-bit sin-
gle-instance CNN.

CONCLUSION
In this article, we have discussed the importance of a
comprehensive co-design approach for edgeAI, where
algorithmic optimizations and hardware architectures
are jointly designed. We have shown that very signifi-
cant energy efficiency gains can be obtained when
application-level optimizations are well supported by
hardware resources. Embodying this paradigm, we
have presented ensembling as a key optimization
strategy that improves robustness against aggressive
quantization schemes and memory errors. Such char-
acteristics are harnessed by a domain-specific edgeAI
system, which supports parallel execution on multiple
ultra-low-power cores, and aggressive voltage scaling.
In addition, we have shown that the heterogeneous
quantization CNNs can be effectively leveraged by
IMC architectures, and that these can seamlessly
integrate into multicore and multibanked systems.
The presented edgeAI co-design framework achieves
up to 60% energy reduction in the memory subsys-
tem thanks to voltage scaling. In addition, the IMC
accelerator exploits application-level optimizations to
improve inference performance and efficiency by
72%, without a significant output quality degradation.
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FIGURE 7. Accuracy of MobileNet-v27 on the CIFAR-100 data-

set at different energy optimization levels in homogeneously

quantized CNNs (black) and our optimized CNNs for a 1%

(black) and a 5% (green) user-defined accuracy thresholds.

Energy is measured for a BLADE implementation in 28-nm

CMOS technology. (a)–(d) refer to the optimization steps in

Figure 3.

FIGURE 6. (a) Variability-aware performances (GHz) of IMC

operations in BLADE simulated in a 28-nm CMOS technology.

(b) BLADE 2KiB subarray physical layout in 65-nm technology

as integrated in Darkside5 with the composing blocks

highlighted.
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